Informazioni tecniche TI 040D/06/it No. 50084974

Sistema di misura della portata a processione di vortici prowirl 77

Misura di portata per gas, vapore e liquidi

Sicuro

- Compatibilità elettromagnetica verificata secondo IEC e NAMUR
- Tenuta di pressione di ogni strumento testata idrostaticamente
- Autodiagnosi del sensore e dell'elettronica con funzione di allarme
- Sensore capacitivo collaudato: alta resistenza a shock termici, ai colpi d'ariete ed alle vibrazioni
- Sensore, corpo del misuratore e barra generatrice di vortici in acciaio inox, conforme a NACE MR 0175

Preciso

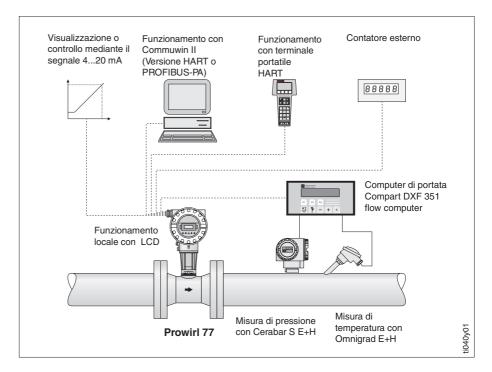
- Bassa incertezza di misura:
 <1% o.r. (gas, vapore
 <0.75% v.i. (liquidi)
- Ampia dinamica di misura fino a 40:1
- Taratura individuale di ogni misuratore

Flessibile

- Unico misuratore di portata standard e compatto per tutti i tipi di fluidi, un campo di temperatura da -200...+400 °C
- Disponibile con classe di pressione fino a PN 160/Cl, 600
- Versione flangiata e per alte pressioni con scartamento standard ISO (DN 15...150)
- Versione wafer con scartamento standard di 65 mm

Universal

- Comunicazione HART per lettura e configurazione remota
- Comunicazione di campo con interfaccia PROFIBUS-PA
- Funzionamento con software E+H Windows "Commuwin II", completamente configurabile off-line
- Simulazione del segnale di uscita



Sistema di misura

Applicazioni

Il misuratore di portata a precessione di vortici Prowirl 77 consente di misurare le portate volumetriche di vapore, gas e liquidi da –200...+400 °C e fino a pressioni nominali PN 160/ANSI Cl. 600. Il Prowirl 77 viene comunemente utilizzato per la misura di portata in applicazioni di processo in vari settori come l'industria chimica, petrolchimica, la produzione di energia.

Il Prowirl 77 misura la portata volumetrica alle condizioni operative. Il flow computer DXF 351 partendo dal segnale del Prowirl 77 con le misure addizionali di pressione e temperatura, calcola la portata massica, l'energia oppure il volume normalizzato o standarizzato. Se la pressione e la temperatura del processo al punto di misura risultano costanti e precisamente note, il Prowirl 77 può essere programmato per visualizzare la portata in una delle unità sopra descritte.

Prowirl 77 si può usare come strumento di misura individuale o come parte integrante di un sistema di controllo di processo.

Trasmettitore

Tutti i trasmettitori Prowirl 77 hanno le seguenti caratteristiche:

- Auto-monitoraggio dell'elettronica e del sensore
- Classe di protezione IP 67 / NEMA 4X
- Immunità alle interferenze elettromagnetiche (EMC)

Versioni

Il trasmettitore Prowirl 77 è disponibile nelle seguenti versioni:

- PFM (impulso in corrente su due fili)
- 4...20 mA/HART
- PROFIBUS-PA

Tutte le versioni si possono fornire sia per l'uso in zone sicure che in zone con pericolo di esplosione, a sicurezza intrinseca ("Ex i") o a prova di esplosione ("Ex d"). Per PROFIBUS-PA, solo versioni Ex i e per zona sicura.

PFM

E' la versione di base, dotata di un'uscita impulsiva PFM a due fili per la connessione del computer di portata E+H Compart DXF 351.Tutte le impostazioni necessarie si possono eseguire usando i DIP-switch sul trasmettitore.

