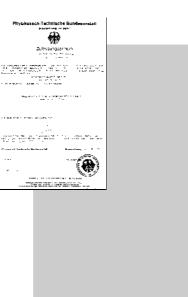
Electromagnetic Flow Measuring System promag 31

Cold Water Fiscal Metering



Install anywhere

- Economical flow measurement for monitoring drinking water and waste water
- IP 67 protection for compact and remote versions (optional IP 68 sensor)
- Wide size range DN 15...2000 (¹/₂...78")
- Flanged version with ISO meter lengths

Easy to operate

- All necessary parameters are setable using miniature switches
- Configuration can also be carried out without power
- 8-character local display for flowrate and totalizer values, optional

Operational security

- ISO 9001 manufacturer, quality assured
- PTB approval for cold water from 0...+30 °C
- Continuous operation possible at Q_{max}
- High operating integrity through self-monitoring
- Data protection with EEPROM on power failure
- Empty pipe detection
- Cenelec approval for Ex zone 1 and 2
- Electromagnetic compatibility (EMC) according to EN 50081/50082 and NAMUR

Measure precisely

- Measuring error: ±0.5% or ±0.2%
- 1000:1 operable flow range
- Excellent repeatability
- Creep suppression

System Description

Fields of application

The Promag 31 measuring system possesses the PTB licence for the fiscal transfer of cold water (waste water) and at an attractive price offers accurate electromagnetic flow measurement of fresh water with a minimum conductivity of 5 μ S/cm. The measuring system operates within a process temperature range of 0...30 °C and can be deployed for the following uses in the supply of drinking water:

- Internal monitoring of delivery pipe network
- Calculation of the bill from the main supply pipe
- Monitoring of the water source. For example, the amount of ground water
- Monitoring of the withdrawal and supply of different water works in a supply pipe.

Ex versions

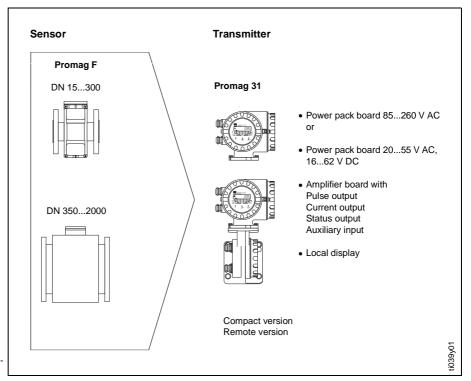
Promag 31 is available in a number of Ex versions for use in Ex Zone 1 and 2. More information is given in the appropriate Ex documentation. Your E+H representative will be pleased to help you.

Modular design

Mechanically and electronically, the Promag 31 measuring system is constructed in a modular fashion. In this way, the meter can be optimally equipped and modified.

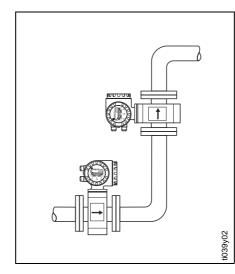
Fiscal-capability/Fiscal acceptance

In collaboration with the metrology office, Promag 31 instruments are sealed by E+H before delivery. With the remote version, the connection between sensor and transmitter is to be sealed on site.

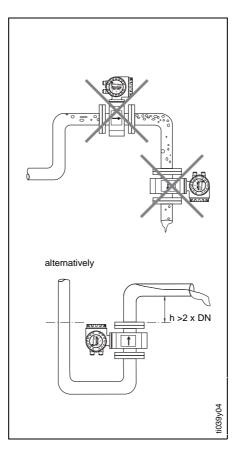

Instruments suitable for fiscal metering, but which have not yet undergone inspection, may also be certified after the fact, although as a rule they must be removed from the pipeline.

Fiscal, electromagnetic flow meters may (in contrast to mechanical meters) be operated with $Q_{100\%} = Q_{max}$. Flowmeters with a maximum flow of >2000 m³/h are exempt from fiscal standards. These systems may be suitable for fiscal metering but are not certifiable.

After the unit has been certified for fiscal metering it is sealed and can no longer be programmed. Therefore, pulse value and current output functions must be programmed before the approval. (Please indicate in the order, see page 11).


After calibration

The user of a fiscal Promag 31 measuring system is obliged to ensure that the prescribed standards have been adhered to.



Promag 31 measuring system

(On request, Promag 31 measuring instruments are also available with customised parametrisation) In order to measure correctly and to prevent damage, please observe the following installation instructions.

