BA 142F/00/de/04.98 016562-0000 Gültig ab Software 1.x

# *prolevel* FMC 661 Füllstandmeßtechnik

Betriebsanleitung







# Standardabgleich



| chneller Standardabgleich für den Fachmann |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Funktion                                   | Matrix                                                                                                                                                                                                  | Vorgang                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 Reset Meßumformer                        | V9H5                                                                                                                                                                                                    | <ul> <li>671 eingeben: »+« und »-«, ⇒ wählt Ziffernstelle an,<br/>»E« drücken, um Eingabe zu bestätigen,</li> <li>entfällt, falls entsprechend Abs. 4.1 in Betrieb genommen</li> </ul>                                                                                                                                                                                                      |
| 2 Leerabgleich*                            | V0H1                                                                                                                                                                                                    | <ul> <li>Behälter 040 % füllen (Sonde bedeckt),</li> <li>Füllstand in %, m, ft usw. eingeben,</li> <li>»E« drücken, um Eingabe zu bestätigen.</li> </ul>                                                                                                                                                                                                                                    |
| 3 Vollabgleich*                            | V0H2                                                                                                                                                                                                    | <ul> <li>Behälter 60100 % füllen (Sonde bedeckt),<br/>Füllstand in %, m, ft usw. eingeben,<br/>»E« drücken, um Eingabe zu bestätigen.</li> </ul>                                                                                                                                                                                                                                            |
| <b>4</b> 0/4 mA-Signal                     | V0H3<br>V0H5<br>V0H6                                                                                                                                                                                    | <ul> <li>Eingabe 0 für 020 mA-, 1 für 420 mA-Signal,<br/>»E« drücken, um Eingabe zu bestätigen.</li> <li>Füllstand für 0/4 mA-Signal eingeben (falls nicht 0),<br/>»E« drücken, um Eingabe zu bestätigen.</li> <li>Füllstand für 20 mA-Signal eingeben (falls nicht 100),<br/>»E« drücken, um Eingabe zu bestätigen.</li> </ul>                                                             |
| 5 Relais 1a und 1b                         | V1H0<br>V1H1                                                                                                                                                                                            | <ul> <li>Füllstand für Schaltpunkt eingeben,<br/>»E« drücken, um Eingabe zu bestätigen.</li> <li>Min/MaxSicherheit eingeben: 0 = min. 1 = max.,<br/>»E« drücken, um Eingabe zu bestätigen.</li> </ul>                                                                                                                                                                                       |
| 6 Relais 2a und 2b                         | V1H5<br>V1H6<br>V1H9                                                                                                                                                                                    | <ul> <li>Füllstand für Schaltpunkt eingeben,<br/>»E« drücken, um Eingabe zu bestätigen.</li> <li>Min/MaxSicherheit eingeben: 0 = min. 1 = max.,<br/>»E« drücken, um Eingabe zu bestätigen,</li> <li>Eingabe 1 = Relais 2 auf Kanal 1 zugeordnet,</li> </ul>                                                                                                                                 |
|                                            | <ul> <li><b>Funktion</b> <ol> <li>Reset Meßumformer</li> <li>Leerabgleich*</li> <li>Vollabgleich*</li> <li>Vollabgleich*</li> </ol> </li> <li>5 Relais 1a und 1b</li> <li>6 Relais 2a und 2b</li> </ul> | Funktion       Matrix         Funktion       Matrix         1       Reset Meßumformer       V9H5         2       Leerabgleich*       V0H1         3       Vollabgleich*       V0H2         4       0/4 mA-Signal       V0H3         V0H6       V0H6         5       Relais 1a und 1b       V1H0         V1H1       V1H1         6       Relais 2a und 2b       V1H5         V1H9       V1H9 |

\* Kann in umgekehrter Reihenfolge erfolgen

# Inhaltsverzeichnis

|   | Star                            | ndardabgleich im Umschl                                                   | lag                        |
|---|---------------------------------|---------------------------------------------------------------------------|----------------------------|
|   | Sich                            | erheitshinweise                                                           | . 3                        |
| 1 | Einl                            | eitung                                                                    | . 5                        |
|   | 1.1<br>1.2                      | Anwendung                                                                 | 6<br>7                     |
|   | 1.3<br>1.4<br>1.5               | Funktionsbeschreibung                                                     | 0<br>9<br>10               |
| 2 | Inst                            | allation                                                                  | 12                         |
|   | 2.1<br>2.2<br>2.3<br>2.4<br>2.5 | Sonden und Aufnehmer                                                      | 13<br>14<br>15<br>16       |
|   | 2.0                             | (Option)                                                                  | 18                         |
| 3 | Bed                             | ienung                                                                    | 19                         |
|   | 3.1<br>3.2<br>3.3               | Bedienmatrix<br>Tastatur und Anzeige<br>Handbediengerät Commulog VU 260 Z | 19<br>20<br>21             |
|   | 0.4                             | (Option)                                                                  | 22                         |
| 4 | Füll                            | standmessung                                                              | 23                         |
|   | 4.1<br>4.2<br>4.3<br>4.4<br>4.5 | Inbetriebnahme                                                            | 23<br>24<br>30<br>32<br>34 |
|   | 4.0                             |                                                                           | 34                         |

| 5 | Füll                            | standmessung mit Grenzschalter 39                                                                                                                                         | 5                     |
|---|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|   | 5.1                             | Füllstandmessung mit automatischer         Abgleichkorrektur       36                                                                                                     | 6                     |
|   | 5.2                             | Externer Grenzschalter                                                                                                                                                    | Э                     |
| 6 | Diag                            | gnose und Störungsbeseitigung 40                                                                                                                                          | )                     |
|   | 6.1<br>6.2<br>6.3<br>6.4<br>6.5 | Störungserkennung       44         Fehleranalyse       42         Simulation       43         Austausch der Meßumformer bzw. Sensoren       44         Reparatur       43 | )<br>2<br>3<br>4<br>5 |
| 7 | Anh                             | ang                                                                                                                                                                       | 6                     |
|   | 7.1                             | Abgleich und Linearisierung in Volumeneinheiten 46                                                                                                                        | 6                     |
|   | Stic                            | hwortverzeichnis 48                                                                                                                                                       | 3                     |
|   | Bed                             | ienmatrix im Rückumschlag                                                                                                                                                 | J                     |

# Sicherheitshinweise

Das Prolevel FMC 661 ist ein Feldgerät, das nur zur kontinuierlichen Füllstandmessung verwendet werden darf. Es ist nach dem Stand der Technik betriebssicher gebaut und berücksichtigt die einschlägigen Vorschriften. Das Gerät muß von qualifiziertem Fachpersonal in Betrieb genommen werden.

Bei Einsatz des Meßsystems in explosionsgefährdeten Bereichen sind die entsprechenden nationalen Normen einzuhalten. Die meßtechnischen und sicherheitstechnischen Auflagen an die Meßstellen sind einzuhalten.

Für Schäden aus unsachgemäßer Installation, Bedienung oder unsachgemäßem Gebrauch haftet der Hersteller nicht. Veränderungen oder Modifikationen, die nicht ausdrücklich von der Prüfungsbehörde zugelassen sind oder dieser Bedienungsanleitung entsprechen, können die Erlaubnis zum Betrieb des Gerätes aufheben.

Bestimmungsgemäßer Gebrauch

Nachstehende Tabelle zeigt verfügbare Sensoren/Sonden mit ihren Einsatzbereichen. Zertifikate

| Zertifikat                                                               | Meßumformer                                                                                                 | Hinweise                                                                                                                                                              |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Konformitätsbescheini-<br>gung<br>PTB Nr. Ex-96.D.2074                   | Prolevel FMC 661                                                                                            | [EEx ia] IIC,<br>außerhalb des Ex-Bereichs montieren                                                                                                                  |
| CSA<br>LR 53988-81                                                       | FMC 661                                                                                                     | Class I, II, III<br>Div. I<br>Groups A-G                                                                                                                              |
| FM<br>J.I. 0Z2A7.AX                                                      | FMC 661                                                                                                     | Class I, II, III<br>Div. I<br>Groups A-G                                                                                                                              |
| Konformitätsbescheini-<br>gung<br>PTB Nr. Ex-93.C.2171 X<br>ZF 104F/00/d | Kapazitive Sonden<br>Multicap DC 11, DC 16,<br>DC 21, DC 26 mit                                             | EEx ia IIC T4T6<br>für Anschluß an Kanal 1 oder 2<br>des Prolevel FMC 661                                                                                             |
| für Inland<br>ZE 103F/00/d, e, f<br>für Ausland                          |                                                                                                             | nicht für den Geltungsbereich<br>der ElexV                                                                                                                            |
| PTB Nr. Ex-93.C.2062 X<br>ZE 097F/00/d                                   | Elektronikeinsatz EC 37 Z<br>oder EC 47 Z                                                                   |                                                                                                                                                                       |
| Konformitätsbescheini-<br>gung<br>PTB Nr. Ex-96.D.2017 X                 | DB 5053<br>mit FEB 17 oder FEB 17 P                                                                         | EEx ia IIC<br>T4T6                                                                                                                                                    |
| KEMA Nr. Ex-92.C.8494<br>ZE 076F/00/d, e, f<br>für Ausland               | Liquiphant<br>FDL 30, 31, 35, 36                                                                            | EEx ia IIC T6<br>für Anschluß an Kanal 2<br>des Prolevel FMC 661                                                                                                      |
| Baumusterprüfbeschei-<br>nigung<br>BVS 93.Y.8004 B                       | Kapazitive Sonden<br>11450 S; 21265 S mit<br>Elektronikeinsatz EC 17 Z                                      | Staub-Ex, Zone 10 (Germany)<br>für Anschluß an Kanal 2<br>des Prolevel FMC 661                                                                                        |
| German Lloyd<br>Nr. 97517 HH                                             | Prolevel FMC 661<br>Kapazitive-Sonden<br>Elektronikeinsatz EC 37<br>oder EC 47<br>Elektronikeinsatz EC 17 Z | Füllstandmessung auf Kanal 1<br>(EC 37 Z oder EC 47 Z)<br>Grenzstanddetektion auf Kanal 2<br>(EC 17 Z)<br>Geeignet für unbeschränkten Einsatz<br>innerhalb der Regeln |
| German Lloyd<br>Nr. 99350-97HH                                           | DB 50, 50 L, 52, 53<br>mit FEB 17 oder FEB 17 B                                                             |                                                                                                                                                                       |

#### Sicherheitsrelevante Hinweise

Um sicherheitsrelevante oder alternative Vorgänge hervorzuheben, haben wir die folgenden Sicherheitshinweise festgelegt, wobei jeder Hinweis durch ein entsprechendes Piktogramm gekennzeichnet wird.

#### Hinweis!

- Hinweis
- Hinweis deutet auf Aktivitäten oder Vorgänge hin, die
- wenn sie nicht ordnungsgemäß durchgeführt werden einen indirekten Einfluß auf den Betrieb haben oder eine unvorhergesehene Gerätereaktion auslösen können.



#### Achtung!

- Achtung deutet auf Aktivitäten oder Vorgänge hin, die
   wenn sie nicht ordnungsgemäß durchgeführt werden -
- zu Verletzungen von Personen oder zu fehlerhaftem Betrieb des Gerätes führen können.



#### Warnung!

Warnung deutet auf Aktivitäten oder Vorgänge hin, die

 wenn sie nicht ordnungsgemäß durchgeführt zu ernsthaften Verletzungen von Personen, zu einem Sicherheitsrisiko oder zur Zerstörung des Gerätes führen.

# 1 Einleitung

Der Meßumformer Prolevel FMC 661 ist ein Feldgerät für die Füllstandmessung, das mit hydrostatischen Druckaufnehmern bzw. kapazitiven Sonden betrieben wird. Montage, elektrische Installation, Inbetriebnahme und Wartung des Gerätes darf nur durch ausgebildetes Fachpersonal erfolgen, das vom Anlagenbetreiber dazu autorisiert wurde. Das Fachpersonal muß diese Bedienungsanleitung gelesen und verstanden haben und die Anweisungen befolgen.

Die Standardanwendung »kontinuierliche Füllstandmessung« dient als Basis der Beschreibung. Alternative Betriebsarten, wie in Abschnitt 1.1 aufgelistet, sind in Kapitel 5 beschrieben. Die Anleitung wird wie folgt gegliedert:

| <ul> <li>Kapitel 1:</li> </ul>  | Einleitung;                                                         |
|---------------------------------|---------------------------------------------------------------------|
|                                 | beinhaltet allgemeine Informationen zur Anwendung, zum Meßprinzip   |
|                                 | zur Funktionalität und technische Daten.                            |
| Kapitel 2:                      | Installation;                                                       |
|                                 | beinhaltet die Hardwarekonfiguration, Installationsbeschreibung,    |
|                                 | Verdrahtung.                                                        |
| Kapitel 3:                      | Bedienelemente;                                                     |
|                                 | beschreibt die Gerätebedienung über die Tasten an der Frontplatte,  |
|                                 | mit dem Handbediengerät Commulog VU 260 Z und über                  |
|                                 | die Schnittstelle Rackbus RS 485.                                   |
| <ul> <li>Kapitel 4:</li> </ul>  | Abgleich und Bedienung;                                             |
|                                 | beschreibt die Inbetriebnahme des Prolevel FMC 661 für die          |
|                                 | Standardanwendung einschließlich Linearisierung, Analogausgänge,    |
|                                 | Relais und Verriegelung der Parametermatrix.                        |
| <ul> <li>Kapitel 5:</li> </ul>  | Füllstandmessung mit Grenzschalter;                                 |
|                                 | beschreibt die automatische Abgleichskorrektur sowie andere         |
|                                 | Betriebsarten des Prolevel FMC 661.                                 |
| <ul> <li>Kapitel 6:</li> </ul>  | Diagnose und Störungsbeseitigung;                                   |
|                                 | beinhaltet eine Beschreibung des Störungserkennungssystems, Stör-   |
|                                 | meldungen und Warnungen, Störungssuchtabelle, Simulation sowie      |
|                                 | Hinweise zur Konfiguration bei Ersetzen des Meßumformers,           |
|                                 | elektronischen Einsatzes oder der Sonde.                            |
| <ul> <li>Anhang:</li> </ul>     | beinhaltet ein Flußdiagramm für den Abgleich und die Linearisierung |
|                                 | in Volumeneinheiten.                                                |
| <ul> <li>Stichwortve</li> </ul> | erzeichnis;                                                         |
|                                 | listet Schlüsselworte für das schnelle Auffinden von Informationen. |

Eine Kurzanleitung für den Standardabgleich - kontinuierliche Füllstandmessung - befindet sich in der 1. Umschlagsseite. Es wird jedoch empfohlen, eine Inbetriebnahme nach Abschnitt 4.1 zuerst durchzuführen — so ist ein späterer Austausch der Sonden ohne Neuabgleich möglich.

Zusätzlich zu dieser Betriebsanleitung geben folgende Dokumente Informationen zur Einstellung des Prolevel FMC 661. Ergänzende Dokumentation

- BA 028 F Handbediengerät Commulog VU 260 Z
- BA 134 F Rackbus RS 485

Die Installation von Sonden, Elektronikeinsätzen und Zubehör wird in der begleitenden Dokumentation beschrieben - Hinweise dazu befinden sich im Text. Werden Sonden in explosionsgefährdeten Bereichen eingesetzt, müssen die Hinweise entsprechend dem Gerätezertifikat unbedingt eingehalten werden.







