

Application areas

- The RIA 550 process indicator displays either 1 or 2 analog values. These can also be monitored for up to 2 limits.
- The process indicator can be universally applied.
- For displaying analog measured values, limit monitoring and loop power supply to 2 wire transmitters.

Advantages at a glance

- Various models: Available as vertical or horizontal mounting
- Multi functional: All normal measurement signals can be directly connected (bipolar voltage, current, thermocouples, RTD)
- Clear LED bargraph display: 4 digit LED dot matrix display for measured value and engineering units.
- Measurement range, engineering units and limits programmable via simple matrix operation.
- Interference security: Complies to EMC requirements to EMVG and NAMUR (with CE-Mark)
- Delta-function: differential value of the 2 channels

Analog Inputs

The analog inputs are measured 10 times per second and converted to the preset engineering unit range. They are then shown as an analog bargraph and digital LED display.

Limit monitoring

The converted signal is monitored 2.5 times every second for limit infringements. The presettability (upper/lower limit markings as well as max/min security) of the built-in relays guarantee highest security in the event of an alarm.

Display

A clear dot matrix LED display shows the measured value digitally and 1 or 2 LED chains indicates it as an analog bargraph. The digital display scrolls the measured value and engineering units in a 4:1 tact, the bargraph is continuous and permanently displays the limit set points.

Operation

Parameters can be selected and set up by matrix programming. Here the setting up matrix is divided into channel and limit dependent levels.

Function

RIA 550
Monitoring inflow, outflow temperatures and displaying the resulting values

Front end operation and display

Dialog operation using the front panel keypad

Display: Limit infringements, bargraph, digital display and engineering units scrolled on a $4: 1$ ratio

Installation

Model

Panel mounted 5.67×1.42 in. $\times 9.06$ in.
($144 \times 36 \times 230 \mathrm{~mm}$)
Protection class, Front IP 65, IEC 529

Power supply

90 to $253 \vee 48$ to 440 Hz
Option: Low voltage supply 10 to 36 V DC or
24 V AC, $\pm 15 \%$
Low voltage security

Power consumption

max. 8 W

Terminals

Power supply: Screw terminals Phoenix Combicon (3pole)
Relay outputs: Screw terminals
Phoenix Combicon (8pole)
Signal inputs: Screw terminals
Phoenix Minicombicon (12pole)

Display system

1 or 2 , 4 digit 5×7 dot matrix LED display (red) (digit height 0.18 in. (4.6 mm)) or 2 x 64 element bargraphs

Operation

Matrix operation using 3 front panel mounted push buttons

Limit

All channels $2.5 \mathrm{x} /$ second (400 ms) Alarm contact function:
Presettable minimum or maximum security: Hysteresis variable
Set points indicated using one mark each in the LED bargraph chain

Ambient operation temperature

$32^{\circ} \mathrm{F}$ to $+122^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$, to DIN 40040 relative humidity $<=75 \%$ on yearly average without condensation

Storage temperature

$-4^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Influencing effects

Power failure:
$\leq 20 \mathrm{~ms}$, no effect
$\geq 20 \mathrm{~ms}$, automatic function resumption Burst: to IEC 801-4 supply cable
4 kV , signal cable 4 kV
ESD: to IEC 801-2 6 kV contact discharge Electromagnetic fields: to EC801-310V/m HF immunity, conducted: to IEC 801-6 10 V Surge (supply cables): to IEC 801-5 1.0 kV sym., 2 kV unsym.

Surge (signal cables): to IEC 801-5.1 KV unsym.
With external over voltage protection

Transmissions

RF protection to EN 55011/VDE 0875, Part
11, Class A (industrial areas)
Harmonics to IEC 555-2.