>3...5 xDN >2 x DN

Orientation

Vertical

Optimum, with flow direction upward. At no flow, heavier entrained solids sink downward and lighter fatty contents rise away from the electrode area.

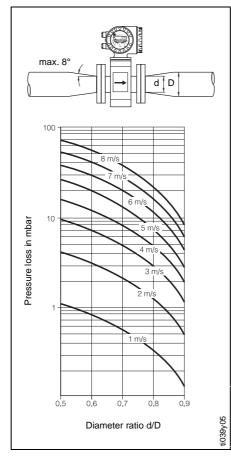
Horizontal

Electrode axis must be horizontal. This prevents short term insulation of the electrodes as a result of entrained air bubbles.

Inlet and outlet runs

The sensor should be mounted away from fittings which generate turbulence (e.g. valves, elbows, T-junctions).

Inlet lengths: $>3...5 \times DN$ Outlet lengths: $>2 \times DN$ DN = Pipe diameter


For fiscal use, the straight pipe requirements are $5 \times DN$ upstream and $2 \times DN$ downstream, measured from the meter flanges.

Mounting location

Correct measurement is only possible when the pipe is full. Consequently the following locations should be avoided:

- No installation at the highest point (air accumulation)
- No installation immediately before an open pipe outlet in a downward line. The alternate installation suggestion nevertheless makes such an application possible.

Installation

Partly filled pipes

For inclines, a mounting similar to a drain should be adopted. Do not mount at the lowest point (risk of solids collecting). Added security is offered by Empty Pipe Detection (EPD). This option has an extra electrode in the measuring pipe.

Installation of pumps

If possible avoid mounting the sensor on the suction side of the pump (danger of vacuum!).

Vibration

- Fasten the piping before and after the sensor. Excessive vibration necessitates separate mounting of the sensor and transmitter
- With free runs of piping over 10 m long, we recommend mechanical supports.

Downward pipe

In a downward pipe >5 m a siphon and a vent valve should be installed after the sensor to avoid a partial vacuum.

Adaptor pieces

The sensor can also be mounted in a pipe with a larger nominal diameter when suitable adaptors (reducers and expanders) to DIN 28545 are fitted. The resultant increase in the rate of flow increases the accuracy of measurement with slowly flowing fluids.

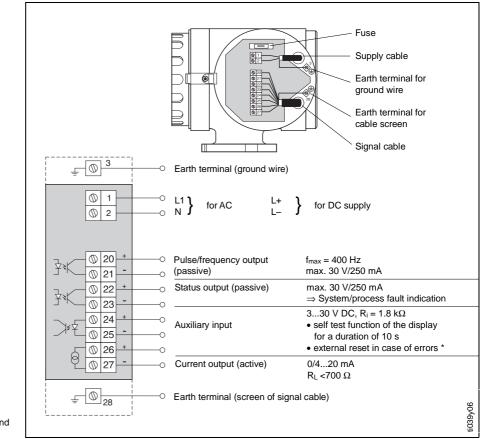
The adjacent nomogram can be used to determine the pressure loss caused.

Procedure:

- 1. Determine the ratio of the diameters d/D.
- From the nomogram read off the pressure loss at the flow velocity and d/D ratio.

Note!

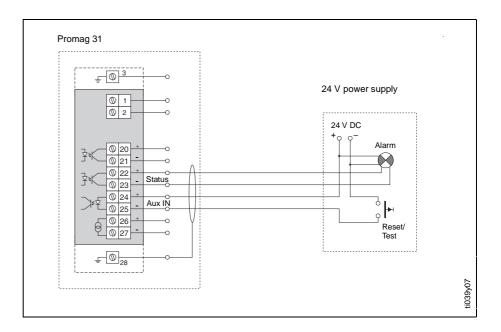
The nomogram applies to fluids with a viscosity similar to that of water.


Mounting the remote version

- It is necessary when:
- Accessibility is difficult
- Space is restricted
- Extreme process and ambient temperatures prevail (s. page 14)
- Severe vibration (>2 g/2 h per day; 10...100 Hz)

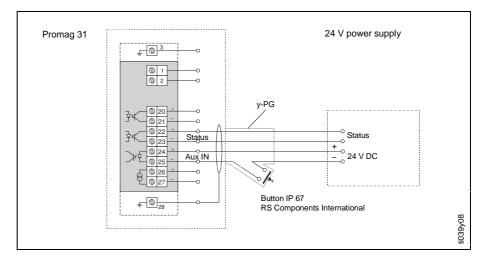
Caution!