Das Prolevel FMC 661 wird für die kontinuierliche Füllstandmessung mit einer kapazitiven oder einer hydrostatischen Sonde eingesetzt. Ein zweiter Kanal erlaubt eine Grenzstanddetektion mit kapazitiver- bzw. Vibrationssonde. Nachfolgende Anwendungen werden beschrieben:

- Füllstand- bzw. Volumenmessung von Schüttgütern und Flüssigkeiten ... Kapitel 4
- Grenzstanddetektion ... Kapitel 5
- Füllstandmessung mit automatischer Abgleichkorrektur ... Kapitel 5.

Der Meßumformer Prolevel besitzt einen eigensicheren Sensorstromkreis EEx ia IIC für den Einsatz in explosionsgefährdeten Bereichen. Zertifikate sind in den »Sicherheitshinweisen« aufgelistet.



Abb. 1.2: Links: Prolevel FMC 661 mit Grenzschalter Liquiphant Max. Sicherheitsschaltung Min. Sicherheitsschaltung

Rechts: Prolevel FMC 661 mit gleichzeitiger Füllstandmessung und Grenzstanddetektion ① kapazitive Sonde ② hydrostatischer Druckaufnehmer ③ Grenzschalter

Die gleiche Meßeinrichtung wird für die automatische Abgleichkorrektur verwendet

#### 1.2 Meßsystem



Abb. 1.3:

Das Prolevel FMC 661 kann als Einzelmeßgerät oder als Teil eines Meßsystems eingesetzt werden. Ein RS-485-Adapter bzw. eine

PC-Einsteckkarte erlaubt die direkte Anbindung an einen Personal-Computer; eine Karte FXA 675 und das Gateway ZA 67x die Anbindung an ein übergeordnetes System mit Modbus-, Profibus- oder FIP-Protokoll

Ein Meßsystem für die Füllstandmessung besteht aus:

- Meßumformer Prolevel FMC 661,
- Kapazitiver Sonde oder hydrostatischem Druckaufnehmer Deltapilot S mit entsprechendem Elektronikeinsatz, siehe Kapitel 2
- Einer kapazitiven Sonde oder einer Vibrationssonde die ggf. für die Grenzstanddetektion bzw. automatische Abgleichskorrektur benutzt wird.

Das Prolevel FMC 661 kann als selbständige Einzelmeßstelle standardmäßig mit 0/4...20 mA-Ausgängen eingesetzt werden. Zwei Sätze von je zwei Relais mit frei einstellbaren Schaltpunkten können zur Steuerung verwendet werden, z. B. für Pumpen und Ventile. Alternativ lassen sich Prolevel-Meßumformer schnell über Rackbus RS 485 (Option) in Prozeßleitsysteme einbinden, entweder direkt über Personal-Computer oder im Fall von Modbus-, Profibus- oder FIP-Netzwerken über die Gateways ZA 672, ZA 673 bzw. ZA 674.

Das Prolevel FMC 661 steht in zwei Versionen zur Verfügung:

- mit Anzeige und Bedienelementen
- ohne Anzeige und Bedienelemente in diesem Fall erfolgt die Bedienung über das Handbediengerät VU 260 Z bzw. die Schnittstelle Rackbus RS 485 (Option)

Die Bedienung aller Meßumformer ist identisch. Weitere Informationen zur Bedienung sind Kapitel 3 zu entnehmen.

#### Versionen

#### 1.3 Meßprinzip

Das Prolevel FMC 661 mißt den Füllstand auf der Basis des kapazitiven bzw. hydrostatischen Meßprinzips. In beiden Fällen wird der Meßwert im Elektronikeinsatz umgewandelt und als Frequenzsignal zum Prolevel übertragen.

#### **Kapazitive Messung**

Sonde und Behälter bilden die zwei Platten eines Kondensators. Die Kapazität errechnet sich nach der Formel:

$$C_{tot} = C_1 + \frac{2\Pi\epsilon_0\epsilon_r L}{l_n \frac{D}{d}} pF$$
(1)

wobei

- Ctot = gesamte Kapazität
- C1= Kapazität der Durchführung
- $\epsilon_0$  = Dielektrizitätskonstante Luft (8,85)
- εr= rel. Dielektrizitätskonstante des Produkts
- D= Behälterdurchmesser
- d= Sondendurchmesser
- L= Eintauchtiefe der Sonde im Produkt (m)



Abb. 1.4: Kapazitives Meßprinzip

#### Elektrisch leitende Produkte

Ist das Produkt elektrisch leitfähig, wird die Kapazität durch die Eigenschaften der Sonde und der Isolation bestimmt. Gleichung (1) gilt, wobei die Variable D jetzt den Durchmesser der Sonde mit Isolierung darstellt. In diesem Fall liegt die Änderung der Kapazität bei 300 pF/m.

Die Messung ist von der Dielektrizitätskonstante des Füllgutes unabhängig.



Abb. 1.5: Messung in leitfähigem Produkt

#### Hydrostatische Messung

Bei einem drucklosen Behälter wird der Füllstand vom hydrostatischen Druck der Wassersäule über dem Sensor abgeleitet. Der Druck errechnet sich nach der Formel:

| p1  | =  | ρxgxh           | (2)      |
|-----|----|-----------------|----------|
| wob | ei |                 |          |
| p1  | =  | hydrostatische  | r Druck  |
| ρ   | =  | Dichte der Flüs | ssigkeit |
| a   | =  | Beschleuniaur   | na durch |

Schwerkraft h = Höhe der Flüssigkeitssäule

Bei konstanter Dichte ist der Füllstand pro-

portional dem hydrostatischen Druck.



Abb. 1.6: Hydrostatisches Meßprinzip

#### 1.4 Funktionsbeschreibung



Abb. 1.7: Signalbearbeitung im Prolevel FMC 661 für Einkanalbetrieb (Füllstandmessung und/oder Grenzstanddetektion)

Abb. 1.7 ist ein Blockschaltbild des Prolevel FMC 661. Die von der Sonde gemessene Kapazität, bzw. der vom Sensor gemessene Druck, wird von einem Elektronikeinsatz in ein Frequenzsignal (PFM) umgesetzt. Das Prolevel dient über eine Zweidrahtleitung als Stromversorgung und empfängt gleichzeitig das dem Grundstrom überlagerte füllstandsproportionale Frequenzsignal (PFM = Puls-Frequenz-Modulation). Aus dem PFM-Signal werden folgende Funktionen abgeleitet:

| Betriebsart in V8H0 | Funktion                                                                                                                               |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 0                   | Kontinuierliche Füllstandmessung und Grenzstanddetektion in Kanal 1 und 2                                                              |
| 1                   | Füllstandmessung nur in Kanal 1                                                                                                        |
| 2                   | Grenzstanddetektion nur in Kanal 2                                                                                                     |
| 5                   | Korrigierter Füllstand — die Füllstandmessung in Kanal 1 wird bei<br>bedecktem bzw. freigewordenem Grenzschalter in Kanal 2 korrigiert |
| 6                   | Simulation von Füllstand, Volumen oder Strom in Kanal 1                                                                                |
| 7                   | Simulation der Grenzstanddetektion in Kanal 2                                                                                          |

Tabelle 1.1: Betriebsarten Prolevel FMC 661

Signalverarbeitung

Nach einem Leer- und Vollabgleich erfolgt eine kontinuierliche Füllstandmessung in den Einheiten des Abgleichs. In der Betriebsart 5 ist daraufhin der Meßwert in Kanal 1 korrigiert. Das Behältervolumen kann bei bekannter Behälterkennlinie aus dem Füllstandmeßwert berechnet werden. Die Behälterkennlinie beschreibt den funktionalen Zusammenhang zwischen der Füllhöhe h und dem Behältervolumen V.

Die analogen Ausgangssignale sind normierte Ströme 0/4...20 mA proportional zum Füllstand bzw. Volumen. Jeder beliebige Teil des Meßbereiches kann eingestellt werden, um ein skaliertes Ausgangssignal bereitzustellen. Zwei Sätze von zwei Relais, zuordenbar zum Kanal 1 oder 2, dienen zur Überwachung von Füllstandgrenzwerten, um Pumpen an- und auszuschalten.

Alle Meßwerte können über die Schnittstelle Rackbus RS 485 (Option) gelesen werden, ebenso kann die Bedienung über diese Schnittstelle erfolgen.

Erkennt die Sicherheitsschaltung eine Störung, fällt das Störmelderelais ab, die rote LED **Sicherheitsschaltung** an der Frontplatte leuchtet. Die Strom- und Spannungsausgänge nehmen den gewählten Zustand, -10 % oder +110 % oder »Meßwert halten« an.

#### 1.5 Technische Daten

#### Allgemeine Angaben

| Hersteller          | Endress+Hauser GmbH+Co.                                                                                                                               |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gerätefunktion      | Meßumformer zur Füllstandmessung mit kapazitiver oder<br>hydrostatischer Sonde sowie Grenzstanddetektion mit<br>kapazitiver Sonde und Vibrationssonde |
| Eingangssignal      | füllstandproportionales PFM-Signal                                                                                                                    |
| Schnittstelle       | 0/4 bis 20 mA, Rackbus RS 485 (optional)                                                                                                              |
| Referenzbedingungen | gemäß DIN IEC 770 (TU = 25 °C) oder wie angegeben                                                                                                     |
| Sonstiges           | CE-Zeichen                                                                                                                                            |

#### Eingangskenngrößen

| Signaleingang, Kanal 1 |                                                                                                                                |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Signal                 | PFM-Signal (Puls-Frequenz-Modulation) von der Sonde oder vom Sensor                                                            |
| Zündschutzart          | PTB [EEx ia] IIC, FM, CSA<br>eigensichere galvanische Trennung zwischen Sensorstromkreis<br>und restlicher Elektronik          |
| Sonde oder Sensor      | kapazitive Sonde mit Elektronikeinsatz EC 37 Z oder EC 47 Z<br>hydrostatischer Druckaufnehmer Deltapilot S mit FEB 17/FEB 17 P |

| Schalteingang, Kanal 2 |                                                                                                                                                                                                      |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signal                 | PFM-Signal (Puls-Frequenz-Modulation) von der Sonde                                                                                                                                                  |
| Grenzschalter          | kapazitive Sonde mit Elektronikeinsatz EC 17 Z<br>Multicap-Sonde mit Elektronikeinsatz EC 16 Z oder EC 17 Z<br>Liquiphant FDL 30 / FDL 31 / FDL 35 / FDL 36<br>Soliphant DM 90 Z / DM 91 Z / DM 92 Z |

#### Ausgangskenngrößen

| Analogausgang         |                                                                                          |
|-----------------------|------------------------------------------------------------------------------------------|
| Ausgang               | 0 20 mA, umschaltbar auf 4 20 mA<br>Signalunterlauf: < -2 mA<br>Signalüberlauf: > +22 mA |
| bei Störung           | wählbar +110 %, -10 % oder Wert halten                                                   |
| Strombegrenzung       | 23 mA                                                                                    |
| Temperaturkoeffizient | 0,3 %/10 K vom Meßendwert                                                                |
| Anwärmzeit            | 1 s                                                                                      |
| Integrationszeit      | 0 bis 100 s                                                                              |
| maximale Bürde        | 600 Ω                                                                                    |
| Bürdeneinfluß         | vernachlässigbar                                                                         |
| RFI (E = 10 V/m)      | 1 %                                                                                      |

| Relais         |                                                                                                                                                                               |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ausführung     | 5 Relais mit potentialfreiem Umschaltkontakt                                                                                                                                  |  |
| Funktion       | 2 Paare von 2 Grenzwertrelais mit einstellbarem Schaltpunkt<br>und Hysterese, für Betrieb in Min oder Max<br>Sicherheitsschaltung<br>1 Störmelderelais (fällt bei Störung ab) |  |
| Schaltleistung | 6 A, 250 VAC ; 750 VA bei $\cos\phi$ = 0,7, 1500 VA bei $\cos\phi$ = 1 6 A, 250 VDC; 200 W                                                                                    |  |

| Anzeige und Bedienele                                                                                                                                                                   | Ausgangskenngrößen                                                                                                                                                                                                                                           |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Anzeige (LCD)4 1/2-stellige Meßwertanzeige, optional beleuchtet;<br>Segmentanzeige des Stroms in 10 %-Schritten, Anzeigeelemente<br>für Störung, Signalüber bzwunterlauf, Kommunikation |                                                                                                                                                                                                                                                              | (Forts.) |
| Leuchtdioden                                                                                                                                                                            | <ol> <li>gelbe LED für jedes Grenzwertrelais (leuchtet = Relais angezogen)</li> <li>rote Leuchtdiode für das Störmelderelais<br/>(leuchtet = Relais abgefallen), (blinkt bei Warnung)</li> <li>grüne Leuchtdiode zeigt die Spannungsversorgung an</li> </ol> |          |
| Bedienelemente                                                                                                                                                                          | 6 Tasten für Parametereingabe, Option ohne Tastatur verfügbar                                                                                                                                                                                                |          |
| Schnittstelle                                                                                                                                                                           |                                                                                                                                                                                                                                                              |          |
| Referenzbedingungen                                                                                                                                                                     | gemäß DIN IEC 770 (T <sub>U</sub> = 25 °C) oder wie angegeben                                                                                                                                                                                                |          |

| Kommunikationsschnittstellen |                                                                                                                                                                                                                                                                                |  |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Commulog VU 260 Z            | 2 Buchsen im Anschlußraum                                                                                                                                                                                                                                                      |  |  |  |
| Rackbus RS 485               | optionale Schnittstelle für direkten Anschluß an einen PC über Adapter oder<br>Schnittstellenkarte bzw. am Rackbus über Schnittsttellenkarte FXA 675<br>Rackbusadress über 6poligen DIP-Schalter in Anschlußraum<br>Busterminierung über 4poligen DIP-Schalter in Anschlußraum |  |  |  |

Hilfsenergie

| Wechselspannung                 | 230 V / 115 V / 110 V (85253 V), 50/60 Hz oder                                                                             |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| Gleichspannung                  | 24 V / 48 V (2055V), 50/60 Hz oder<br>24 V (1660V),                                                                        |  |
|                                 | Restwelligkeit max. 2 V <sub>pp</sub> innerhalb der Toleranz                                                               |  |
| Leistungsaufnahme               | max. 7 W                                                                                                                   |  |
| Sichere galvanische<br>Trennung | zwischen Hilfsenergie und Stromausgang, CPU, Rackbus RS 485,<br>Einschaltstrom 880 mA,<br>Relais und restlicher Elektronik |  |

#### Umgebungsbedingungen

Mechanische Angaben

| Betriebstemperatur<br>Grenztemperatur<br>Lagertemperatur | 0 °C60 °C<br>-20 °C60 °C<br>-40 °C80 °C                                                                                                                  |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Klimaklasse                                              | nach DIN 40 040 Tab. 10 "R": Gerät im Freien oder in Außenräumen.<br>Relative Luftfeuchte 95 % im Jahresmittel, Betauung zulässig                        |
| Schutzart                                                | IP 66 bei geschlossenem Gehäuse und Kabelverschraubung IP 66<br>IP 40 bei offenem Gehäuse, IP 20 bei offenem Anschlußraum                                |
| Elektromagnetische<br>Verträglichkeit                    | Störfestigkeit nach EN 50082-2 Industriebereich<br>Störaussendung nach EN 50081-2, Industriebereich<br>Industriestandard NAMUR (RFI-Festigkeit = 10 V/m) |
| Vibrationsbeständigkeit                                  | nach DIN 40 040 Tab. 6 "W": 2 g (10 bis 55 Hz), 15 g (für 11 ms)                                                                                         |
| Explosionsschutz                                         | [EEx ia] IIC, siehe auch "Sicherheitshinweise"                                                                                                           |

| Gehäuse                 | vorgesehen für Montage an einer Wand oder an einem Rohr                                                                      |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Abmessungen (I x b x h) | 292 mm x 176 mm x 253 mm, siehe Abb. 2.3                                                                                     |
| Gewicht                 | 2,6 kg                                                                                                                       |
| Werkstoffe              | Gehäusekörper ABS/PC, RAL 5012 (blau)<br>Klarsichtdeckel PC (Polycarbonat)<br>blaue Frontplatte mit weißem Beschriftungsfeld |

Elektrischer Anschluß

# 2 Installation

Dieses Kapitel befaßt sich mit:

- Sonden und Sensoren für das Prolevel FMC 661
- Montage des Prolevel FMC 661
- Anschluß des Prolevel FMC 661
- Anschluß des Sensors
- Hardware-Einstellung für die Schnittstelle Rackbus RS 485 (Option)

Abb. 2.1 zeigt den Aufbau des Kapitels an.