Standard input signals

0 to $1 / 10 \mathrm{~V}, \mathrm{Ri}=800 \mathrm{KOhm}$
$0 / 4$ to $20 \mathrm{~mA}, \mathrm{Ri}=50 \mathrm{Ohm}$
Basic accuracy: 0.2% FSD
Temperature drift: $0.2 \% / 10 \mathrm{~K}$
Overrange: 10\%
Max. Input current: 100 mA
Common mode noise rejection:
0.1 \% measurement
span at $63 \vee 50 / 60 \mathrm{~Hz}$

Normal mode noise rejection:
40 dB at input range/10, 50 to 60 Hz
Allowable input voltage range:
$\pm 60 \mathrm{~V}$ (differential mode)
Allowable common voltage range:
$\pm 100 \mathrm{~V}$ (common mode)
No dangerous voltages
Measurement system

System:	U/f convertor
Integration time:	100 ms

Resolution: approx. 15 Bit

Loop power supply

Quantity: $\quad 1$ per channel
Output voltage: $24 \mathrm{~V} \pm 10 \%$
Output current: 25 mA max. (internally limited short circuit protected)
Galvanically isolated from each other and all other circuits

Limits / Alarm relays

Number of relays: 2 per channel
Limit output: One potential free closing
contact per limit $3 \mathrm{~A}, 250 \mathrm{~V} \mathrm{AC}$, Isolation group A to VDE 0110

Safety

To IEC 1013-1/EN 61010-1 protection class I; Over voltage category II;
max. Allowable cegree of soiling. II

OPTIONS

Multi function input

Number of channels: 1 or 2
Voltage input ranges: bipolar
$\pm 20 \mathrm{mV} \pm 50 \mathrm{mV} \pm 100 \mathrm{mV} \pm 200 \mathrm{mV}$
$\pm 1 \mathrm{~V}, \pm 2 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{VRi}=1 \mathrm{MOhm}$ bipolar
Current input range:
$0 / 4$ to $20 \mathrm{~mA}: \mathrm{Ri}=50 \mathrm{Ohm}$
Thermocouple input ranges:
Type $\mathrm{L}-328^{\circ} \mathrm{F}$ to $+1652^{\circ} \mathrm{F}\left(-200\right.$ to $\left.+900^{\circ} \mathrm{C}\right)$
Type U $-328^{\circ} \mathrm{F}$ to $+1112^{\circ} \mathrm{F}\left(-200\right.$ to $\left.+600^{\circ} \mathrm{C}\right)$
Type B $32^{\circ} \mathrm{F}$ to $+3308^{\circ} \mathrm{F}\left(0\right.$ to $\left.+1820^{\circ} \mathrm{C}\right)$
Type $\mathrm{S} 32^{\circ} \mathrm{F}$ to $+3272^{\circ} \mathrm{F}\left(0\right.$ to $\left.+1800^{\circ} \mathrm{C}\right)$
Type R $-58^{\circ} \mathrm{F}$ to $+3272^{\circ} \mathrm{F}\left(-50\right.$ to $\left.+1800^{\circ} \mathrm{C}\right)$
Type K $-328^{\circ} \mathrm{F}$ to $+2502^{\circ} \mathrm{F}\left(-200\right.$ to $\left.+1372^{\circ} \mathrm{C}\right)$
Type $J-346^{\circ} \mathrm{F}$ to $+2192^{\circ} \mathrm{F}\left(-210\right.$ to $\left.+1200^{\circ} \mathrm{C}\right)$
Type $\mathrm{T}-454^{\circ} \mathrm{F}$ to $+752^{\circ} \mathrm{F}\left(-270\right.$ to $\left.+400^{\circ} \mathrm{C}\right)$
Type $\mathrm{N}-454^{\circ} \mathrm{F}$ to $+2372^{\circ} \mathrm{F}\left(-270\right.$ to $\left.+1300^{\circ} \mathrm{C}\right)$
Cable open circuit is evaluated.
Reference point: Internal; Accuracy $\pm 5 \mathrm{~K}$
$\pm 1^{\circ} \mathrm{C} / 10 \mathrm{~K}$ surrounding temperature
RTD input ranges:
Ni100 $-76^{\circ} \mathrm{F}$ to $+356^{\circ} \mathrm{F}\left(-60\right.$ to $\left.+180^{\circ} \mathrm{C}\right)$
Pt100 $-148^{\circ} \mathrm{F}$ to $+1112^{\circ} \mathrm{F}\left(-100\right.$ to $\left.+600^{\circ} \mathrm{C}\right)$
Pt500 $-148^{\circ} \mathrm{F}$ to $+1112^{\circ} \mathrm{F}\left(-100\right.$ to $\left.+600^{\circ} \mathrm{C}\right)$
Pt1000 $-148^{\circ} \mathrm{F}$ to $+1112^{\circ} \mathrm{F}\left(-100\right.$ to $\left.+600^{\circ} \mathrm{C}\right)$
Base accuracy: 0.2 \% FSD
Temperature drift: $0.2 \% / 10 \mathrm{~K}$
Energizing current: approx. 1 mA
Cable comp.: up to approx. 100 Ohm
Overrange:
10\%
Max. input voltage: 50 V
Max. Input current: 100 mA
Normal mode noise rejection: 0.1% FSD at 63 V 50/60 Hz
Common mode noise rejection: 40 dB at input range/10, 50 to 60 Hz
No dangerous voltages
Measurement system
$\begin{array}{ll}\text { System: } & \text { U/f convertor } \\ \text { Integration time: } & 100 \mathrm{~ms}\end{array}$
Resolution: approx. 15 Bit