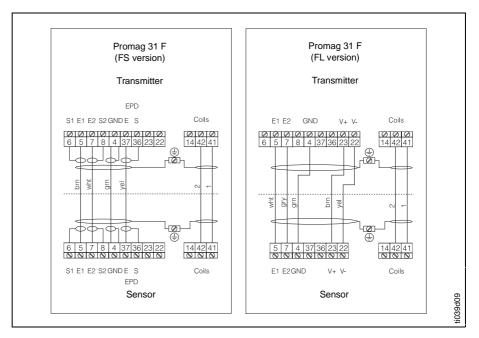
- The permissible length of cable L_{max} between the sensor and the transmitter at a distance of >10 m is governed by the conductivity of the liquid (s. page 13).
- Fix the cable run or lay it in conduit. When the conductivity of the liquid is low, cable movements can cause serious changes in capacitance and thereby falsify the measuring signal.
- Do not lay cable in the vicinity of electrical machines or switching elements.
- Pay attention to potential equalization between the transmitter and the sensor.


Electrical Connection

- Electrical connection: power supply, inputs and outputs
- * After the first operation or in case of an interruption of the power supply, the Promag 31 signals an alarm. With connection through an external reset switch according wiring variations 1 or 2, the alarm can be canceled.

Wiring variant 1


Is chosen if the 24-V power supply is near to the Promag display. The alarm instrument is to be made available from the customer. The switch for the error reset or for the display test can be ordered through Endress+Hauser. If this wiring variant is not possible we refer to wiring variant 2.


Electrical Connection

Wiring variant 2

Is to be chosen, if the 24-V power supply is not in the vicinity of the Promag display. The Y cable gland which is used for the supply can be ordered through Endress+Hauser.

Remote-mounted version (FS/FL): Connection between sensor and transmitter

Cable Specifications

Remote version (FS)

Coil cable:	$2 \times 0.5 \text{ mm}^2$ PVC cable with common screen			
	Conductor resistance: ≤37 Ω/km			
	Capacitance: core/core, screen earthed ≤120 pF/m			
	Permanent operating temperature: $-20+70$ °C 4×0.38 mm ² PVC cable with common screen and			
Signal cable:	4 x 0.38 mm ² PVC cable with common screen and			
	separately screened cores.			
	Conductor resistance: ≤50 Ω/km			
	Capacitance: core/screen ≤420 pF/m			
	Permanent operating temperature: -20+70 °C			
Remote version (FL)				

$2 \times 0.5 \text{ mm}^2$ PVC cable with common screen
Conductor resistance: ≤37 Ω/km
Capacitance: core/core, screen earthed ≤120 pF/m
Permanent operating temperature: $-20+70$ °C 5 x 0.5 mm ² PVC cable with common screen
$5 \times 0.5 \text{ mm}^2$ PVC cable with common screen
Conductor resistance: ≤37 Ω/km
Capacitance: core/core, screen earthed ≤120 pF/m
Permanent operating temperature: -20+70 °C

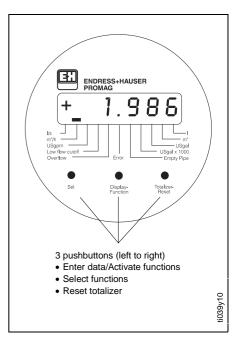
Operation

Local display

Using the Promag 31 local display, important parameters can be read off and controlled at the measuring point directly:

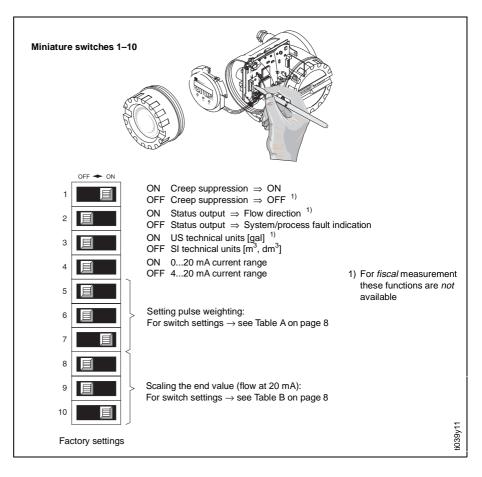
- Flowrate and/or totalizer value
- Technical units (SI/US units)
- Process variables (e.g. creep rate, partial pipe filling)
- Error messages

Using the three operating keys, it is also possible to select and activate various functions. A small pin is used to press the keys down.


Caution!