4...20 mA / HART

Questa versione invia un segnale in corrente 4...20 mA in uscita (con comunicazione digitale HART opzionale). Il trasmettitore è disponibile sia con display LCD e tasti per il funzionamento in locale, sia in versione cieca. Gli strumenti con display e tasti operativi si possono impostare anche per genere o un'uscita impulsiva (Open Collector) o impulsi in frequenza (PFM). Dopo una mancanza rete il totalizzatore mantiene l'ultimo valore visualizzato. La comunicazione HART consente di configurare a distanza lo strumento e di visualizzare i valori misurati. E' anche possibile eseguire off-line la configurazione completa, usando il software Windows Commuwin II della E+H.

PROFIBUS-PA

Con una versione PROFIBUS-PA, è possibile una connessione ai sistemi fieldbus secondo gli standard internazionali IEC 1158-2 a 31.25 kbit/s.

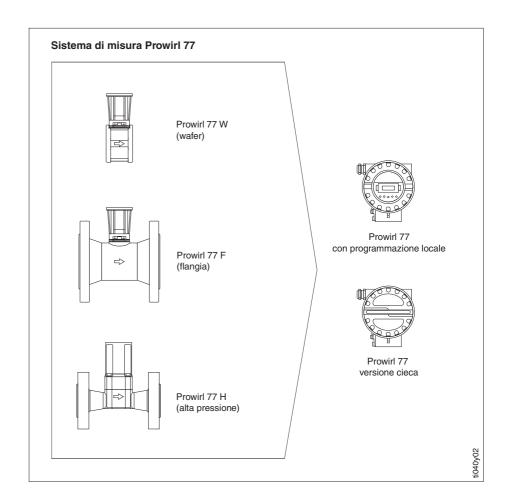
Corpo del misuratore Struttura

Tutti i misuratori Prowirl 77 hanno le sequenti caratteristiche

- Barra generatrice di vortici fusa nel corpo del misuratore per garantire un'alta resistenza ai colpi d'ariete su linee di vapore.
- Fusione di acciaio inox secondo NACE MR 0175, tutte le parti bagnate tracciabili secondo DIN 3.1B
- Test liquidi penetranti
- Test preliminare TÜV (diametro nominale DN 15...150)

Prowirl 77 W

(Wafer, DN 15...150)


Questo corpo compatto in versione wafer ha uno scartamento di 65 mm e si installa facilmente con l'aiuto di un set di montaggio (vds. pag 7), che permette il centraggio facile e preciso del sensore sulla tubazione.

Prowirl 77 F

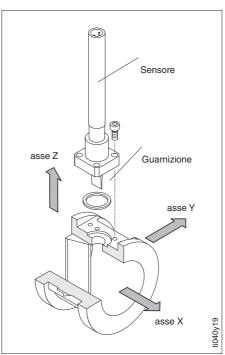
(Flange, DN 15...300, diametri nominali più grandi a richiesta) Scartamento secondo standard ISO (DN 15...150).

Prowirl 77 H

(Alte pressioni, DN 15...150) Questo sensore è strutturato per l'utilizzo con alte pressioni di processo, fino a PN 160/CI. 600 e dispone di scartamenti standard secondo ISO.

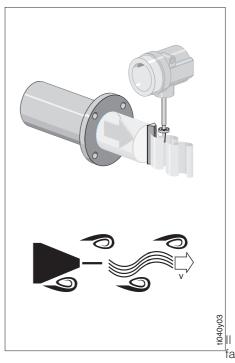
Calibrazione

Tutti i misuratori di portata Prowirl 77 vengono sottoposti a taratura prima di lasciare lo stabilimento di produzione. Per l'uso come strumento di riferimento (ISO 9000), il Prowirl 77 è disponibile con procedure di taratura tracciabili secondo EN 45001 e certificazione corrispondente riconosciuta a livello internazionale secondo le norme EAL (European Organisation for the Accreditation of Laboratories).