Technical alterations reserved

Ordering Information

Panel mounted with 4 digit LE-display scroll between engineering units and measured value per channel. Bargraph-display with limit indication and transmitter power supply.

- per channel: two adjustable limit two relays as contact $250 \mathrm{~V}, 3 \mathrm{~A}$ transmitter supply 24 VDC
- operation via 3 keys
- screw clips fixed to rear
- protection class to 40050; front IP 65, rear IP 20
- EC -certification of conformity as well as EC -conformity label CE

Options:

- Version with 2 input channels, delta function channel 1 - channel 2 selectable

Order Code: Process Display RIA 550-	1	2	3	4	5

1 Certificates
R Version for non-Ex (non-hazardous) areas
2 Power supply
190 to 253 V , 48 to 440 Hz
210 to 36 V DC/20 to 27 V AC
not available with multi-function input
3 Style
H Horizontal 1.42 in. x 5.67 in. x 9.06 in. ($36 \times 144 \times 230 \mathrm{~mm}$) HxWxD
V Vertical $5.67 \times 1.42 \mathrm{in}$. 9.06 in . $(144 \times 36 \times 230 \mathrm{~mm}) \mathrm{HxWxD}$
4 Input signals
$1 \quad 0 / 4$ to $20 \mathrm{~mA}, 0$ to $1 / 10 \mathrm{~V}$, loop powered 25 mA , 1 channel
2 Multi-function input, loop powered 25 mA , 1 channel
Current, Voltage, Thermocouples, Pt 100
$3 \quad 0 / 4$ to $20 \mathrm{~mA}, 0$ to $1 / 10 \mathrm{~V}, 2$ channels
4 Multi-function input, loop powered 25 mA , 2 channels
Current, Voltage, Thermocouples, Pt 100
$5 \quad 0 / 4$ to $20 \mathrm{~mA}, 0$ to $1 / 10 \mathrm{~V}$, power supply 80 mA , 1 channel
$6 \quad 0 / 4$ to $20 \mathrm{~mA}, 0$ to $1 / 10 \mathrm{~V}$, power supply $80 \mathrm{~mA}, 2$ channels
5 Version
1 Standard version
Y Others

Setting up possibilities

1 =One or two channel display (standard)
2 =Delta function: channel 1 - channel 2
Delta is displayed in channel 2 and all limit functions are active on the delta function. Delta function is indicated in display as (Δ).

Presettable engineering units

"OFF", "bar", "C/kg", "cal", "cd", "cm". "cm2","cm3", "dB", "G", "g/h", "g/l". "g/m3". "g/ml", "g/s", "gnl , "HZ", "kg/s", "km/h", "kPa". "kV, "kVar", "kW", "kWh", "k ", "l". "I/h", "l/s", "lb/h", "lm", "m", "m/h", "m/s", "m/s2", "m3/d", "m3/h", "m3/s", "mbar", "mg/l", "mm", "mm2", "mm3", "MPa". mPa", "mR/h", "ms", "m 2 ", "M ${ }^{2}$ ", "mV, "Mvar", " MW". "MWh", "N". "N/m2", "Nm", "oz". "PH". "ppb", "ppm". "rem", "5", "I", "Vs", "V", "VA", "Var". "Vol\%",

Subject to change without notice