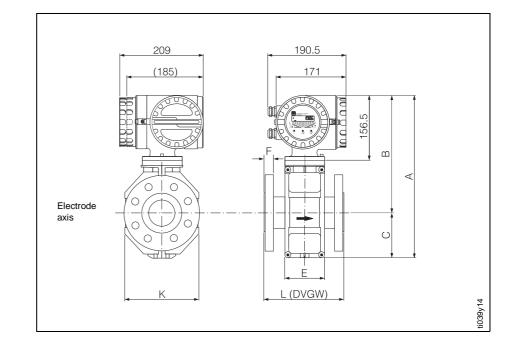
After the unit has been certified for fiscal metering it is sealed and can no longer be programmed.

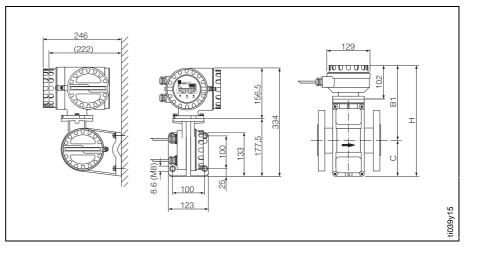
Setting functions


The transmitter houses miniature switches which allow the following six parameters to be set:

- 0...20 mA or 4...20 mA current range
- Current end value scaling (volume/time), 8 levels
- Pulse weighting in decade steps (volume/pulse), 8 levels
- Technical units
- Setting of status output (signalling system/process errors or flow direction recognition)
- Creep suppression (on/off)

The switches are accessible from the front by unscrewing the electronics cover or by removing the local display.

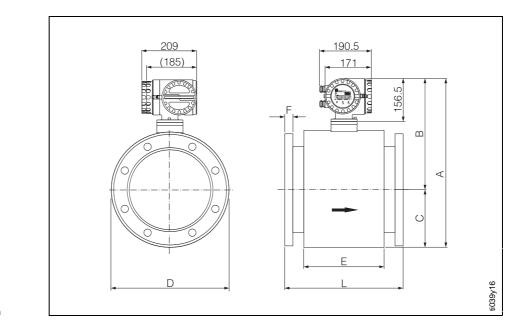

On request, Promag 31 measuring instruments are also available with customised configuration. This is especially important if the outputs of fiscal meters are used.


	Table A	Pulse value Switch	[dm ³ /pulse,	m ³ /pulse]				ti039y12
		I					(f _{max} = 400 H	Hz at v = 10 m/s)
ON OFF DN	5 6 7	5 6 7	5 6 7	1 1 5 6 7	5 6 7	5 6 7	5 6 7	5 6 7
15 25 32 40 50 65 80 100 125 150 250 300 350 400 450 500 600 700 800 900 1000 1200 1400 1600 1800 2000	$\begin{array}{ccccccc} 0.01 & dm^3 \\ 0.1 & dm^3 \\ 0.1 & dm^3 \\ 0.1 & dm^3 \\ 0.1 & dm^3 \\ 1 & dm^3 \\ 1 & dm^3 \\ 1 & dm^3 \\ 1 & dm^3 \\ 10 & dm^3 \\ 100 & $	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 100 & dm^3 \\ 1 & m^3 \\ 10 & m^3 \\ 10 & m^3 \\ 10 & m^3 \\ 100 & m^3 \\ 1000 & m^$	$\begin{array}{cccccccc} 1 & m^3 \\ 10 & m^3 \\ 100 & m^3 \\ 100 & m^3 \\ 100 & m^3 \\ 1000 & m^3 \\ 10000 & m^3 \\ 1000 & m^3$	10 m3 100 m3 100 m3 100 m3 100 m3 100 m3 1000 m3 1000 m3 1000 m3 1000 m3 1000 m3 1000 m3 10000 m3 100000 m3	$\begin{array}{c} 0.004418 \ dm^3\\ 0.012272 \ dm^3\\ 0.020106 \ dm^3\\ 0.031416 \ dm^3\\ 0.049087 \ dm^3\\ 0.082958 \ dm^3\\ 0.125664 \ dm^3\\ 0.125664 \ dm^3\\ 0.196350 \ dm^3\\ 0.306796 \ dm^3\\ 0.306796 \ dm^3\\ 0.785398 \ dm^3\\ 1.22718 \ dm^3\\ 1.22718 \ dm^3\\ 3.14159 \ dm^3\\ 3.97608 \ dm^3\\ 3.97608 \ dm^3\\ 4.90874 \ dm^3\\ 7.06858 \ dm^3\\ 9.62113 \ dm^3\\ 12.5664 \ dm^3\\ 15.9043 \ dm^3\\ 3.8.4845 \ dm^3\\ 3.8.4845 \ dm^3\\ 63.6173 \ dm^3\\ 78.5398 \ dm^3\\ \end{array}$
L)	Caution! Vork with this table	only when switch No	o. 3 is turned to "OF	F" (SI units).			Factory s	ettings \rightarrow shaded
	Table B	Pulse value Switch	[m ³ /h]					ti039y13
ON OFF	8 9 10	8 9 10	8 9 10	8 9 10	8 9 10	8 9 10	8 9 10	8 9 10
DN 15	0.5 m/s 0.3 m ³ /h	1 m/s 0.6 m ³ /h	1.5 m/s 0.9 m ³ /h	2 m/s 1.2 m ³ /h	2.5 m/s 1.5 m ³ /h	4 m/s 3 m ³ /h	8 m/s 4.8 m ³ /h	10 m/s 6 m ³ /h
25 32 40 50 65 80 100 125 150 250 250 300 350 400	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 m ³ /h 3 m ³ /h 4 m ³ /h 8 m ³ /h 12 m ³ /h 20 m ³ /h 30 m ³ /h 40 m ³ /h 100 m ³ /h 300 m ³ /h	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 m ³ /h 30 m ³ /h 40 m ³ /h 80 m ³ /h 200 m ³ /h 200 m ³ /h 400 m ³ /h 1000 m ³ /h 3000 m ³ /h 4000 m ³ /h 4000 m ³ /h 4000 m ³ /h