#### Fachpersonal

Es wird davon ausgegangen, daß für die Installation und den elektrischen Anschluß der Systemkomponenten entsprechendes Fachpersonal zur Verfügung steht. Dies gilt besonders für den Anschluß von Sensoren im explosionsgefährdeten Bereich. Bitte folgendes beachten:

#### Warnung!



- Der Meßumformer Prolevel FMC 661 muß außerhalb von explosionsgefährdeten Bereichen installiert werden.
- Bei der Installation eines Sensors in explosionsgefährdeten Bereichen müssen die Hinweise des Zertifikats und die nationalen Vorschriften unbedingt beachtet werden.





#### 2.1 Sonden und Aufnehmer

Tabelle 2.1 listet Sonden auf, die hauptsächlich mit dem Prolevel FMC 661 benutzt werden können. Zusätzlich zu den Aufgelisteten kann jede Sonde benutzt werden, die mit dem Elektronikeinsatz EC 17 Z, EC 37 Z oder EC 47 C angeschlossen werden kann. Hinweise zur Sondenmontage sind den entsprechenden Technischen Informationen (TI) zu entnehmen.

|                          | Kan                                                                                                                   | al 1                                                                                      |                        | Kanal 2                                                                                                              |                                                                                                    |                              |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------|
| Meßprinzip               | Sonde                                                                                                                 | TI Nr.                                                                                    | Elektronik-<br>einsatz | Sonde                                                                                                                | TI Nr.                                                                                             | Elektronik-<br>einsatz       |
| Kapazitiv                | DC 11<br>DC 16<br>DC 21<br>DC 26<br>11 322 Z D 1<br>11 500 Z<br>21 211 D 1<br>Multicap TE, TA, E, Z<br>TI 239, 240, 2 | TI 169F<br>TI 096F<br>TI 208F<br>TI 209F<br>1.81.03<br>TI 161F<br>0.73.18<br>A<br>42, 243 | EC 37 Z<br>EC 47 Z     | DC 11<br>DC 16<br>DC 21<br>DC 26<br>11 450 (Z/St)<br>11 961 (Z)<br>21 262 (Z/St)<br>21 265 (Z/St)<br>Multicap TE, TA | TI 169F<br>TI 096F<br>TI 208F<br>TI 209F<br>TI 197F<br>D 04.77.04<br>TI 227F<br>TI 195F<br>A, E, A | EC 17 Z<br>EC 16 Z<br>FEC 22 |
| Hydrostatischer<br>Druck | Deltapilot S<br>DB 50, 50 L, 51, 52,                                                                                  | TI 257<br>53                                                                              | FEB 17,<br>FEB 17 P    | Nicht geeignet                                                                                                       |                                                                                                    |                              |
| Vibration                | Nicht geeignet                                                                                                        |                                                                                           |                        | Liquiphant<br>DL 17 Z 0<br>FDL 30/31/35/3<br>Soliphant<br>DM 90 Z92 Z                                                | 13154-0008<br>6 TI 185F<br>2 TI 124F<br>BA042                                                      | EL 17 Z<br>EM 17 Z           |

Tabelle 2.1: Sondenauswahl für das Prolevel FMC 661

#### Deltapilot S - Aufnehmer und Elektronikeinsätze EC 37 Z/47 Z werden mit den Sondenkonstanten Nullfrequenz »f0« und Empfindlichkeit »Df« bzw. »S« ausgeliefert. Für Deltapilot S siehe Tabelle 2.2 und bei Elektronikeinsätzen sind sie auf das Anschlußschild gedruckt, siehe Abb. 2.2. Geben Sie diese Konstanten vor dem Abgleich des Prolevel in den Feldern V3H5 und V3H6 ein, vgl. Abs. 4.1. Soll der Aufnehmer bzw. der Elektronikeinsatz ausgetauscht werden, entfällt so die Notwendigkeit eines Neuabgleichs.



| Zellen- | Elektronikeinsatz FEB 17/FEB 17 P |            |                       |                     |         |               |                       |                     |  |
|---------|-----------------------------------|------------|-----------------------|---------------------|---------|---------------|-----------------------|---------------------|--|
| typ     | Bereich                           |            | <b>f</b> <sub>0</sub> | $\Delta \mathbf{f}$ | Bereich |               | <b>f</b> <sub>0</sub> | $\Delta \mathbf{f}$ |  |
| 0.1 bar | ΒA                                | 0100 mbar  | 200                   | 10                  | DA      | -100100 mbar  | 200                   | 5                   |  |
| 0.4 bar | BB                                | 0400 mbar  | 200                   | 2,5                 | DB      | -400400 mbar  | 200                   | 1,25                |  |
| 1.2 bar | BC                                | 01200 mbar | 200                   | 0,833               | DC      | -9001200 mbar | 200                   | 0,476               |  |
| 4.0 bar | BD                                | 04000 mbar | 200                   | 0,25                | DD      | -9004000 mbar | 200                   | 0,204               |  |

Tabelle 2.2: Meßbereiche und Sondenkonstanten des Deltapilot S DB 5x

Sondenkonstante

# Abb 2.3: Abmessungen in mm des Prolevel FMC 661-Gehäuses 1" = 25.4 mm

#### 2.2 Montage des Prolevel FMC 661

Standort

Montage

Wählen Sie einen möglichst geschützten und schattigen Standort für den Meßumformer Prolevel:

• Nenngebrauchstemperatur: 0 °C...+60 °C

Übersteigt die Umgebungstemperatur +60 °C, entweder eine Wetterschutzhaube benutzen oder eine Kühlungsmöglichkeit vorsehen. Bei Umgebungstemperatur kleiner als -20 °C Gerät isolieren.

Der Prolevel FMC 661, mit Schutzgehäuse IP 66, ist zur Wand- oder Mastmontage in Feld und Warte ausgelegt. Abb. 2.3 gibt alle Hinweise zur Wandmontage.

Die Mastmontage sowie Montage der Wetterschutzhaube zum Schutzgehäuse IP 66 ist in Abb. 2.4 dargestellt. Das Montagematerial (Schrauben oder Muttern) für die Mastbefestigung und die Wetterschutzhaube liegt bei.

- Rohrbefestigung Werkstoff: Stahl, verzinkt (Bestell-Nr. für 2"-Rohr: 919566-0000; für 1"-Rohr: 919566-1000); korrosionsbeständiger Stahl 1.4301 (Bestell-Nr. für 2"-Rohr: 919566-0001; für 1"-Rohr: 919566-1001). Gewicht: 1 kg
- Wetterschutzhaube: Werkstoff: Aluminium, blau lackiert; Bestell-Nr. 919567-000 Werkstoff: Stahl 1.4301, blau lackiert; Bestell-Nr. 919567-001



Abb. 2.4: Mastenmontage mit Wetterschutzhaube

#### 2.3 Anschluß des Prolevel FMC 661



Abb. 2.5: Klemmenbelegung für Prolevel FMC 661

#### Warnung!

- Beim Anschluß des Meßumformers muß die Spannungsversorgung ausgeschaltet werden!
- Bei der Installation eines Sensors in explosionsgefährdeten Bereichen müssen die Hinweise des Zertifikats und die nationalen Vorschriften unbedingt beachtet werden.

Die Klemmenleiste für Leitungsquerschnitte bis 2,5 mm<sup>2</sup> befindet sich in dem separaten Anschlußraum. Alle Klemmen sind deutlich gekennzeichnet. Abb. 2.5 zeigt das Anschlußschema des Prolevel FMC 661 (Klemme 3: nur interner Schutzleiteranschluß):

- Hellblauen Kunststoffdeckel öffnen
- Vorgeprägte Kabeleinführung ausbrechen
  - Unterseite: 5 x PG 16, 4 x PG 13,5; Rückseite 4 x PG 16.

Die Angaben zur Versorgungsspannung stehen auf dem Namenschild an der rechten **Versorgung** Seite des Gehäuses, siehe auch Abschnitt 1.5, "Technische Daten".

- Stimmen die Angaben mit Ihrer Versorgungsspannung nicht überein, schließen Sie das Gerät nicht an - Zerstörungsgefahr!
- Schutzleiter an dem metallenen (extern geerdeten) Klemmenblock anschließen. - Gewährleistet Berührungsschutz und sichere Trennung nach DIN/VDE 0160.
- Stromausgang, Relaisausgänge, Netzanschluß und Sensoreingang sind galvanisch getrennt und erfüllen bei angeschlossenem Schutzleiter die sichere Trennung bis 250 Veff nach DIN/VDE 0160.

Nur **ein** Gerät mit nicht-potentialfreiem Eingang kann direkt an den Stromausgang **Analogausgänge** angeschlossen werden.

• Die Anzahl der potentialfreien Geräte ist unter Berücksichtigung der min. Bürde von 600  $\Omega$  unbegrenzt.

Max. Kontaktbelastbarkeit des Relais siehe Technische Daten, Abschnitt 1.5. Relais

- Relais 1a und 1b sind normalerweise Kanal 1 zugeordnet
- Relais 2a und 2b sind normalerweise Kanal 2 zugeordnet.

Die Zuordnung kann über Software geändert werden siehe Abschnitt 4.4.



15

#### 2.4 Anschluß des Sensors

Für den Anschluß Sonde-Meßumformer verwenden Sie ein zweiadriges Installationskabel mit Sondenkabel max. 25  $\Omega$  pro Ader. Dieses Kabel erfüllt die Anforderungen der angegebenen EMV-Normen.

Füllstandsonden und Das Prolevel FMC 661 kann mit verschiedenen Sonden und Sensoren betrieben werden; -sensoren, Kanal 1 jede mit einem anderen Elektronikeinsatz. Für Füllstandmessung auf Kanal 1:

> • EC 37 Z oder EC 47 Z für kapazitive oder Multicap-Sonden FEB 17 oder FEB 17 P für hydrostatischen Druckaufnehmer Deltapilot S

Grenzschalter, Kanal 2:

Der Grenzschalter kann entweder eine Vibrationssonde — Liquiphant (Flüssigkeiten) oder Soliphant (Schüttgüter) — oder eine kapazitive Sonde mit Elektronikeinsatz sein:

- EC 16 Z/EC 17 Z für Multicap-Sonden
  - EC 17 Z für andere kapazitive Sonden
- EL 17 Z für Liquiphant
- EM 17 Z für Soliphant



EC 37 Z and EC 47 Z EC 37 Z und EC 47 Z Die Elektronikeinsätze EC 37 / EC 47 Z werden mit kapazitiven Sonden zur kontinuierlichen Füllstandmessung verwendet. Sie besitzen zwei Meßbereiche, die durch Einsetzen einer Brücke zwischen den Klemmen 4 und 5 angewählt werden können, siehe Abb. 2.6. Hinweise zur Auswahl des Einsatzes sind der Publikation D 07.80.06/e zu entnehmen. • Notieren Sie die auf dem Einsatz aufgedruckte Nullfrequenz fo\_\_\_\_\_ und Empfindlichkeit S\_\_\_\_\_. EC 17 Z Der Elektronikeinsatz EC 17 Z wird mit kapazitiven Sonden zur Grenzstanddetektion auf Kanal 2 eingesetzt. Abb. 2.6 zeigt den Anschluß. Installationshinweise sind der Publikation D 11.84.04/1a zu entnehmen.

#### EC 16 Z Der Einsatz EC 16 Z wird mit Multicap-Sonden mit aktiver Ansatzkompensation verwendet. Anschluß wie in der mitgelieferten Technischen Information TI 170F beschrieben.



- Der Einsatz FEB 17/FEB 17 P wird mit Deltapilot S - Sonden zur Füllstandmessung in drucklosen Behältern im Kanal 1 verwendet. Die Sondenkonstanten sind in Tabelle 2.2 aufgelistet.
  - Notieren Sie Nullfrequenz  $f_0$  und Empfindlichkeit  $\Delta f$  des Sensors (siehe Tabelle Seite 13).

Abb. 2.7: Anschlußdiagramm für Elektronikeinsätze FEB 17/FEB 17 P für Deltapilot S

Der Einsatz EL 17 Z wird mit Liquiphant zur **EL 17 Z und EM 17 Z** Grenzstanddetektion auf Kanal 2 verwendet; mit Soliphant wird der EM 17 Z verwendet.

mit Soliphant wird der EM 17 Z verwendet. Installationshinweise sind den Publikationen BA 039 F (013154-0009) und

BA 042 F (014897-0002) zu entnehmen.



Abb. 2.8: Anschlußdiagramm

Anschlußdiagramm für Elektronikeinsätze EL 17 Z/EM 17 Z Liquiphant/Soliphant



#### 2.5 Kommunikationsschnittstelle Rackbus RS 485 (Option)

Abb. 2.9: Rackbus RS-485-Topologien mit Einstellung für Bus-Terminierungswiderstand

Kleinbild: Vorschlag für Busverdrahtung

#### Busverdrahtung

Üblicherweise können bis zu 25 Meßumformer am Rackbus RS 485 angeschlossen werden. Hinweise für die Verdrahtung und Erdung des Busses sind Betriebsanleitung BA 134F zu entnehmen, die mit der Option Rackbus RS 485 mitgeliefert wird. Das Prolevel kann wie in Abb. 2.9 angeschlossen werden.



Busadresse und -terminierung

#### Hinweis!

- Klemme 61 ist intern mit der PE-Klemmenleiste verbunden
- Die Busschirmung muß geerdet und durchgehend verdrahtet werden siehe BA 134F für Erdungshinweise.

Abb. 2.10 zeigt die Einstellelemente für die Fernbedienung des Prolevel FMC 661. Jeder Meßumformer erhält eine individuelle Busadresse:

- Strom ausschalten, Schrauben lösen und Frontplatte herunterklappen
- Adresse am Schalter SW1 einstellen (Beispiel: 2 + 8 = 10)
- Frontplatte schließen, Schrauben anziehen.

Beim letzten Meßumformer am Bus (am weitesten vom PC entfernt):

Terminierungswiderstand am Schalter SW2 einschalten: OFF; ON; ON; OFF

• Frontplatte schließen, Schrauben anziehen.