Funzionamento

Sensore capacitivo

Il sensore di un misuratore di portata a precessione di vortici ha un effetto decisivo sull'efficienza, sulla robustezza e sull'affidabilità dell'intero sistema di misura. La tecnica di misura capacitività, ormai collaudata e brevettata da E+H (in più di 50.000 installazioni a livello mondiale) è stata utilizzata nel progetto del Prowirl 77. Il sensore viene equilibrato meccanicamente in modo che le vibrazioni vengono direttamente eliminate e non sia necessario applicare filtri elettronici. Il Prowirl 77 è insensibile alle vibrazioni su tutti gli assi fino a 1 g nel campo di frequenza fino a 500 Hz. In particolar modo sull'asse Y, asse su cui il sensore rileva il distacco dei vortici (vds. figura sottostante).


Principio di misura

Il principio operativo si basa sulla scoperta di Von Karman. Quando un fluido scorre a valle di un ostacolo, si formano alternativamente dei vortici. Le variazioni di pressione create dai vortici vengono rilevate dal sensore e converite in segnali elettrici. Entro i limiti operativi ammessi i vortici si distaccano ed intervalli molto regolari (vds "Dati Tecnici", pag. 23), in modo che la frequenza di distacco sia proporzionale alla portata.

La grande sensibilità del sensore garantisce campi di portata, che iniziano con valori bassi anche con densità di fluido particolarmente basse, consentendo una notevole dinamica di misura

La struttura e la posizione del sensore capacitivo, situata a valle della barra generatrice di vortici, assicura una speciale resistenza ai colpi d'ariete ed a shock termini su linee di vapore. Il sensore è identico per tutti i diametri nominali, le temperature di processo ed i tipi di corpo del misuratore.

Il fattore K si usa come costante di proporzionalità:

$$Fattore K = \frac{impulsi}{unità di volume [dm^3]}$$

Il fattore K è una funzione della geometria del misuratore di portata ed entro i limiti applicativi è indipendente dalla velocità del flusso, dalla sua densità. E' perciò anche indipendente dal tipo di fluido da misurare, che sia vapore, gas o un liquido. Il segnale di misura primario è già digitale (segnale di frequenza) e proporzionale in modo lineare alla portata. Il fattore K viene determinato in fabbrica, per mezzo di una taratura con acqua, dopo il processo di produzione e non è soggettoper lunghissimi tempi derive, né a derive di zero. Il misuratore di portata non contiene parti mobili e pertanto non richiede manutenzione.

Progettazione e Installazione

I misuratori di portata a precessione di vortici richiedono un profilo di flusso regolarmente formato come prerequisito per la misura di portata precisa. Pertanto è necessario seguire scrupolosamente le seguenti istruzioni, quando si installa il Prowirl 77 sulla tubazione.

Diametri interni del corpo del misuratore

Il diametro interno della tubazione di processo, di una data dimensione nominale, varia a seconda della classe della tubazione stessa (DIN, ANSI Sch40, Sch80, JIS ecc.)In fase d'ordine, una parte del codice specifica il tipo di tubazione su cui verrà installato il misuratore e lo stesso tipo di tubazione viene impiegato in fabbrica per la calibrazione con acqua. Sia il Prowirl 77 W (wafer) che il Prowirl 77 F (flangiato) possono essere usati su tubazioni DIN, ANSI Sch40 e JIS Sch40. E' possibile sia per la versione flangiata (Prowirl 77 F) e quella per alte pressioni (Prowirl 77 H) l'impiego per tubazioni Sch80 .

Tratti di ingresso e di uscita

Dove possibile, il misuratore di portata a precessione di vortici deve essere montato a monte da qualsiasi fonte di disturbo idraulico come curve, riduttori o valvole di controllo. Tra la fonte di disturbo ed il misuratore di portata deve essere inserito un tratto di tubo rettilineo il più lungo possibile. La figura a destra mostra il tratto di tubo rettilineo minimo richiesto a monte dello strumento, multiplo del diametro della tubazione (DN). Se a monte del misuratore di portata ci sono due o più fattori di disturbo è opportuno rispettare il coefficiente di moltiplicazione più alto.