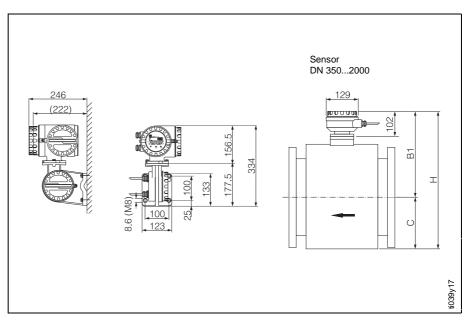
Dimensions

Promag 31 F DN 15...300

Compact version



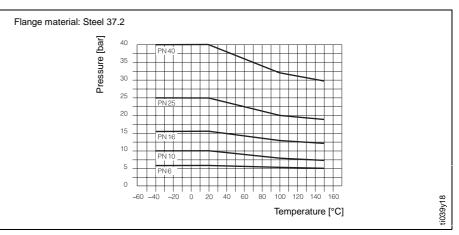
Remote version (FS and FL version)


D	N	PN	L1	Α	в	С	D	E	F	н	B1	Weight ²
		DIN							DIN			
[mm]	[inch]	[bar]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
15	1/2"	40	200	340.5	256.5	84	120	94	14	286	202	6.5
25	1"	40	200	340.5	256.5	84	120	94	16	286	202	7.3
32	-	40	200	340.5	256.5	84	120	94	18	286	202	8.0
40	1 ¹ ⁄2"	40	200	340.5	256.5	84	120	94	18	286	202	9.4
50	2"	40	200	340.5	256.5	84	120	94	20	286	202	10.6
65	-	16	200	390.5	281.5	109	180	94	18	336	227	12.0
80	3"	16	200	390.5	281.5	109	180	94	20	336	227	14.0
100	4"	16	250	390.5	281.5	109	180	94	22	336	227	16.0
125	-	16	250	471.5	321.5	150	260	140	24	417	267	21.5
150	6"	16	300	471.5	321.5	150	260	140	24	417	267	25.5
200	8"	10	350	526.5	346.5	180	324	156	26	472	292	35.3
250	10"	10	450	576.5	371.5	205	400	166	28	522	317	48.5
300	12"	10	500	626.5	396.5	230	460	166	28	572	342	57.5
	-to-face le of compac		ependent o	of the press	sure rating.							1

Dimensions

Promag 31 F DN 350...2000

Compact version



Remote version (FS and FL version)