Abb. 2.10: DIP-Schalter für Busadresse und -terminierung

# 3 Bedienung

Dieses Kapitel behandelt die Bedienung des Prolevel FMC 661. Es ist wie folgt unterteilt:

- Bedienmatrix
- Tastatur und Anzeige
- Handbediengerät Commulog VU 260 Z
- Rackbus RS 485

#### 3.1 Bedienmatrix

Alle Geräteparameter werden über eine Bedienmatrix eingestellt. Abb. 3.1 und 3.2 zeigen die Bedienung:

• Jedes Feld in der Matrix ist über eine vertikale (V) und eine horizontale (H) Position anwählbar. Diese Positionen können über die Frontplatte des Prolevel FMC 661, das Handbediengerät Commulog VU 260 Z oder den Rackbus RS 485 und Personal-Computer eingegeben werden.

Die Bedienmatrix finden Sie im Rückumschlag dieser Bedienungsanleitung. Im Deckel des Feldgehäuses steckt ebenfalls eine gefaltete Bedienmatrix.



Abb. 3.1: Prolevel FMC 661 Bedienmatrix mit Funktionen der Tasten V und H. Die vollständige Matrix besteht aus 10 x 10 Feldern, wobei nicht alle Felder belegt sind



Abb. 3.2:

Commulog VU 260 Z Handbediengerät. Anzeige mit Tastenfunktionen. Meßstellenbezeichnung (Tag-Nr.) wird in der Ebene VA eingegeben, die nur über Commulog oder Rackbus RS 485 bedienbar ist





Abb. 3.1 zeigt die LCD-Anzeige und die Matrix des Prolevel FMC 661, Abb 3.3 die Frontplatte. Tabelle 3.1 beschreibt die Tastenfunktionen.

- Nach Verriegelung der Matrix (Kapitel 4.6) können keine Veränderungen mehr vorgenommen werden.
- Zahlenwerte, die nicht blinken, sind reine Anzeigewerte oder verriegelte Felder.

Prolevel FMC 661 Parametereingabe und -anzeige

| Tasten                | Funktion                                                                                                                                                                                                     |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anwahl der Matrix     |                                                                                                                                                                                                              |
| V                     | Anwahl der vertikalen Position, V drücken                                                                                                                                                                    |
| Η                     | Anwahl der horizontalen Position, H drücken                                                                                                                                                                  |
| <b>V</b> + <b>H</b>   | Durch gleichzeitiges Drücken von V und H springt das Display<br>auf V0H0                                                                                                                                     |
| Eingabe der Parameter |                                                                                                                                                                                                              |
| >                     | <ul> <li>Die Anzeige springt zur nächsten Ziffernstelle der Digitalanzeige.<br/>Der Zahlenwert der Ziffer kann dann geändert werden.</li> <li>Die angewählte Ziffernstelle blinkt</li> </ul>                 |
| + + >                 | Der <i>Dezimalpunkt</i> wird durch gleichzeitiges Drücken der Tasten     »→« und »+« um eine Position nach rechts verschoben                                                                                 |
| +                     | • Verändert den Zahlenwert der blinkenden Ziffernstelle um +1.                                                                                                                                               |
| -                     | <ul> <li>Verändert den Zahlenwert der blinkenden Ziffernstelle um -1</li> <li>Das Vorzeichen kann durch mehrmaliges Drücken von »-«<br/>verändert werden, wobei der Cursor ganz links stehen muß.</li> </ul> |
| Ε                     | <ul> <li>Mit dieser Taste bestätigen und speichern Sie ihre Eingabe.</li> <li>Wird ein anderes Matrixfeld gewählt, ohne Drücken der »E« Taste, gilt der alte Wert des Matrixfeldes.</li> </ul>               |

Tabelle 3.1:

#### 3.3 Handbediengerät Commulog VU 260 Z



#### Warnung!

• Die Spannungsversorgung- und Relaisklemmen in dem Anschlußraum sind mit Spannung behaftet!

Das Prolevel FMC 661 kann mit dem Handbediengerät Commulog VU 260 Z parametriert werden, siehe Abb. 3.2 und 3.4. Bedienungsanleitung BA 028 F beschreibt die Handhabung des Commulogs. Tabelle 3.2 beschreibt die Tastenfunktionen.

| Tasten                              | Funktion                                                                                                                                                                                                                                |  |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Anwahl der Matrixpositio            | n                                                                                                                                                                                                                                       |  |  |  |
| $\leftarrow \land \rightarrow \lor$ | Anwahl Matrixposition                                                                                                                                                                                                                   |  |  |  |
|                                     | <ul> <li>»Escape key«, Anwahl Matrixposition V0H0</li> </ul>                                                                                                                                                                            |  |  |  |
|                                     | <ul> <li>Zeigt Fehlermeldung an (blinkendes Diagnosezeichen)</li> <li>»Escape« drücken, um Meldung zu löschen</li> </ul>                                                                                                                |  |  |  |
| Eingabe der Parameter               |                                                                                                                                                                                                                                         |  |  |  |
| Ε                                   | <ul><li>Startet Parametereingabemodus</li><li>Beendet Parametereingabemodus und speichert die Eingaben</li></ul>                                                                                                                        |  |  |  |
| $\leftarrow$                        | Anwahl der zu ändernden Stelle: die angewählte Stelle blinkt                                                                                                                                                                            |  |  |  |
|                                     | <ul> <li>Parametereingabe bei alphanumerischen Eingaben bewirkt:</li> <li>Die Taste îl von "-" ausgehend:<br/>0,1,,9,/,+, Leerzeichen, Z,Y,X,W,</li> <li>Die Taste ↓ von "-" ausgehend:<br/>A,B,,Y,Z, Leerzeichen,+,/,.,9,8,</li> </ul> |  |  |  |
| ← + ↑ → + ↑                         | <ul> <li>Verschieben der Kommastelle:</li> <li>← und ît zusammen, nach links</li> <li>→ und ît zusammen, nach rechts</li> </ul>                                                                                                         |  |  |  |
|                                     | Beendet Parametereingabemodus ohne Übernahme der Eingaben<br>Commulog bleibt beim gewählten Matrixfeld                                                                                                                                  |  |  |  |



Tabelle 3.2: Prolevel FMC 661 Parametereingabe und -anzeige über Commulog VU 260 Z



#### 3.4 Kommunikationsschnittstelle Rackbus RS 485 (Option)

Meßumformer Prolevel FMC 661 mit Schnittstelle Rackbus RS 485 können von einem Personal-Computer über ein Bedienprogramm parametriert werden:

- Fieldmanager 485 ab Version 5.0 und Commugraph 485, falls der Anschluß über RS-485/RS-232C-Adapter oder PC-Karte RS-485 erfolgt.
- Commuwin, Commutec-Bedienprogramm, falls der Anschluß über FXA 675 und Gateway erfolgt.

Die Bedienung entspricht der Version mit Tastatur. Weitere Details können der dort mitgelieferten Betriebsanleitung BA 134F (Rackbus RS 485) entnommen werden.



#### Hinweis!

Hinweis!

• Das Prolevel FMC 661 erscheint mit der Kennung "FMC 671 Z" in allen Programmen!

# 4 Füllstandmessung

In diesem Kapitel werden die Prolevel-Funktionen für die Füllstandmessung (Betriebsart 1 in V8H0, Werkseinstellung) behandelt; die Hauptabschnitte beschreiben:

- Inbetriebnahme
- Füllstandabgleich
- für stehende zylindrische Tanks
- für liegende zylindrische Tanks
- für Tanks mit konischem Auslauf
- Trockenabgleich für hydrostatische Sensoren
- Analogausgang
- Relais
- Meßwertanzeige
- Verriegelung der Parameter.

Mit Ausnahme des Trockenabgleichs ist die Parametrierung unabhängig davon, ob ein Druckaufnehmer oder eine kapazitive Sonde am Prolevel angeschlossen wird.



Abb. 4.1: Vorgang: Abgleich und Bedienung für Füllstandmessung

#### 4.1 Inbetriebnahme

Bei der erstmaligen Inbetriebnahme sollte eine Rückstellung auf die werkseitig voreingestellten Werte vorgenommen werden, siehe Tabelle im Umschlag. Danach werden die Sondenkonstanten f<sub>0</sub> und S ( $\Delta$ f) — bei 25 °C gemessen — eingegeben, um eine Auswechslung der Sonde ohne Neuabgleich zu ermöglichen, siehe Abschnitt 6.4.

| <b>Schritt</b> | <b>Matrix</b> | <b>Eingabe</b> | <b>Bedeutung</b>                                           |
|----------------|---------------|----------------|------------------------------------------------------------|
| 1              | V9H5          | z. B. 671      | Wert zwischen 670679 eingeben                              |
| 2              | -             | »E«            | Eingabe bestätigen                                         |
| 3              | V3H5          | z. B. 475,3    | Nullfrequenz fo des Elektronkeinsatzes mit Sonde eingeben  |
| 4              | -             | »E«            | Eingabe bestätigen                                         |
| 5              | V3H6          | z. B. 6,805    | Empfindlichkeit des Elektronikeinsatzes mit Sonde eingeben |
| 6              | -             | »E«            | Eingabe bestätigen                                         |

#### 4.2 Füllstandabgleich

Dieser Abschnitt beschreibt in drei Beispielen den Füllstandabgleich: Dazu muß der Behälter befüllt werden. Zwei Parameter werden abgeglichen:

- »Leer«-Füllstand  $\rightarrow$  Abgleich in V0H1
- »Voll«-Füllstand  $\rightarrow$  Abgleich in V0H2.

Das vierte Beispiel beschreibt den Trockenabgleich für hydrostatische Druckaufnehmer. Für liegende zylindrische Tanks und Tanks mit konischem Auslauf kann zusätzlich für Volumen- oder Gewichtsmessung abgeglichen werden, indem der entsprechende Linearisierungsvorgang durchgeführt wird.



#### Hinweis!

 Prolevel ist nicht an spezifische Füllstandeinheiten gebunden; während des Abgleichs werden lediglich die eingegebenen Werte den Meßfrequenzen für "Voll" und "Leer" zugeordnet.

#### 1) Standardabgleich für stehende Zylinder

Nach dem Abgleich



| <b>#</b><br>1<br>2 | <b>Matrix</b><br>V0H1<br>- | <b>Eingabe</b><br>E<br>»E≪ | <b>Bemerkungen</b><br>Tank leer, aktueller<br>Füllstand in %, m, hl…<br>Eingabe bestätigen |
|--------------------|----------------------------|----------------------------|--------------------------------------------------------------------------------------------|
| 3                  | V0H2                       | F                          | Tank voll, aktueller<br>Füllstand in %, m, hl…                                             |
| 4                  | -                          | »E«                        | Eingabe bestätigen                                                                         |
| 5                  | V0H0                       | Füllstand                  | Meßwert in<br>angewählten Einheiten                                                        |



#### Hinweis!

- Der Abgleich kann in umgekehrter Reihenfolge erfolgen.
- Für Schüttgüter (kapazitive Sonde) wird lediglich die Eintauchtiefe der Sonde gemessen. Schüttkegel oder Auslauftrichter sind durch entsprechende Eingaben zu berücksichtigen.
- Dichtekorrektur auf Seite 29.

Wird der Füllstand in % abgeglichen:

- Füllstand in % wird in V0H0 angezeigt
- Das 0/4...20 mA-Signal entspricht
- 0...100 %-FüllstandRelais 1a und 1b schalten in Max.-
- Sicherheitsschaltung bei 90 %.
- Nächster Schritt... Wird der Füllstand in Längen-, Volumenoder Gewichteinheiten abgeglichen, so müssen der Analogausgang und die Relais entsprechend eingestellt werden, siehe Seite 30...33.



Abb. 4.2: Parameter für Standardabgleich



Parameter für den Abgleich und die Linearisierung in einem liegenden Zylinder

| <b>#</b><br>1<br>2 | Matrix<br>V0H1<br>- | <b>Eingabe</b><br>E<br>»E« | Bemerkungen<br>Tank leer, aktueller<br>Füllstand in %, m, ft<br>Eingabe bestätigen |  |
|--------------------|---------------------|----------------------------|------------------------------------------------------------------------------------|--|
| 3                  | V0H2                | F                          | Tank voll, aktueller                                                               |  |
| 4                  | -                   | »Е«                        | Eingabe bestätigen                                                                 |  |

Nach dem Abgleich kann der Füllstand (%, m oder ft) in V0H0 abgelesen werden.

Für eine Volumenmessung wird die gespeicherte Linearisierungstabelle für liegende Zylinder aktiviert. Zwei Parameter müssen eingegeben werden:

- Tankdurchmesser D
- Tankvolumen V.

| <b>#</b><br>5                           | <b>Matrix</b><br>V2H7 | Eingabe<br>D | Bemerkungen<br>Tankdurchmesser, |  |  |
|-----------------------------------------|-----------------------|--------------|---------------------------------|--|--|
| 6                                       | -                     | »E«          | Eingabe bestätigen              |  |  |
| 7                                       | V2H8                  | <b>V</b> *   | Tankvolumen,                    |  |  |
| 8                                       | -                     | »E«          | Eingabe bestätigen              |  |  |
| 9                                       | V2H0                  | 1            | Linearisierung                  |  |  |
| 10                                      | -                     | »E«          | Eingabe bestätigen              |  |  |
| * Bei V =100 wird Volumen in % gemessen |                       |              |                                 |  |  |

Die Linearisierung beginnt am Tankboden. Entspricht der Nullpunkt des Abgleichs nicht dem Tankboden, so muß der negative Unterschied OFF (in den Einheiten des Abgleichs) als Korrektur eingegeben werden.

| # | Matrix | Eingabe | Bemerkungen         |
|---|--------|---------|---------------------|
| 1 | V3H4   | -OFF    | Offset in m oder ft |
| 2 | -      | »E«     | Eingabe bestätigen  |

• Volumen kann in V0H0 abgelesen werden

- Füllstand in V0H9
- Dichtekorrektur auf Seite 29.

Analogausgang und Relais in Volumeneinheiten einstellen, Seite 30...33.

#### Hinweis!

 Für Linearisierung Volumen → Füllstand, siehe Anhang, Seite 46.

#### 2) Abgleich für liegende Zylinder



Füllstand %: E % und F % auf Tankboden und -decke beziehen! Dann ist D = 100 %

#### Linearisierung, liegende Zylinder

#### Nullpunktverschiebung

Nach der Linearisierung

Nächster Schritt...