Il tratto di tubazione rettilinea posto a valle del misuratore di portata deve avere una lunghezza sufficiente così da permettere la corretta formazione dei vortici.

Condizioni del flusso

Se non è possibile rispettare le lunghezze specificate dei tratti di ingresso, è possibile installare, come mostrato in basso a destra, un disco condizionatore di flusso. Il disco raddrizzatore viene montato tra due flange e centrato mediante i bulloni delle flange stesse. Di regola, questo riduce il tratto di ingresso, a valle dei disturbi idraulici, fino ad minimo di 10 x DN, mantenendo una buona precisione di misura.

Esempi di impiego del condizionatore di flusso

 $\Delta p \text{ [mbar]} = 0.0085 \cdot \rho \text{ [kg/m}^3] \cdot v^2 \text{ [m/s]}$

• Esempio con valore:

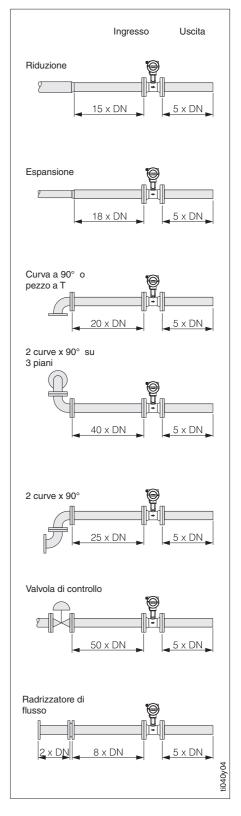
p = 10 bar abs.

t = 240 °C $\Rightarrow \rho = 4.39 \text{ kg/m}^3$

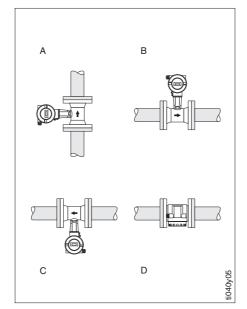
 $v = 40 \, \text{m/s}$

 $\Delta p = 0.0085 \cdot 4.39 \text{ kg/m}^3 \cdot (40 \text{ m/s})^2$

= 59.7 mbar


• Esempio con condensa H₂O (80 °C)

 $\rho = 965 \text{ kg/m}^3$


 $v = 2.5 \,\text{m/s}$

 $\Delta p = 0.0085 \cdot 965 \text{ kg/m}^3 \cdot (2.5 \text{ m/s})^2$

= 51.3 mbar

Progettazione e Installazione

funzione della temperatura di processo

Orientamento in

Trasmettitore di Trasmettitore di pressione temperatura TT 3...5 x DN ti040y06 4...8 x DN

Montaggio dei sensori di pressione e temperatura

max. 5 mm ti040y07

Coibentazione della tubazione per la versione wafer/flangiata

La zona del portello deve rimanere priva del materiale isolante

Coibentazione della tubazione per la versione per alta pressione

L'altezza massima dell'isolamento corrisponde con il vano delle vite

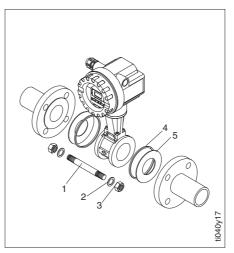
Orientamento

Il Prowirl 77 si può generalmente montare in qualsiasi posizione sulla tubazione. Una freccia posta sul corpo del misuratore indica la direzione del flusso.

I liquidi dovrebbero scorrere dal basso verso l'alto nelle tubazioni verticali (Posizione A), per garantire che la tubazione sia sempre piena.

Per le tubazioni orizzontali sono possibili le posizioni B. C e D. Con le tubazioni che raggiungono alte temperature (per es. per vapore), la posizione C o D deve essere scelta per rispettare la massima temperatura ambiente ammessa per l'elettronica. (Temperature ambiente, vds. pag. 24).

Sensori di misura di pressione e temperatura


Gli strumenti di misura di pressione e temperatura si devono installare a valle del Prowirl 77, in modo che non possano influire sulla corretta formazione di vortici.