D	N	PN	L ¹	Α	В	С	D	Е	F	н	B1	Weight ²
		DIN							DIN			PN10/ANSI
[mm]	[inch]	[bar]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
350	14"	10	550	783	456	282	564	276	26	683.5	401.5	110
400	16"	10	600	790	482	308	616	276	26	735.5	427.5	130
450	18"	-	650	840	507	333	666	292	-	785.5	452.5	240
500	20"	10	650	891	532.5	358.5	717	292	28	836.5	478	170
600	24"	10	780	995	584.5	410.5	821	402	28	940.5	530	230
700	28"	10	910	1198	686	512	1024	589	30	1143.5	631.5	350
750	30"	-	975	1198	686	512	1024	626	-	1143.5	631.5	450
800	32"	10	1040	1241	707.5	533.5	1067	647	32	1186.5	653	450
900	36"	10	1170	1394	784	610	1220	785	34	1339.5	729.5	600
1000	40"	10	1300	1546	860	686	1372	862	34	1491.5	805.5	720
1050	42"	-	1365	1598	886	712	1424	912	-	1543.5	831.5	1050
1200	48"	6	1560	1796	985	811	1622	992	28	1741.5	930.5	1200
1350	54"	-	1755	1998	1086	912	1824	1252	-	1943.5	1031.5	2150
1400	-	6	1820	2148	1161	987	1974	1252	32	2093.5	1106.5	1800
1500	60"	-	1950	2196	1185	1011	2022	1392	-	2141.5	1130.5	2600
1600	-	6	2080	2286	1230	1056	2112	1482	34	2231.5	1175.5	2500
1650	66"	-	2145	2360	1267	1093	2186	1482	-	2305.5	1212.5	3700
1800	72"	6	2340	2550	1362	1188	2376	1632	36	2495.5	1307.5	3300
2000	78"	6	2600	2650	1412	1238	2476	1732	38	2595.5	1357.5	4100
	Thickness of the flange face includes seal face. Weight of compact version DIN PN 10. If there is no DIN version, take ANSI or AWWA weight.											

Pressure Limitations

Promag F (DIN 2413 and 2505)

Nominal Diameter and Metrological Classes

Selection of the metrological class

Please indicate the following data in all requests and orders:

1. *Nominal flow rate (Qn)* for class A or B. This information is shown on the nameplate and must be given in the order text.

Notes:

- Class A instruments: without indication of Q_n the default value is given at the factory (see table below).
- Class B instruments: without indication of Q_n the order can not be handled.
- Q_n must lie between the corresponding Q_{n (min)} and Q_{n (max)} valid for class A or B.

 For scaling the current output, the full scale value Q_{max} and if required the pulse value must be given, and will then be set at the factory.

Note:

The full scale value Q_{max} and the value Q_n are two different values. For example, the full scale value Q_{max} can be higher than the defined Q_n . In extreme cases, it is double the value of Q_n (max) and lies at 10 m/s.

Diameter selection

As a rule, the pipeline diameter determines the sensor nominal diameter. A necessary increase in velocity can be achieved through a reduction of the sensor diameter.

The table below summarizes the minimum and maximum end values (incl. factory setting) which can be set by miniature switches in Promag 31 (see page 7 and 8).

DN	Q _{n (min)} Class A	Q _{n (min)} Class B	Q _{n (max)}	Qn (default) only by Class A
[mm]	[m ³ /h]	[m ³ /h]	[m ³ /h]	[m ³ /h]
15	0.8	1.6	3.0	1.2
25	2.2	4.4	8.8	3.5
32	3.6	7.2	14.0	6.0
40	5.6	11.3	22.6	10.0
50	9.0	15.0	35.0	15.0
65	15.0	20.0	60.0	25.0
80	15.0	30.0	90.0	35.0
100	18.0	46.0	140.0	55.0
125	28.0	73.0	220.0	90.0
150	40.0	105.0	320.0	130.0
200	70.0	190.0	550.0	230.0
250	110.0	290.0	880.0	350.0
300	160.0	420.0	1250	500.0
350	215.0	570.0	1700	700.0
400	280.0	750.0	2200	900.0
500	440.0	1170	3500	1400
600	640.0	1700	5000	2000