#### Kapitel 4: Füllstandmessung

| 3) Abgle<br>konise | ich für Tanks mit<br>chem Auslauf | #<br>1<br>2<br>3<br>4                             | Matrix<br>V0H1<br>-<br>V0H2<br>-                                       | Eingabe<br>E<br>»E«<br>F<br>»E«                                                 | Bemerkungen<br>Tank leer, aktueller<br>Füllstand in %, m, ft<br>Eingabe bestätigen<br>Tank voll, aktueller<br>Füllstand in %, m, ft<br>Eingabe bestätigen |
|--------------------|-----------------------------------|---------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) Manue           | elle                              | Nacl<br>m oc<br>Volu<br>nach<br>sche<br>Sie I     | h dem A<br>der ft) in '<br>men- oc<br>n a) mar<br>er Eingab<br>orauche | bgleich ka<br>V0H0 abg<br>der Gewic<br>nueller od<br>be einer Lin<br>n eine Lin | unn der Füllstand (%,<br>elesen werden. Eine<br>htsmessung erfolgt<br>er b) halbautomati-<br>nearisierungstabelle.                                        |
| Linear             | isierung                          | <ul> <li>Fül</li> <li>Vol</li> <li>scł</li> </ul> | . 30 Wer<br>Ilstand H<br>lumen V<br>hen Einh                           | tepaare F<br>I in %, m c<br>oder Gew<br>eiten.                                  | i/v oder H/G<br>oder ft<br>vicht G in techni-                                                                                                             |
|                    |                                   | <b>#</b><br>5<br>6                                | <b>Matrix</b><br>V2H1<br>-                                             | <b>Eingabe</b><br>0<br>»E«                                                      | <b>Bemerkungen</b><br>Manuelle Eingabe<br>Eingabe bestätigen                                                                                              |
|                    |                                   | 7<br>8                                            | V2H2<br>-                                                              | 1<br>»E«                                                                        | Tabellen-Nr.<br>Eingabe bestätigen                                                                                                                        |
|                    |                                   | 9<br>10                                           | V2H3<br>-                                                              | V/G <sub>130</sub><br>»E«                                                       | Volumen/Gewicht*<br>Eingabe bestätigen                                                                                                                    |
|                    |                                   | 11<br>12                                          | V2H4<br>-                                                              | H <sub>130</sub><br>»E«                                                         | Füllstand, m, ft*<br>Eingabe bestätigen                                                                                                                   |
|                    |                                   | 13                                                | V2H5                                                                   | »Е«                                                                             | Nächstes Wertepaar*<br>— springt auf V2H3                                                                                                                 |
|                    |                                   | *We                                               | eiter mit                                                              | # 913 fü                                                                        | r alle Wertepaare                                                                                                                                         |
|                    |                                   | 13<br>14                                          | V2H0<br>-                                                              | 3<br>»E«                                                                        | "Manuell" aktivieren<br>Eingabe bestätigen                                                                                                                |



#### **Hinweis!**

- Erstes Paar ~ 0 % Füllstand, in %, m, ft. Letztes Paar ~ 100 % Füllstand, in %, m, ft.
- Bei Fehler E602 oder E604 Tabelle korrigieren. Linearisierung erneut in V2H0 aktivieren
- Für Linearisierung Volume → Füllstand, siehe Anhang auf Seite 46.





V0H1

Parameter für den Abgleich und die Linearisierung in einem Tank mit konischem Auslauf

#### Nach der Linearisierung

Nächster Schritt...

- Volumen kann in V0H0 abgelesen werden: • Füllstand in V0H9
- Dichtekorrektur auf Seite 29.
- Analogausgang und Relais in Volumeneinheiten einstellen (Seite 30...33).



Abb. 4.5:

Parameter für den Abgleich und die halbautomatische Linearisierung in einem Tank mit konischem Auslauf Nach dem Füllstandabgleich (Seite 26) b) Linearisierung, folgt die halbautomatische Linearisierung: halbautomatisch

- Bekanntes Volumen V oder Gewicht G in V2H3 eingeben
- Füllstand wird in V2H4 angezeigt

| <b>#</b> | <b>Matrix</b>                           | <b>Eingabe</b>     | <b>Bemerkungen</b>                        |  |  |  |
|----------|-----------------------------------------|--------------------|-------------------------------------------|--|--|--|
| 5        | V2H1                                    | 1                  | Halbautomatisch                           |  |  |  |
| 6        | -                                       | »E«                | Eingabe bestätigen                        |  |  |  |
| 7        | V2H2                                    | 1                  | Tabellen-Nr.                              |  |  |  |
| 8        | -                                       | »E«                | Eingabe bestätigen                        |  |  |  |
| 9        | V2H3                                    | V/G <sub>130</sub> | Volumen/Gewicht*                          |  |  |  |
| 10       | -                                       | »E«                | Eingabe bestätigen                        |  |  |  |
| 11       | V2H4                                    | »E«                | Füllstand H <sub>130</sub><br>bestätigen* |  |  |  |
| 12       | V2H5                                    | »Е«                | Nächstes Wertepaar<br>springt auf V2H3    |  |  |  |
| *We      | *Weiter mit # 9… 12 für alle Wertepaare |                    |                                           |  |  |  |
| 13       | V2H0                                    | 3                  | "Manuell" aktivieren                      |  |  |  |
| 14       | -                                       | »E«                | Eingabe bestätigen                        |  |  |  |

#### **Hinweis!**

- Bei Fehler E602 oder E604 Tabelle korrigieren. Linearisierung erneut in V2H0 aktivieren.
- Volumen kann in V0H0 abgelesen werden
- Füllstand in V0H9
- Dichtekorrektur auf Seite 29.

Analogausgang und Relais in Volumeneinheiten einstellen (Seite 30...33).



#### Nach der Linearisierung

Nächster Schritt...

Wertepaar löschen

Löschen der

Linearisierung



Um ein Wertepaar zu löschen:

- Tabellennummer in V2H2 eingeben
- 9999 in V2H3 oder V2H4 eingeben

Es gibt zwei Möglichkeiten, eine Linearisierung zu löschen:

- Geben Sie "0" in V2H0 ein: Die Linearisierung wird ausgeschaltet, ohne daß die Tabelle gelöscht wird

   Aktivieren: Geben Sie 1 bzw. 3 ein.
- Geben Sie "4" in V2H0 ein: Die manuelle bzw. halbautomatische Linearisierungstabelle wird gelöscht
  - Die Linearisierung f
    ür liegende zylindrische Tanks wird nicht gel
    öscht

Abb. 4.6: Ausschaltung einer Linearisierung

| 4) » Trockenabgleich «                                  | Für einen Trockenabgleich mit hydrostatischen Druckaufnehmern benötigen Sie folgen-<br>de Daten:                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| pgh                                                     | <ul> <li>den »Leer«-Füllstand, bei dem die Messung anfangen soll</li> <li>die maximale Füllhöhe und</li> <li>die Dichte der Flüssigkeit</li> <li>den berechneten Nullpunkt (Offset) und die Empfindlichkeit der Anzeige.</li> </ul>                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Achtung!                                                | <ul> <li>Achtung!</li> <li>Die Sondenkonstanten sind gemäß Abschnitt 4.1 vorher einzugeben.</li> <li>Überwachen Sie den Tank bei der ersten Befüllung — sind Ihre Berechnungen fehlerhaft, so wird ein falscher Füllstand angezeigt!</li> </ul>                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Beispiel: Anzeige in %<br>Anzeige p <sub>Leer</sub> = 0 | Der Aufnehmerdruck (in mbar) für den Füllstand »Leer« und die Meßspanne (»Voll«-<br>»Leer«) muß berechnet werden:<br>$p_{mbar} = 10 \times \rho (kg/dm^3) \times g (m/s^2) \times \Delta h (m)$<br>Für 0,45 m Wasser: Anzeige = 0 %,<br>für 10,45 m Wasser: Anzeige = 100 %<br>Meßspanne 100 % = 10 m<br>• pLeer = 10 × 1,0 × 9,807 × 0,45<br>= 44,13 mbar<br>pSpanne= 10 × 1,0 × 9,807 × 10,00<br>= 980,7 mbar<br>• Offset = pLeer = <b>44,13 mbar</b><br>Empfindlichkeit = pSpanne/Spanne = 980,7/100<br><b>9,807 mbar/%</b> |  |  |  |  |  |
| Sensorabgleich<br>(trocken)                             | #MatrixEingabeBemerkungen<br>Füllstand » Voll«<br>(100%)2-» E«Eingabe bestätigen3V3H1z. B.<br>44,13Offset in mbar<br>Eingabe bestätigen4-» E«Eingabe bestätigen5V3H2z. B.<br>9,807Empfindlichkeit<br>mbar/%6-» E«Eingabe bestätigen5V0H0**.**Meßwert %                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Nächster Schritt                                        | Analogausgang und Relais in % einstellen (Seite 3033).                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |

Abb. 4.8: Parameter für Trockenabgleich, Anzeige in %

#### 28

Der Aufnehmerdruck (in mbar) für den Füllstand »Leer« und die Meßspanne (»Voll« - Beispiel: Anzeige in hl »Leer«) muß berechnet werden: Anzeige p<sub>Leer</sub> ≠ 0

 $p_{mbar} = 10 \times \rho (kg/dm^3) \times g (m/s^2) \times \Delta h (m)$ 

Für 0,0 m Wasser: Anzeige = 50 hl, für 10,0 m Wasser: Anzeige = 2000 hl Meßspanne (50...2000 = 1950) = 10 m

p0 = pLeer = 10 x 1,0 x 9,807 x 0,0 = 0,0 mbar
 p1950 = pSpanne = 10 x 1,0 x 9,807 x 10,00 = 980,7 mbar
 Offset = pLeer = 0,0 mbar
 Empfindlichkeit = pSpanne/Spanne = 980,7/1950 = 0,5029 mbar/hl



Einheiten (hl)

Analogausgang und Relais in technischen Einheiten, z. B. hl, einstellen, siehe Seite **Nächster Schritt...** 30...33.

Wird nach dem Abgleich das Produkt gewechselt, so kann die Messung durch Eingabe I eines Dichtefaktors in V8H7 korrigiert werden:

Dichtekorrektur für hydrostatische Druckaufnehmer

Faktor = <u>aktueller Faktor x neue Dichte</u> alte Dichte

Der Meßwert wird vor der Anzeige durch den Faktor geteilt.

#### Hinweis!

• Eine Füllstandmessung mit automatischer Dichtekorrektur ist auch möglich, siehe Kapitel 5, »Füllstandmessung mit Abgleichkorrektur«



#### 4.3 Analogausgänge

Dieser Abschnitt beschreibt die Einstellung der Analogausgänge. Folgende Parameter können eingegeben bzw. umgestellt werden:

- Analogsignalbereich
- Integrationszeit
- Wert für 0/4 mA und 20 mA
- Ausgang bei Störung

Analogsignalbereich

Zwei Einstellungen sind möglich:

- 0 = 0...20 mA (Werkseinstellung)
- 1 = 4...20 mA

Je nach Einstellung in VOH5 und VOH6, kann es bei normalem Betrieb je nach Füllstand vorkommen, daß der Analogausgang ein Signal kleiner als 4 mA oder größer als 20 mA erzeugt.

| V0H3 | Bereich | Strombereich |  |
|------|---------|--------------|--|
| 0    | 020 mA  | -222 mA      |  |
| 1    | 420 mA  | -222 mA      |  |



#### **Beispiel:** 4...20 mA

# Matrix Eingabe Bedeutung 4...20 mA 1 V0H3 1 2 »Е« Eingabe bestätigen

Abb. 4.10: Auswahl des Analogsignalbereichs, V0H3

#### Integrationszeit

Integrationszeit

**Beispiel:** 

Dieser Parameter stellt die Dämpfung des Sensor-Analogausgangs ein. Bei einer sprunghaften Änderung des Füllstands werden 63 % des neuen Werts in der eingestellten Zeit (0...100 s) erreicht.

| # | Matrix | Entry | Remarks               |
|---|--------|-------|-----------------------|
| 1 | V0H4   | 20    | Integrationszeit 20 s |
| 2 | -      | »Е«   | Eingabe bestätigen    |

Die digitalen Anzeigewerte in VOH0, VOH8 und V0H9 werden ebenfalls von der Dämpfung beeinflußt!





Abb. 4.12:

V0H7

22

20

A B

4

0 -2

Abb. 4.13:

Ausgang bei Störung, V0H7

Werte für 0/4 mA und



Werte für 4 mA und 20 mA, V0H5 und V0H6

Störung

1 = +110 %

2 = Wert halten

t ---

BA142\_39

Die Werte für 0/4 mA (V0H5) und 20 mA (V0H6) bestimmen die Füllstände, bei denen der Analogsignalbereich beginnt und endet. Werkseinstellungen sind 0 % und 100 %.

| <b>#</b> | <b>Matrix</b> | <b>Eingabe</b> | <b>Bemerkungen</b> |
|----------|---------------|----------------|--------------------|
| 1        | V0H5          | 20             | 4 mA-Wert, 20 %    |
| 2        | -             | »E«            | Eingabe bestätigen |
| 3        | V0H6          | 80             | 20 mA-Wert, 80 %   |
| 4        | -             | »E«            | Eingabe bestätigen |

# 20 mA

Beispiel: 4 mA = 20 %, 20 mA = 80 %

#### In Abgleich-/Linearisierungseinheiten

Hinweis!

einstellenIst V0H3 = 0, so ist V0H5 = 0 mA-Wert

Der Analogausgang kann so eingestellt werden, daß er bei Störungen einen bestimmten Wert einnimmt. Abhängig von der Einstellung in V1H3/V1H8 folgen die Relais dem Analogausgang. Die Eingabe erfolgt in V0H7:

- 0 = -10 % des Signalbereiches
- 1 = +110 % des Signalbereiches (Werkseinstellung)
- 2 = letzter Wert wird festgehalten

| # | Matrix | Eingabe | Bemerkungen        |
|---|--------|---------|--------------------|
| 1 | V0H7   | 0       | -10 % bei Störung  |
| 2 | -      | »Е«     | Eingabe bestätigen |



#### Ausgang bei Störung

Beispiel: Ausgang -10 % bei Störung

Die Tabelle listet die Strom- und Spannungswerte bei Störung auf.

0 = -10% (V0H3 = 0)

|           | Strom bei Störung: V0H7 = |                    |              |  |  |  |
|-----------|---------------------------|--------------------|--------------|--|--|--|
| V0H3 =    | 0: (-10 %)                | 1: (+110 %)        | 2: halten    |  |  |  |
| 0: 020 mA | kleiner als -2 mA         | größer als 22,0 mA | letzter Wert |  |  |  |
| 1: 420 mA | kleiner als -2 mA         | größer als 22,0 mA | letzter Wert |  |  |  |

#### Achtung!

 Mit V0H7 = 2 werden vorhandene Störungserkennungssysteme auf der 0/4...20 mA-Signalleitung außer Betrieb gesetzt. Obwohl das Signalerkennungssystem des Meßumformers funktionsfähig bleibt (d.h. das Störmelderelais fällt ab und die zugehörige LED leuchtet), geben scheinbar alle Analoggeräte auf der Signalleitung richtige Meßwerte weiter.



#### 4.4 Relais





#### **Betriebsart**

Das Prolevel FMC 661 besitzt fünf Relais mit potentialfreien Umschaltkontakten. Relais 1a, 1b, 2a und 2b sind Grenzwertrelais, Relais 3 ist ein Störmelderelais, das bei einer Störung abfällt. Relais 1a und 1b werden zusammen eingestellt, ebenso Relais 2a und 2b. Fünf Parameter werden benötigt, um die Grenzwertrelais einzustellen. Tabelle 4.1 gibt den Überblick:

| Tabelle 4.1:<br>Parameter für die Einstellung der<br>Grenzwertrelais | Parameter                 | Matrixposition für<br>Relais |        | Eingabe/Funktion                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------|---------------------------|------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                      |                           | 1a, 1b                       | 2a, 2b |                                                                                                                                                                                                                                                                                        |
|                                                                      | Schaltpunkt               | V1H0                         | V1H5   | Relais-Schaltpunkt in Einheiten des Abgleichs/der<br>Linearisierung                                                                                                                                                                                                                    |
|                                                                      | Sicherheits-<br>schaltung | V1H1                         | V1H6   | <ol> <li>0: MinSicherheitsschaltung — das Relais<br/>fällt ab, wenn der Füllstand den Schaltpunkt<br/>unterschreitet, siehe Abb. 4.15.</li> <li>1: MaxSicherheitsschaltung — das Relais<br/>fällt ab, wenn der Füllstand den Schaltpunkt<br/>überschreitet, siehe Abb 4.16.</li> </ol> |
|                                                                      | Hysterese                 | V1H2                         | V1H7   | Bereich, an dessen Ende das Relais wieder anzieht                                                                                                                                                                                                                                      |
|                                                                      | Relais bei Störung        | V1H3                         | V1H8   | 0: abgefallen<br>1: wie Analogausgang: siehe Tabelle 4.2.                                                                                                                                                                                                                              |
|                                                                      | Relais-Zuordnung          | V1H4                         | V1H9   | 1: Kanal 1<br>2: Kanal 2                                                                                                                                                                                                                                                               |

#### Relais bei Störung

Erkennt das Silometer eine Störung, so verhalten sich die Grenzwertrelais entsprechend den Eingaben in V1H3/V1H8 (0 = abgefallen, 1 = wie Tabelle 4.2). Sind die Relais dem Grenzschalter zugeordnet, Kapitel 5, fallen sie immer bei Störung ab.

Tabelle 4.2: Relaisverhalten bei Störung

Tabelle 4.

| Einstellung in V0H7            | MinSicherheitsschaltung | MaxSicherheitsschaltung |
|--------------------------------|-------------------------|-------------------------|
| 0 = -10 % (kleiner als -2 mA)  | Relais fällt ab         | Relais zieht an         |
| 1 = +110 % (größer als +22 mA) | Relais zieht an         | Relais fällt ab         |



#### Abb. 4.15: Grenzwertrelais: Beispiel für Min.-Sicherheitsschaltung



Grenzwertrelais: Beispiel für Max.-Sicherheitsschaltung

#### **Hinweis!**

• Schaltpunkt und Hysterese sind immer in den Einheiten des Abgleiches bzw. der Linearisierung einzugeben

#

1

2

3

4 -

5

6

7

8

9

10 -

\_

V1H6

V1H7

V1H8

V1H9

- Eine kleine Hysterese beugt Fehlschaltungen bei Turbulenzen vor
- Eine große Hysterese erlaubt eine Zweipunkt-Schaltung mit einem Relais
- Sind beide Relaispaare Kanal 1 zugeordnet, kann die Hysterese so eingestellt wer-
- den, daß das eine Relaispaar einschaltet, wenn das andere ausschaltet.

| #       | Matrix    | Eingabe         | Bemerkungen                                |
|---------|-----------|-----------------|--------------------------------------------|
| 1<br>2  | V1H0<br>- | z. B. 10<br>»E« | Schaltpunkt<br>Eingabe bestätigen          |
| 3       | V1H1      | 0               | MinSicherheits-                            |
| 4       | -         | »E«             | Eingabe bestätigen                         |
| 5       | V1H2      | z. B. 40        | Hysterese —<br>Balaia zieht an hai 50      |
| 6       | -         | »E«             | Eingabe bestätigen                         |
| 7<br>8  | V1H3<br>- | 0<br>»E«        | Fällt ab bei Störung<br>Eingabe bestätigen |
| 9<br>10 | V1H4<br>- | 1<br>»E«        | Zuordung Kanal 1<br>Eingabe bestätigen     |

Matrix Eingabe Bemerkungen

Schaltpunkt

schaltung

Hysterese ----

Folgt Ausgang

Eingabe bestätigen

Eingabe bestätigen

Relay zieht an bei 50

Eingabe bestätigen

Eingabe bestätigen

Zuordnung Kanal 1

Eingabe bestätigen

Max.-Sicherheits-

V1H5 z. B. 90

1

»Е«

»Е«

»Е«

»Е«

1

1 »E«

z. B. 40

#### Beispiel: Min.-Sicherheitsschaltung, Relais 1a, 1b: Schaltpunkt 10 %, Hysterese 40 % Relais fällt bei Störung ab

#### Beispiel: Max.-Sicherheitsschaltung, Relais 2a, 2b Schaltpunkt 90 % Hysterese 40 % Relais folgt Analogausgang Zuordnung Kanal 1



Tabelle 4.3: Matrixpositionen der Meßwertanzeige

#### 4.5 Meßwertanzeige

Der Hauptmeßwert wird in V0H0 angezeigt. Zusätzlich enthalten einige Matrixfelder Systeminformationen, z. B. zur Fehleranalyse. Tabelle 4.3 faßt diese angezeigten Werte zusammen.

| Kanal 1 | Meßwert                            | Anmerkung                                                                                                                                                                                                                                |
|---------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VOHO    | Füllhöhe oder Volumen              | Anzeige in %, m, ft, hl, m <sup>3</sup> , ft <sup>3</sup> , t usw. abhängig<br>davon, ob eine Linearisierungsfunktion aktiviert<br>wurde. Die Eingaben der 4 mA- und 20 mA-Werte in<br>V0H5 /V0H6 steuern das Balkendiagramm im Display. |
| V0H8    | Aktuelle Meßfrequenz<br>Kanal 1    | Frequenz, die von der Sonde gemessen wird.<br>Kann bei Fehlersuche benutzt werden (muß sich mit<br>Füllstand verändern)                                                                                                                  |
| V0H9    | Meßwert vor<br>Linearisierung      | Zeigt Füllstand in Einheiten vor Linearisierung                                                                                                                                                                                          |
| V8H7    | Korrekturfaktor für<br>Abgleich    | Bei Betriebsart 5 wird der Korrekturfaktor für den<br>Abgleich angezeigt.<br>Kann bei Deltapilot S als Eingabefeld für Dichtefaktor<br>dienen.                                                                                           |
| V8H8    | Aktuelle Meßfrequenz<br>Kanal 2    | Bei den Betriebsarten 0, 2, und 5 wird die<br>Meßfrequenz von Kanal 2 angezeigt.                                                                                                                                                         |
| V9H0    | Aktueller Fehlercode               | Leuchtet die rote LED, kann der aktuelle Fehlercode abgelesen werden                                                                                                                                                                     |
| V9H1    | Letzter Fehlercode                 | Der letzte Fehlercode kann abgelesen und gelöscht werden                                                                                                                                                                                 |
| V9H3    | Software-Version mit<br>Gerätecode | Die ersten zwei Zahlen geben den Gerätecode, die<br>letzten die Software Version an; 33 = Version 3.3                                                                                                                                    |
| V9H4    | Rackbus-Adresse                    | Zeigt eingestellte Rackbus-Adresse an.                                                                                                                                                                                                   |

#### 4.6 Parameterverriegelung

Nach Eingabe aller Parameter kann die Bedienmatrix für weitere Eingaben in V8H9 verriegelt werden.

| Schritt | Matrix | Eingabe   | Bemerkungen                                     |
|---------|--------|-----------|-------------------------------------------------|
| 1       | V8H9   | z. B. 888 | Eingabe 000 - 669 bzw. 680 - 999 (Verriegelung) |
| 2       | -      | »E«       | Eingabe bestätigen                              |

Nach der Verriegelung werden alle Matrixfelder angezeigt, können jedoch nicht verändert werden.

• Durch Eingabe des Entriegelungs\_Codes (670 - 679) kann die Verriegelung aufgehoben werden.

Parameter notieren!Das Gerät ist jetzt konfiguriert. Notieren bitte Sie Ihre Parameter in die dafür vorgesehene<br/>Tabelle am Ende der Betriebsanleitung. Muß das Prolevel zur späteren Zeit ausgetauscht<br/>werden, können die Parameter einfach wieder eingetippt werden - Sie sparen dann einen<br/>Neuabgleich für die Füllstandsonden.

### 5 Füllstandmessung mit Grenzschalter

Dieses Kapitel beschreibt die Bedienung des Prolevel FMC 661 für Anwendungen, die einen externen Grenzschalter benötigen:

- Kontinuierliche Füllstandmessung mit automatischer Abgleichkorrektur
- Kontinuierliche Füllstandmessung (Kanal 1) mit unabhängiger Grenzstanddetektion (Kanal 2)
- Grenzstanddetektion (nur Kanal 2)

Die Einstellung des Analogausgangs, der Relais, der Meßwertanzeige sowie Parameterverriegelung sind im Kapitel 4 beschrieben.

Abb. 5.1 zeigt den Bedienungsablauf.



Abb. 5.1: Überblick: Füllstandmessung mit Abgleichkorrektur sowie andere Anwendungen mit externem Grenzschalter



#### 5.1 Füllstandmessung mit automatischer Abgleichkorrektur

Abb. 5.2: Füllstandmessung mit Abgleichkorrektur: für Dielektrizitätskonstante bei kapazitiven Sonden, für Dichte bei hydrostatischem Druckaufnehmer Bei kapazitiven Sonden kann auch ein kapazitiver Grenzschalter verwendet werden (gilt nur für Multicap).

Bei einer Füllstandmessung mit Abgleichkorrektur überwacht der externe Grenzschalter (Liquiphant) auf Kanal 2 die Gültigkeit des Abgleichs am Kanal 1. Besteht eine Diskrepanz, z. B. durch ε–Änderungen bei Betrieb mit kapazitiven Sonden, Dichteänderungen bei Betrieb mit Druckaufnehmern, wird der Abgleich korrigiert.

Der Abgleich am Kanal 1 wird bei jedem Bedecken bzw. Freiwerden des Grenzschalters korrigiert. Eine Plausibilitätsprüfung verhindert, daß

- bei bedeckter Grenzstandsonde eine Füllhöhe angezeigt wird, die unterhalb der Einbauhöhe dieser Sonde liegt
- bei unbedeckter Grenzstandsonde eine Füllhöhe angezeigt wird, die oberhalb der Einbauhöhe dieser Sonde liegt.

Einbauhinweise

Die Einbauhöhe der Grenzstandsonde so wählen, daß:

- sie häufig bedeckt und frei wird
- sie so nah wie möglich an der 100 %-Füllstandhöhe ist (bessere Meßgenauigkeit)
  - empfohlen wird eine Höhe zwischen 70 und 90 %.

#### Hinweis!



- Wird ein Deltapilot S eingesetzt, kann nur ein Liquiphant als Grenzschalter benutzt werden.
- Mit dieser Meßanordnung können wechselnde Produkteigenschaften während des Befüllvorgangs nicht korrigiert werden: Mediumseigenschaften müssen innerhalb einer Charge konstant bleiben.
- Es muß sichergestellt sein, daß der Grenzschalter über den gesamten Dichtebereich einwandfrei schaltet.
- Zur sicheren Vermeidung von Überfüllungen ggf. eine separate Überfüllsicherung einbauen.
- Diese Betriebsart wird für Schüttgüter nicht empfohlen.

Standardabgleich

Der Standardabgleich kann für alle Sonden und Sensoren benutzt werden:

- Die Schaltverzögerung (0...30 s) bestimmt die Verzögerung zwischen Bedekken (bzw. Freiwerden) und Schalten des Liquiphants.
- Die Einbauhöhe des Grenzschalters ist die Distanz oberhalb des 0 %-Füllstands, in den gleichen Einheiten (%, m, ft, hl, gal, Tonnen etc.) wie beim nachfolgenden Abgleich

Der **Vollabgleich erfolgt automatisch** nach Befüllen und Erreichen des Schaltpunkts der Grenzstandsonde. **Erst dann** sind Meßwert, Analogausgänge und Relais korrekt eingestellt.



#### Abb. 5.3: Parameter für Standardabgleich, Füllstandmessung mit Abgleichkorrektur

Ggf. Nullpunktverschiebung Seite 25

- Analogausgang und Relais, Seite
  - 30...33,

- Relais 2a/2b zum Kanal 1 zuordnen.

#### Einstellung kapazitiver Grenzschalter und Füllstandsensor

#### »Leer«-Abgleich



#### Nächster Schritt...

| Abgleich mit<br>teilbefülltem Behälter                               | Wird<br>(Dicł<br>jewe | der fol<br>nte = 1 g<br>ils der D | lgende At<br>g/cm <sup>3</sup> ) du<br>Dichte des | ogleich bei der hyc<br>rchgeführt, so entsp<br>Füllguts.             | drostatischen Füllstandmessung mit Wasser<br>pricht der in V8H7 angezeigte Korrekturfaktor                    |
|----------------------------------------------------------------------|-----------------------|-----------------------------------|---------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|                                                                      |                       | • Wird<br>in V8<br>der e          | l ein ander<br>3H7 neu al<br>ersten Bef           | res Produkt benutzt,<br>ogeglichen. Dies ge<br>üllung des Tanks mi   | wird das System durch Eingabe der Dichte<br>währleistet z.B. korrekte Messung während<br>t dem neuen Produkt. |
| Sensorabgleich<br>Grenzschalter<br>Liquiphant und<br>Füllstandsensor | <b>#</b><br>1         | <b>Matrix</b><br>V9H5<br>V3H5/V   | <b>Eingabe</b><br>3H6                             | <b>Bemerkungen</b><br>Reset, Eingabe<br>Sondenkonstante,<br>Seite 23 | V0H1, V8H7                                                                                                    |
|                                                                      | 2<br>3                | V8H0<br>-                         | 5<br>»E«                                          | Abgleichkorrektur<br>Eingabe bestätigen                              |                                                                                                               |
|                                                                      | 4<br>5                | V8H2<br>-                         | z. B. 2 s<br>»E«                                  | Schaltverzögerung<br>Eingabe bestätigen                              | 2. B. 75 %                                                                                                    |
|                                                                      | 6<br>7                | V8H3<br>-                         | z. B. 75 %<br>»E«                                 | Einbauhöhe<br>Eingabe bestätigen                                     | hauhöhe<br>Meßber                                                                                             |
|                                                                      | 8<br>9                | V8H4<br>-                         | 0<br>»E«                                          | Sensor = Liquiphant<br>Eingabe bestätigen                            | »Leer« z. B. 10 %                                                                                             |
|                                                                      |                       |                                   |                                                   |                                                                      | 0%                                                                                                            |
| Füllstandabgleich (in %)                                             | <b>#</b><br>14        | <b>Matrix</b><br>V8H7             | <b>Eingabe</b><br>1                               | <b>Bemerkungen</b><br>Bei »leerem«<br>Behälter Korrektur-            |                                                                                                               |
|                                                                      | 15                    | -                                 | »E«                                               | faktor = 1 setzen<br>Eingabe bestätigen                              | V0H2, V8H7                                                                                                    |
|                                                                      | 16<br>17              | V0H1<br>-                         | z. B. 10 %<br>»E«                                 | »Leer«-Füllstand<br>Eingabe bestätigen                               | »Voll« z. B. 90 %                                                                                             |
|                                                                      | 18                    | V8H7                              | 1                                                 | Bei »vollem«<br>Behälter Korrektur-                                  |                                                                                                               |
|                                                                      | 19                    | -                                 | »E«                                               | taktor = 1 setzen<br>Eingabe bestätigen                              | ie.<br>G                                                                                                      |
|                                                                      | 20<br>21              | V0H2<br>-                         | z. B. 90 %<br>»E«                                 | »Voll«-Füllstand<br>Eingabe bestätigen                               | Meßbe                                                                                                         |
| Ś                                                                    | <b>Hinv</b><br>● Für  | <b>/eis!</b><br>max. N            | 1eßgenaui                                         | gkeit muß der Un-                                                    |                                                                                                               |
| Hinweis!                                                             | ters<br>abo           | schied z<br>aleich so             | wischen o<br>o groß wie                           | dem Leer- und Voll-<br>möglich sein.                                 | BA142_46                                                                                                      |
|                                                                      | • Wir<br>las          | d Betrie<br>sen, miß              | bsart 5 vc<br>It das Prol                         | rübergehend ver-<br>evel mit einer Emp-                              | Abb. 5.4:<br>Parameter für Abgleich mit teilgefülltem Tank                                                    |

findlichkeit von V3H2 multipliziert mit V8H3 weiter. Die Anzeige bleibt nur dann korrekt, wenn keine Produktänderung stattfindet.