Technical Data

Application							
Flow measuring system "Promag 31" for cold water / waste water fiscal metering.							
Flow measurement of liquids in closed piping.							
Function and system design							
Electromagnetic flow measurement according to Faraday's law (Generation of a voltage by induction in a magnetic field).							
Instrument family "Promag 31" consisting of: Transmitter: Promag 31 Sensor Promag F (DN 152000)							
Two versions are available:Compact version (Sensor and transmitter are one unit)Remote version (FS or FL version, see page 13)							
Input variables							
Flow velocity (proportional to induced voltage. Measured by two electrodes in the measuring pipe)							
Measuring range electronics: v = 012.5 m/s Minimum full scale value: 0.4 m/s Maximum full scale value: 10 m/s							
Up to 1000:1. Flow velocities from under 0.05 m/s to over 10 m/s can be measured with the specified accuracy.							
$U = 330 V DC$, $Ri = 1.8 k\Omega$, galvanically separated. Adjustable for measured value suppression or external totaliser reset (if instrument fitted with display)							
Output variables							
 <i>Current output:</i> 0/420 mA adjustable, galvanically separated. Time constant: automatically assigned full-scale value can be set Temperature coefficient: 0.01% o.r./°C, additional error: 0.3% o.r. <i>Pulse output:</i> Open Collector, 0400 Hz, U_{max} = 30 V, I_{max} = 250 mA, galvanically separated, pulse value adjustable, pulse/pause ratio appr. 1:1, pulse width max. 2 s. <i>Status output:</i> Open Collector, U_{max} = 30 V, I_{max} = 250 mA; Adjustable for: System and process error messages, flow direction recognition. 							
Status output:Configurable for alarm. The status output operates in the quiescent current mode, i.e. with no alarm condition, the output is closed (transistor conducting).As long as the alarm is not cleared, the following applies:Current output:Current is set to a defined value $020 \text{ mA} \rightarrow 0 \text{ mA}$ $420 \text{ mA} \rightarrow 2 \text{ mA}$ Pulse output:							
$R_L < 700 \Omega$ (current output)							
 In fiscal metering applications, the "creep suppression" function is always active. v ≤ 0.02 m/s → Suppression active (current output is set to quiescent value of 0/4 mA during this time) v ≥ 0.04 m/s → Suppression not active (v = flow velocity) 							

	Accuracy
Reference conditions	According to DIN 19200 and VDI/VDE 2641:Medium temperature: $+28 \ ^{\circ}C \pm 2K$ Ambient temperature: $+22 \ ^{\circ}C \pm 2K$ Heating-up time: $30 \ ^{\circ}minutes$ Installation conditions: $10 \times DN$ Outlet length > $10 \times DN$ Outlet length > $5 \times DN$ Sensor and transmitter are earthed.
Measured error	The sensor is mounted centrally in the pipe.Pulse output:±0.5% o.r. ±0.01% o.f.s.(o.f.s. = of full-scale; full-scale = 10 m/s)
	$\pm 0.2\%$ o.r. $\pm 0.05\%$ of Q _k (optional) Q _k = desired reference flow rate for calibration (v = 210 m/s). Please quote Q _k when ordering. <i>Current output:</i> plus typ. $\pm 10 \mu A$
	Within the specified range, fluctuation of the supply voltage has no effect.
	Error [% o.r.]
	Medium velocity v [m/s]
Repeatability	±0.1% o.r. ±0.005% o.f.s. (o.r. = of range; o.f.s. = of full scale)
	Operating conditions
Installation conditions	
Installation instructions	Orientation: vertical or horizontal. Restrictions on installation and other recommendations: see pages 3–4.
Inlet and outlet sections	Inlet lengths:> 35 x DN (for fiscal user: 5 x DN)Outlet lengths:> 2 x DN (for fiscal user: 2 x DN)(DN = Nominal diameter)
Connection cable length (remote version)	$\overbrace{FS \ version:}{Cable \ length \ \ 0\ 10\ m \ \rightarrow \ min.\ conductivity \ \geq 5\ \mu S/cm \ Cable \ length \ \ 10200\ m \ \rightarrow \ min.\ conductivity \ = f\ (L_{max})$
	 <i>FL version:</i> Cable length 0200 m → min. conductivity ≥5 μS/cm <i>Instruments equiped with empty pipe detection (EPD):</i> Cable length = max. 10 m

Technical Data

Operating conditions (continued)