Nächster Schritt...

- Ggf. Linearisierung, Seite 25...27
- Analogausgang und Relais, Seite 30...33 - Relais 2a/2b dem Kanal 1 zuordnen.



#### 5.2 Externer Grenzschalter



Abb. 5.5: Füllstandmessung und Grenzstanddetektion auf separaten Kanälen

| Betriebsart 0 (V8H0 = 0) ermöglicht gleichzeitig eine kontinuierliche Füllstandmessung |
|----------------------------------------------------------------------------------------|
| auf Kanal 1 und eine unabhängige Grenzstanddetektion auf Kanal 2:                      |

| <b>Matrix</b><br>/9H5/V3H5/V3H6 | Bemerkungen<br>Werkseinstellung, Eingabe Sondenkonstante (Seite 23)        |
|---------------------------------|----------------------------------------------------------------------------|
| /8H0                            | Anwahl und Bestätigung Betriebsart 0 (=0)                                  |
| /0H1V0H7                        | Füllstandabgleich, Analogausgang, Kapitel 4.                               |
| /8H2V8H6                        | Abgleich kapazitiver Grenzschalter Seite 37, Liquiphant S. 38.             |
| /1H0V1H4, V1H6                  | Relais einstellen, für Grenzschalter nur Sicherheitsschaltung              |
|                                 | Matrix<br>19H5/V3H5/V3H6<br>18H0<br>10H1V0H7<br>18H2V8H6<br>11H0V1H4, V1H6 |

Füllstandmessung mit Grenzstanddetektion

#### Grenzstanddetektion

Betriebsart 2 dient zur Grenzstanddetektion in Flüssigkeiten oder Schüttgütern auf Kanal 2. Die Einstellung erfolgt gemäß "Sensorabgleich", kapazitiver Grenzschalter Seite 37, Liquiphant Seite 38. Bei vertikal montiertem, kapazitivem Grenzschalter gibt es eine zusätzliche Schaltverzögerung, siehe Tabelle 5.1:

- Relaiseinstellung, nur Sicherheitschaltung
- Wenn V1H4 = 2 (Kanal 2), Parameter in V1H5/V1H7 in V1H0/V1H2 übernehmen.

| Produkt                       | Dielektrizitäts- | Leitfähigkeit | Sch           | Schaltpunkt               |  |  |
|-------------------------------|------------------|---------------|---------------|---------------------------|--|--|
|                               | konstante εr     |               | mit Masserohr | ohne Masserohr            |  |  |
| Lösemittel, Öl,<br>Treibstoff | kleiner als 3    | gering        | ca. 150 mm    | ca. 500 mm                |  |  |
| trockene<br>Schüttgüter       | kleiner als 3    | gering        |               | ca. 350 mm<br>(Seilsonde) |  |  |
| feuchte<br>Schüttgüter        | größer als 3     | mittel        |               | ca. 150 mm<br>(Seilsonde) |  |  |

Tabelle 5.1:

Schaltpunktverschiebung in Abhängigkeit vom Produkt bei Sonden, die von oben eingebaut sind für Werkseinstellung 1 Hz = 5 pF

## 6 Diagnose und Störungsbeseitigung

Das Prolevel FMC 661 stellt verschiedene Funktionen zur Inbetriebnahme und Funktionsprüfung zur Verfügung. In diesem Kapitel werden folgende Punkte beschrieben:

- Fehlererkennungssystem
- Fehlermeldungs- und Fehleranalyse-Tabelle
- Simulation
- Hinweise zum Ersetzen von Meßumformern und Sensoren
- Reparaturen



#### 6.1 Störungserkennung

#### Störungen

Erkennt das Prolevel FMC 661 eine Störung, bei der die weitere Messung nicht möglich ist:

- leuchtet dauernd die rote Störmelde-LED, das Störmelderelais fällt ab und die Messung wird abgebrochen
- nehmen die Grenzwertrelais den im Feld V1H3/V1H8 gewählten Zustand an
- ist aus Matrixposition V9H0 der aktuelle Fehlercode für die Fehlerdiagnose ersichtlich.

Bei mehreren Fehlern wird der Code mit der höchsten Priorität angezeigt. Weitere Codes können mit den Tasten »+« oder »-« aufgerufen werden, wenn das Feld V9H0 angewählt ist. Wird der Fehler behoben, erlischt der Code in V9H0:

- Der letzte Fehler ist aus Matrixposition V9H1 ersichtlich
- Mit der »E«Taste kann die Anzeige in V9H1 gelöscht werden.

Fällt die Stromversorgung aus, fallen alle Relais ab.

Warnungen

Erkennt das Prolevel FMC 661 eine Warnung, bei der eine weitere Messung möglich ist:

- blinkt die rote Störmelde-LED, das Prolevel mißt jedoch weiter —
- je nach Fehler könnte der Meßwert falsch sein
- bleibt das Störmelderelais angezogen
- ist der Fehlercode in V9H0 ersichtlich.

Was die Fehlermeldungen bzw. Warnungen bedeuten, ist in Tabelle 6.1 nach Prioritäten aufgelistet.

|           | 1       |                                                                                                                                                                                                                                      |  |
|-----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Code      | Туре    | Ursache und Beseitigung                                                                                                                                                                                                              |  |
| E 101-106 | Störung | Elektronischer Gerätefehler,<br>- Beseitigung durch Endress+Hauser Service                                                                                                                                                           |  |
| E 107     | Störung | Batteriefehler<br>- Sofort Eingabeparameter sichern!<br>- Danach umgehender Batteriewechsel durch unterwiesenes Personal                                                                                                             |  |
| E 201-202 | Störung | Fehler in der Sonde in Kanal 1 (f < 35 Hz; f > 3000 Hz)<br>- Sonde und zugehörigen Elektronikeinsatz überprüfen                                                                                                                      |  |
| E 301-302 | Störung | Fehler in der Sonde in Kanal 2 (f < 35 Hz; f > 3000 Hz)<br>- Sonde und zugehörigen Elektronikeinsatz überprüfen                                                                                                                      |  |
| E 400     | Störung | Fehler in der Sonde in Kanal 1 + 2<br>- Sonde, dazugehörigen Elektronikeinsatz und Zweidrahtleitung<br>überprüfen                                                                                                                    |  |
| E 401     | Störung | Fehler in der Sonde oder Zweidrahtleitung von Kanal 1<br>- Sonde, dazugehörigen Elektronikeinsatz und Zweidrahtleitung<br>überprüfen<br>- Falsche Betriebsart                                                                        |  |
| E 402     | Störung | <ul> <li>Fehler in der Sonde oder Zweidrahtleitung von Kanal 2</li> <li>Sonde, dazugehörigen Elektronikeinsatz und Zweidrahtleitung überprüfen</li> <li>Falsche Betriebsart</li> </ul>                                               |  |
| E 600     | Warnung | Interner Prüfkode der PFM-Übertragung<br>- Bei kurzzeitigem Auftreten ohne Bedeutung                                                                                                                                                 |  |
| E 601     | Warnung | Interner Prüfkode der PFM-Übertragung<br>- Bei kurzzeitigem Auftreten ohne Bedeutung                                                                                                                                                 |  |
| E 602     | Warnung | Nicht monoton steigende Behälterkennlinie (Volumen steigt nicht mit<br>Füllstand an)<br>- Behälterkennlinie überprüfen und korrigieren                                                                                               |  |
| E 604     | Warnung | Weniger als 2 Stützpunkte der Behälterkennlinie<br>- Mindestens 2 Stützpunkte eingeben                                                                                                                                               |  |
| E 606     | Warnung | <ul> <li>Angewählte werkseitig programmierte Behälterkennlinie ist nicht vorhanden (V2H6 = 0)</li> <li>Andere Linearisierungsfunktion wählen. Diagnosecode kann durch Drücken der Taste "E" in Feld V2H0 beseitigt werden</li> </ul> |  |
| E 608     | Warnung | Wert in V0H5 größer als in V0H6<br>- Eingabe überprüfen                                                                                                                                                                              |  |
| E 610     | Warnung | Abgleichfehler, Kanal 1 (»Leer-«Abgleich > »Voll-« Abgleich)<br>- Abgleich wiederholen                                                                                                                                               |  |
| E 613     | Warnung | Gerät im Simulationsbetrieb, Kanal 1<br>- Nach Ende des Simulationsbetriebes Gerät in gewünschte<br>Betriebsart zurückschalten                                                                                                       |  |
| E 614     | Warnung | Gerät im Simulationsbetrieb, Kanal 2<br>- Nach Ende des Simulationsbetriebes Gerät in gewünschte<br>Betriebsart zurückschalten                                                                                                       |  |

#### 6.2 Fehleranalyse

Fehleranalyse-Tabelle

Tabelle 6.2, die Fehleranalyse, listet die häufigsten Fehler auf.

| Tabelle 6.2:<br>Tabelle zur Fehlerdiagnose bei | Sensor/<br>Kanal                          | Störung                             | Ursache und Beseitigung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------|-------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Storungen onne remeranzeige                    | Kapazitiv<br>Kanal 1                      | Meßwert falsch                      | <ul> <li>Abgleich nicht korrekt? Meßwert vor<br/>Linearisierung, V0H9, überprüfen.</li> <li>Falsch? Voll- und Leerabgleich V0H1/V0H2<br/>überprüfen</li> <li>Abgleich korrekt? Linearisierung überprüfen</li> <li>Betriebsart überprüfen, V8H0</li> <li>Produktänderung</li> <li>Neuabgleich erforderlich</li> <li>Sonde beschädigt, verbogen oder auf die<br/>Seite des Behälters gedrückt</li> <li>überprüfen und evt. Fehler beseitigen</li> <li>Schwitzwasser im Sondenkopf.</li> </ul>                                                              |
|                                                | Deltapilot S<br>Kanal 1                   | Meßwert falsch                      | <ul> <li>Abgleich nicht korrekt? Meßwert vor<br/>Linearisierung, V0H9, überprüfen.</li> <li>Falsch? Voll- und Leerabgleich V0H1/V0H2<br/>überprüfen</li> <li>Abgleich korrekt? Linearisierung überprüfen</li> <li>Betriebsart überprüfen,V8H0</li> <li>Dichteänderung des Produkts</li> <li>Neuabgleich</li> <li>für Betriebsart 0, 1 und 5 neuen Dichtefaktor<br/>in V8H7 eingeben</li> <li>Sensor beschädigt</li> <li>Überprüfen und evt. Fehler beseitigen</li> <li>Kapazitiver Grenzschalter auf Kanal 2:<br/>Nur mit Liquiphant möglich.</li> </ul> |
|                                                | Kapazitiv oder<br>Deltapilot S<br>Kanal 1 | Relais sprechen nicht korrekt<br>an | <ul> <li>Falsche Einstellung, z. B. Konfiguration in<br/>falschen Einheiten</li> <li>Relaiseinstellung überprüfen</li> <li>Relaiszuordnung überprüfen, V1H4, V1H9</li> <li>Simulation einschalten, Abschnitt 6.3,<br/>schalten die Relais, dann Verdrahtung<br/>überprüfen</li> </ul>                                                                                                                                                                                                                                                                    |
|                                                | Kapazitiv<br>Kanal 2                      | Schaltet falsch                     | <ul> <li>Abgleich nicht korrekt?</li> <li>V1H7 ≥ V8H6?</li> <li>Produktänderung, Ansatzbildung</li> <li>Ansatzbildung</li> <li>Elektronikeinsatz für Ansatzbildung<br/>verdrahten, Abschnitt 2.4, Neuabgleich</li> <li>Falsch eingestellt</li> <li>Sensortyp, Sicherheitsschaltung und<br/>Schaltverzögerung überprüfen</li> <li>Sonde beschädigt, verbogen oder auf die<br/>Seite des Behälters gedrückt</li> </ul>                                                                                                                                     |
|                                                | Liquiphant<br>Soliphant<br>Kanal 2        | Schaltet falsch                     | <ul> <li>Ansatzbildung</li> <li>Regelmäßige Wartung</li> <li>Falsch eingestellt</li> <li>Sensortyp, Sicherheitsschaltung,</li> <li>Schaltverzögerung überprüfen</li> <li>Sonde beschädigt oder verbogen</li> </ul>                                                                                                                                                                                                                                                                                                                                       |

#### 6.3 Simulation

Mit der Simulation können das Prolevel sowie externe Nachfolgegeräte geprüft werden:

- Geben Sie 6 in V8H0 ein, um die Simulation der Füllstandmessung zu aktivieren
- Geben Sie 7 in V8H0 ein, um die Simulation des Grenzschalters zu aktivieren
- Geben Sie 0 in V8H0 ein, um die Simulation zu beenden und zur Messung zurückzukehren.

Die rote Störmelde-LED blinkt während der Simulation (Warnung E613 oder E614). Die folgenden Simulationen sind möglich:

| Matrix          | Eingabe                                     | Simulierte Variable                                         |
|-----------------|---------------------------------------------|-------------------------------------------------------------|
| V9H6 (V8H0 = 7) | 0 = Schalter frei<br>100 = Schalter bedeckt | externer Grenzschalter<br>für Liquiphant Werte<br>umgekehrt |
| V9H7 (V8H0 = 6) | Füllstand                                   | Füllstand, Strom, Volumen                                   |
| V9H8 (V8H0 = 6) | Volumen                                     | Volumen, Strom                                              |
| V9H9 (V8H0 = 6) | Strom                                       | Strom                                                       |

Die Füllstandsimulation benutzt den letzten Meßwert als Einstellung in V9H7.





| <b>#</b> | <b>Matrix</b> | <b>Eingabe</b> | Bemerkungen           |
|----------|---------------|----------------|-----------------------|
| 1        | V8H0          | 6              | Simulation anwählen   |
| 2        | -             | »E≪            | Eingabe bestätigen    |
| 3        | V9H7          | z. B. 80 %     | Füllstand eingeben    |
| 4        | -             | »E«            | Eingabe bestätigen    |
| 5        | V9H8          | ** **          | Volumen für Füllstand |
| 6        | V9H9          | ** **          | Strom für Füllstand   |
| 7        | V8H0          | z. B. 1        | Betriebsart           |
| 8        | -             | »E«            | Eingabe bestätigen    |

| <b>#</b> | <b>Matrix</b> | <b>Eingabe</b> | Bemerkungen         |
|----------|---------------|----------------|---------------------|
| 1        | V8H0          | 6              | Simulation anwählen |
| 2        | -             | »E«            | Eingabe bestätigen  |
| 3        | V9H8          | z. B. 500      | Volumen = 500 hl    |
| 4        | V9H9          | ** **          | Strom für Volumen   |
| 5        | V8H0          | z. B. 1        | Betriebsart         |
| 6        | -             | »E«            | Eingabe bestätigen  |

| <b>#</b> | <b>Matrix</b> | <b>Eingabe</b> | <b>Bemerkungen</b>  |
|----------|---------------|----------------|---------------------|
| 1        | V8H0          | 7              | Simulation anwählen |
| 2        | -             | »E«            | Eingabe bestätigen  |
| 3        | V9H6          | 100            | Schalter bedeckt    |
| 4        | V8H0          | z. B. 0        | Betriebsart         |
| 5        | -             | »E«            | Eingabe bestätigen  |

#### **Beispiel: Simulation von Volumen** und Strom durch Eingabe des Füllstands in V9H7

#### **Beispiel:** Simulation des Stroms durch Eingabe des Volumens in V9H8

#### **Beispiel:** Simulation eines bedeckten externen Grenzschalters

|                                          | 6.4 <i>A</i>                                                                                                                                                                                                                                                                                           | Austausc                                                                      | h der Me                                                               | ßumformer bzw. Sensoren                                                                                                                         |  |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Meßumformer Prolevel<br>FMC 661          | Soll das Prolevel FMC 661 ausgetauscht werden, ist kein neuer Abgleich nötig. Sie müssen lediglich Ihre notierten Parameter des alten Meßumformers in den neuen Meßumformer eintippen. Bei Geräten mit Schnittstelle Rackbus RS 485 können die Parameter von einem Personal-Computer umgeladen werden. |                                                                               |                                                                        |                                                                                                                                                 |  |  |
|                                          | <ul> <li>Vorgänge, bei denen eine bestimmte Reihenfolge einzuhalten ist, müssen ent-<br/>sprechend eingetippt werden.</li> <li>Eine Linearisierung muß immer manuell in V2H0 aktiviert werden.</li> </ul>                                                                                              |                                                                               |                                                                        |                                                                                                                                                 |  |  |
| Kapazitive Sonden<br>mit EC 37 Z/EC 47 Z | Vorausgesetzt, daß die Sondenkonstanten während des Abgleichs eingegeben worden sind, ist ein Neuabgleich nach Austausch des Elektronikeinsatzes nicht mehr nötig (Füllstandmessung). Nach dem Umtausch müssen:                                                                                        |                                                                               |                                                                        |                                                                                                                                                 |  |  |
|                                          | • [<br>• [                                                                                                                                                                                                                                                                                             | Nullfrequenz<br>Empfindlichl                                                  | z (Offset) f <sub>0</sub><br>keit S                                    | und                                                                                                                                             |  |  |
|                                          | für den<br>werden.<br>Abb. 2.2                                                                                                                                                                                                                                                                         | gewählten<br>zeigt die Po                                                     | Bereich (W<br>osition der                                              | /erkseinstellung = II) in V3H5 und V3H6 eingegeben<br>nformation am Einsatz.                                                                    |  |  |
|                                          | • \<br>f<br>• \<br>r                                                                                                                                                                                                                                                                                   | Wird ein and<br>ühren.<br>Wurden die<br>notwendig.                            | derer Bereic<br>Sondenkor                                              | h verwendet, ist ein Neuabgleich unbedingt durchzu-<br>stanten nicht eingegeben, ist auch ein Neuabgleich                                       |  |  |
| Vorgehensweise                           | <b>Schritt</b><br>1<br>2                                                                                                                                                                                                                                                                               | <b>Matrix</b><br>V3H5<br>-                                                    | <b>Eingabe</b><br>z. B. 57,2<br>»E«                                    | <b>Bedeutung</b><br>Nullfrequenz eingeben<br>Eingabe bestätigen                                                                                 |  |  |
|                                          | 3<br>4                                                                                                                                                                                                                                                                                                 | V3H6<br>-                                                                     | z. B. 0,652<br>»E«                                                     | Empfindlichkeit eingeben<br>Eingabe bestätigen                                                                                                  |  |  |
| EC 17 Z-<br>Elektronikeinsatz            | Wird ein<br>nötig.                                                                                                                                                                                                                                                                                     | e kapazitive                                                                  | e Sonde als                                                            | Grenzstandschalter eingesetzt, so ist ein Neuabgleich                                                                                           |  |  |
| Deltapilot S                             | Wenn ei<br>wurden,<br>sofort na                                                                                                                                                                                                                                                                        | n »Trocken-<br>ist beim Aus<br>Ich Eingabe                                    | -«Abgleich<br>stausch der<br>der neuen                                 | durchgeführt bzw. die Sondenkonstanten eingegeben<br>Sonde kein Neuabgleich notwendig. Die Messung kann<br>Sondenkonstanten fortgesetzt werden. |  |  |
|                                          | • \                                                                                                                                                                                                                                                                                                    | Nurden keir                                                                   | ne Konstant                                                            | en eingegeben, muß ein Neuabgleich erfolgen.                                                                                                    |  |  |
|                                          | Die Deltapilot-Sondenkonstanten befinden sich auf Tabelle 2.2, Seite 13.                                                                                                                                                                                                                               |                                                                               |                                                                        |                                                                                                                                                 |  |  |
|                                          | • f<br><br>&<br>k<br>• 2                                                                                                                                                                                                                                                                               | o ist die Nul<br>— die Nullfre<br>gelesen wer<br>baulage ber<br>∆f ist die Em | Ilfrequenz (<br>equenz kar<br>den. Diese<br>ücksichtigt<br>pfindlichke | Sensor-Offset)<br>n bei druckloser, eingebauter Sonde auch von V0H8<br>r Wert gibt eine größere Genauigkeit, weil er die Ein-<br>it             |  |  |
| Liquiphant                               | Nach Austausch der Vibrationssonden ist kein Neuabgleich notwendig.                                                                                                                                                                                                                                    |                                                                               |                                                                        |                                                                                                                                                 |  |  |

#### 6.5 Reparatur

Überprüfen Sie die Sonden bei jeder Inspektion der Behälter. Eventuell die Sonden von Ansatzbildung befreien. Bei der Reinigung die Sonden immer mit Sorgfalt behandeln.

Falls Sie eine Sonde oder ein Prolevel FMC 661 zur Reparatur an Endress+Hauser einschicken müssen, legen Sie bitte einen Zettel bei mit folgenden Informationen:

- Eine exakte Beschreibung der Anwendung
- Die chemischen und physikalischen Eigenschaften des Produktes
- Eine kurze Beschreibung des aufgetretenen Fehlers

#### Achtung!

• Bitte folgende Maßnahmen ergreifen, bevor Sie eine Sonde zur Reparatur einschicken:

- Entfernen Sie alle anhaftenden Füllgutreste
- Dies ist besonders wichtig, wenn das Füllgut gesundheitsgefährdend ist, z. B. ätzend, giftig, krebserregend, radioaktiv usw..
- Wir müssen Sie bitten, von einer Rücksendung abzusehen, wenn es Ihnen nicht mit letzter Sicherheit möglich ist, gesundheitsgefährdendes Füllgut vollständig zu entfernen, weil es z. B. in Ritzen eingedrungen oder durch Kunststoff diffundiert sein kann.



V (V2H8)

#### Anhang 7

#### 7.1 Abgleich und Linearisierung in Volumeneinheiten

Benutzen Sie folgende Vorgänge falls Sie in Volumeneinheiten abgleichen und gleichzeitig eine Linearisierung möchten.

#### Abgleich für liegende Zylinder

Die Reihenfolge für die Eingabe der Parameter muß unbedingt eingehalten werden. Zwei Parameter müssen eingegeben werden:

- Tankdurchmesser D
- Tankvolumen V.

| #<br>1<br>2 | <b>Matrix</b><br>V9H5<br>- | <b>Eingabe</b><br>670<br>»E« | <b>Bemerkungen</b><br>Werkseinstellung<br>Eingabe bestätigen |
|-------------|----------------------------|------------------------------|--------------------------------------------------------------|
| 3<br>4      | V3H5<br>-                  | fo<br>»E≪                    | Nullfrequenz<br>Eingabe bestätigen                           |
| 5<br>6      | V3H6<br>-                  | ∆f<br>»E«                    | Empfindlichkeit<br>Eingabe bestätigen                        |
| 7<br>8      | V3H0<br>-                  | 1<br>»E«                     | Volumeneinheiten<br>Eingabe bestätigen                       |
| 9           | V2H7                       | D                            | Tankdurchmesser,                                             |
| 10          | -                          | »E«                          | Eingabe bestätigen                                           |
| 11          | V2H8                       | v                            | Tankvolumen*,                                                |
| 12          | -                          | »E«                          | Eingabe bestätigen                                           |
| 13          | V2H0                       | 1                            | Linearisierung                                               |
| 14          | -                          | »E«                          | Eingabe bestätigen                                           |
| 15          | V0H1                       | E                            | Tank leer, aktuelles                                         |
| 16          | -                          | »E«                          | Eingabe bestätigen                                           |
| 17          | V0H2                       | F                            | Tank voll, aktuelles                                         |
| 18          | -                          | »E«                          | Eingabe bestätigen                                           |



D (V2H7)



#### **Hinweis!**

%Volumen

Nach der Linearisierung

• Volumen kann in VOHO abgelesen werden • Füllstand in V0H9

Abb. 7.1: Parameter für Abgleich und Linearisierung in einem horizontal liegendem Zylinder

Nächster Schritt...

Analogausgang und Relais in Volumeneinheiten einstellen, Seite 30...33.

BA142\_50



#### Abb. 7.2:

Parameter für Abgleich und Linearisierung in einem Tank mit konischem Auslauf Sie brauchen eine monoton steigende Linearisierungstabelle, max. 30 Wertepaare H/V oder H/G

- Füllstand H in %, m oder ft
- Volumen V oder Gewicht G in technischen Einheiten.

| <b>#</b> | <b>Matrix</b> | <b>Eingabe</b>     | <b>Bemerkungen</b>                         |
|----------|---------------|--------------------|--------------------------------------------|
| 1        | V9H5          | 670                | Werkseinstellung                           |
| 2        | -             | »E≪                | Eingabe bestätigen                         |
| 3        | V3H5          | fo                 | Nullfrequenz                               |
| 4        | -             | »E≪                | Eingabe bestätigen                         |
| 5        | V3H6          | ∆f                 | Empfindlichkeit                            |
| 6        | -             | »E«                | Eingabe bestätigen                         |
| 7        | V3H0          | 1                  | Volumeneinheiten                           |
| 8        | -             | »E«                | Eingabe bestätigen                         |
| 9        | V2H1          | 0                  | Manuelle Eingabe                           |
| 10       | -             | »E«                | Eingabe bestätigen                         |
| 11       | V2H2          | 1                  | Tabelle-Nr.                                |
| 12       | -             | »E«                | Eingabe bestätigen                         |
| 13       | V2H3          | V/G <sub>130</sub> | Volumen/Gewicht*                           |
| 14       | -             | »E«                | Eingabe bestätigen                         |
| 15       | V2H4          | H <sub>130</sub>   | Füllstand m oder ft*                       |
| 16       | -             | »E«                | Eingabe bestätigen                         |
| 17       | V2H5          | »Е«                | Nächstes Wertepaar*<br>— springt auf V2H3  |
| *We      | eiter mit     | # 1319             | für alle Wertepaare                        |
| 18       | V2H0          | 3                  | "manuell" aktivieren                       |
| 19       | -             | »Е«                | Eingabe bestätigen                         |
| 20       | V0H1          | E                  | Tank leer, aktuelles<br>Volumen in hl, gal |
| 21       | -             | »E«                | Eingabe bestätigen                         |
| 22       | V0H2          | F                  | Tank voll, aktuelles<br>Volumen in hl, gal |
| 23       | -             | »E«                | Eingabe bestätigen                         |

#### **Hinweis!**

- Erstes Paar ~ 0 % Füllstand, in %, m, ft. Letztes Paar ~ 100 % Füllstand, in %, m, ft.
- Bei Fehler E602 oder E604 Tabelle korrigieren. Linearisierung erneut in V2H0 aktivieren
- Volumen/Gewicht kann in V0H0
   abgelesen werden
- Füllstand in V0H9



#### Nach der Linearisierung

Analogausgang und Relais in Volumenein- Nächster Schritt... heiten einstellen, Seite 30...33.

# Stichwortverzeichnis

| A                                                 |               | L                              |             |
|---------------------------------------------------|---------------|--------------------------------|-------------|
| Abgleich                                          |               | Linearisierung                 | 46 - 47     |
| »trocken« für hydrostatische Sensoren             | 28            | halbautomatische               | 27          |
| Fullstandmessung mit auto. Abgleichkorrektur      | 37,38         | liegende Zylinder              | 20          |
| stehende Zyllinder                                | 20,40         | Tanks mit konischem Auslauf    | 21          |
| Allgemeine Angaben                                | 17            | Tariks thit konischent Auslauf | 47          |
| Analogausgang                                     | 13            |                                |             |
| 4 mA- und 20 mA-Werte                             | 31            | M                              |             |
| Ausgang bei Störung                               | 31            | Max. Sicherheitsschaltung      | 33          |
| Integrationszeit                                  | 30            | Mechanische Angaben            | 18          |
| Signalbereich                                     | 30            | Meßwertanzeige                 | 7           |
| Anwendung                                         | 6             | Min-Sicherheitsschaltung       | 33          |
| Ausgangskenngroßen                                | 17 - 18       | Montage                        | 12          |
| Austausch der Gerate                              | 44            |                                |             |
| В                                                 |               | R                              |             |
| Bedienmatrix Um:                                  | schlag, 19    | Rackbus RS 485                 | 16, 22      |
| Bedienung                                         | 19 - 22       | Relais                         | 13, 32      |
| Busversorgung                                     | 16            | Betriebsart                    | 32          |
|                                                   |               | Grenzwertrelais                | 40          |
| ſ                                                 |               | Min Sicherheitsschaltung       | 3∠<br>33    |
| Commulaa VI I 260 7                               | 19 21         | Relais bei Störung             |             |
|                                                   | 10, 21        | Schaltpunkt                    | 32          |
| D.                                                |               | Sicherheitsschaltung           | 32          |
| V<br>Deltereilet Drucker frechrecht               |               | Störmelderelais                | 40          |
| Deitapilot-Druckaumenmer                          | 44            | MaxSicherheitsschaltung        | 33          |
| Diagnose und Storungsbesettigung                  | 40 - 43<br>29 | Reparatur                      | 45          |
|                                                   | 20            | Rohrbetestigung                | 12          |
| E                                                 |               | c                              |             |
| Eingangskenngrößen                                | 17            | Sicharbaitshinwaisa            | 3 1         |
| Elektrischer Anschluß                             |               | Simulation                     | 3, 4<br>43  |
| Prolevel                                          | 13            | Sonden                         | 11          |
| Rackbus RS-485                                    | 16            | Sondenkonstante                | 11, 23      |
| Sensoren                                          | 14            | Standardabgleich               | 37          |
| Elektronikeinsatz<br>Externer Gronzechalter       | 14            | Standort                       | 12          |
|                                                   | 39            | Störung                        | 31 - 32, 40 |
| F                                                 |               | т                              |             |
| Fehleranalvse                                     | 42            |                                | 00          |
| Fehlermeldungen                                   | 41            | Tastatur und Anzeige           | 20          |
| Füllstandmessung                                  | 23 - 34       | Terminierungswiderstand        | 16          |
| Füllstandmessung mit automatischer                |               | lonninerangewideretaria        |             |
| Abgleichkorrektur                                 | 35 - 39       |                                |             |
| Fullstandmessung mit separater Grenzstanddetektio | on 39         |                                | 10          |
|                                                   |               | Umgebungsbedingungen           | 18          |
| G                                                 |               | Ongebungstemperatur            | 12          |
| Grenzstanddetektion                               | 39            |                                |             |
|                                                   |               |                                |             |
| Н                                                 |               | Vibrations-Sonden              | 44          |
| Handbediengerät Commulog VU 260 Z                 | h< 19, 21     |                                |             |
| Hilfsenergie                                      | 11, 15        | W                              |             |
|                                                   |               | Warnungen                      | 4, 40       |
|                                                   |               | Wetterschutzhaube              | 12          |
| Inbetriebnahme                                    | 23            | Werkseinstellung               | 23          |
| Installation                                      | 10 - 19       |                                |             |
|                                                   |               | Z                              |             |
|                                                   |               | Zertifikate                    | 3           |
|                                                   |               |                                |             |