Ambient conditions					
Ambient temperature	 -25+60 °C (Transmitter Promag 31) -25+60 °C (Sensor Promag F) 0+30 °C (for cold water fiscal metering) 				
	When installed outdoors, specially in countries with high ambient temperatures please provide a weatherproof hood as protection against direct solar radiation.				
	At high medium and ambient temperatures it is necessary to mount the Promag F sensor and Promag 31 transmitter separately. Risk of the electronics becoming over-heated (see following Fig.).				
	Medium temperature [°C]				
	Ambient temperature [°C]				
Storage temperature	_40+80 ℃				
Degree of protection (EN 60529)	Transmitter: IP 67; NEMA 4X Sensor Promag F: IP 67 (option IP 68); NEMA 4X (option NEMA 6P)				
Shock resistance	According to EN 61010 and IEC 68-2-6				
Vibrational resistance	Acceleration up to 2 g/2 h per day; 10100 Hz (complete measuring system)				
Electromagnetic compatibility	According to EN 50081 Part 1 and 2 / EN 50082 Part 1 and 2 as well as the NAMUR recommendations				
Process conditions					
Process temperature	Process temperature range depends on the sensor lining: (see Fig. above)				
	Promag F: −40+130 °C (PTFE, DN 15600) −20+120 °C (soft rubber, DN 252000) 0+ 80 °C (hard rubber, DN 652000)				
Nominal pressure	Sensor Promag F:				
	DIN PN 6 (DN 12002000) PN 10 (DN 2001000) PN 16 (DN 65150) PN 40 (DN 1550) PN 16 /25 (DN 200300) PN 40 (DN 65100), option				
Eluid conductivity	(Pressure limitations: see page 11)				
Fluid conductivity	 Min. conductivity: ≥5 μS/cm For remote version the minimum conductivity depends on the cable length between sensor and transmitter → see "Connection cable length" 				
Pressure loss	No pressure loss, if sensor and piping have the same nominal diameter.				
	For adapter piece (DIN 28545) pressure loss, see page 4				

	Mechanical construction				
Design / dimensions	see pages 9, 10				
Weights	see pages 9, 10				
Materials	<i>Transmitter housing:</i> Powder-coated die-cast aluminium				
	Flange material: Promag F DIN \rightarrow stainless steel 1.4571; St. 37.2				
	Electrode material: Promag F 1.4435; Platinum/Rhodium 80/20; Titanium; Hastelloy C-22; Tantalum				
	Housing material sensor: Promag F (DN 15300) powder-coated die-cast aluminium (DN 3502000) coated steel				
Process connections	Flange (Promag F) DN 15 300: DIN DN 3502000: DIN				
Electrical connections	Wiring diagram: see pages 5, 6				
	Cable glands (In-/outputs; remote version): PG 13.5 cable glands (515 mm) or NPT 1/2", M20 x 1.5 (815 mm), G 1/2" threads for cable glands				
	Galvanic isolation: All circuits for inputs, outputs, power supply, and sensor are galvanically isolated from each other.				
	Cable specifications: see page 6				
	User interface				
Operation / Display	 10 miniature switches for selecting device functions 3 keys on local display for more functions jumper for configuring the auxiliary input LC display, with 8 characters and display segments for status information 				
	(see also page 7)				
	Power supply				
Supply voltage, Frequency	Transmitter: 85230 V AC + 10% (4565 Hz) 20 55 V DC, 1662 V DC				
	Sensor: is supplied by the transmitter				
Power consumption	AC: <15 VA (incl. sensor) DC: <15 W (incl. sensor)				
Power supply failure	 Bridges min. 1 power cycle (22 ms). EEPROM saves measuring system data on power failure (no batteries required). DAT = exchangeable data storage module which stores all sensor data such as calibration data, nominal diameter, sensor version, etc. When replacing the transmitter or its electronics, the old DAT module is simply inserted into the new transmitter. When the system is restarted, the measuring point then operates using the variables stored in the DAT. 				
	Certificates and approvals				
	Information on presently available Ex versions (e.g. CENELEC, SEV, FM, CSA) can be supplied by your E+H Sales Centre on request. All explosion protection data are given in separate documentation available on request.				

Technical Data

Cert	ificates and approvals (continued)				
Degrees of protection Ex approvals	 Transmitter: Promag 31 (compact and remote version): CENELEC: EEx d/de; Ex zone 2 VDE 0165 Sensor: Promag F CENELEC: EEx d/de; Ex zone 2 VDE 0165 				
Fiscal capability	<section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>				
CE mark	By attaching the CE-mark, Endress+Hauser confirms that the Promag 31 measurement system has been successfully tested and fulfils all legal requirements of the relevant EC directives.				
	Order information				
Supplementary documentation	 Operating Manual Promag 31 (BA028D/06/d) All explosion protection data are given in separate documentation available on request. 				
	Other standards and guidelines				
EN 60529 Degree of protection EN 61010 Protection Measures for Electronic Equipment for Measurement, Control, Regulation and Laboratory Procedures EN 50081 Part 1 and 2 (interference emission) EN 50082 Part 1 and 2 (interference immunity) NAMUR Association of Standards for Control and Regulation in the Chemical Industry.					

Subject to modification

Endress+Hauser GmbH+Co. Instruments International P.O. Box 2222 D-79574 Weil am Rhein Germany

Tel. (07621) 975-02 Tx 773926 Fax (07621) 975345 http:///www.endress.com

12.97