Coibentazione della tubazione Versione Wafer/Flangiate

La coibentazione della tubazione è spesso necessaria per evitare perdite di energia. Quando si esegue la coibentazione del Prowirl 77, assicurarsi che una superficie serva come radiatore e protegga l'elettronica dal surriscaldamento.

Coibentazione del tubo per la versione per alta pressione

Il sostegno del tubo deve essere privo di isolamento al fine di evitare il surriscaldamento dell'elettronica.

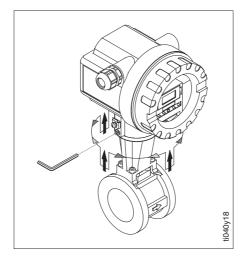
Set di montaggio per la versione wafer

Set di montaggio

I misuratori di portata in versione wafer si possono centrare con precisione usando un set di montaggio costituito da:

- 1 Barra filettata
- 2 Rondella
- 3 Dado
- 4 Disco di centraggio
- 5 Guarnizione

Distanza minima Per la manutenzion simulatore di portat


min. 100 mm

Per la manutenzione e la connessione al simulatore di portata "Flowjack" è necessario staccare la custodia dell'elettronica dal supporto del misuratore. Per l'installazione su tubazione, osservare le seguenti lunghezze dei cavi e distanze minime:

Distanza minima: 100 mm in tutte le direzioni

Lunghezza ricchezza del cavo: L + 150 mm

Distanza minima

Orientamento della custodia dell'elettronica

Custodia dell'elettronica

La custodia dell'elettronica è orientabile sul suo supporto a passi di 90°, in modo che il display locale possa essere letto facilmente.

Anche l'unità display è ruotabile di 180° in modo che possa risultare leggibile, anche se l'elettronica del trasmettitore dovesse essere montata capovolta (Posizione C, vds. pag. 6).

Campi di misura Diametri nominali

Selezione del diametro nominale

Il misuratore di portata di vortici Prowirl 77 determina la portata volumetrica (cioè m³/h) alle condizioni operative. Le quantità di vapore sono espresse generalmente in Kg o in t, mentre le quantità in gas sono in Nm³ (compensate secondo le condizioni standard 0 °C e 1.013 bar). La conversione in volume operativo e la determinazione del diametro nominale, el campo di misura e della perdita di

carico si ricavano dalle seguenti tabelle.

Nota!

Se il misuratore di portata dovesse operare vicino ai limiti superiore o inferiore del campo di misura, è opportuno determinare esattamente le soglie del campo di misura, usando le equazioni opportune o il software di dimensionamento Applicator della E+H. Contattare la filiale commerciale E+H più vicina. Vi aiuterà a dimensionare il sistema di misura più adatto alla Vostra applicazione specifica, tenendo conto delle caratteristiche del fluido e delle condizioni operative.

Software di dimensionamento "Applicator"

Tutti i dati principali del trasmettitore sono contenuti in questo software E+H per un dimensionamento ottimale del sistema di misura. Le equazioni usate per il calcolo delle proprietà del vapore sono le più recenti secondo lo IAPS (International Association for the Properties of Steam).

Il software Applicator può eseguire con facilità i seguenti calcoli:

- Conversione del volume operativo del gas in volume compensato
- Conversione in portata massica del vapore (basata sulla temperatura e/o pressione)
- Calcolo usando la viscosità
- Calcolo della perdità di carico del misuratore di portata
- Visualizzazione simultanea di esempi di calcolo per diversi diametri nominali
- Determinazione dei campi di misura

Il software Applicator è disponibile su Internet, o su CD-ROM per installazione su Pc.

Campi di m isura Acqua / Aria

Le seguenti tabelle sono indicative per i campi di misura per un gas tipico (aria, a 0 °C e 1.013 bar) ed un liquido tipico (acqua, a 20 °C).

Nella colonna "Fattore K" è indicato il possibile campo per fattore K rispetto al diametro nominale e all versione.

Prowirl 77 W (Wafer)							
DN	Aria (a 0 °C	, 1.013 bar)	acqua	(20 °C)	Fattore K		
DIN/ANSI	[m ³	³ /h]	[m ³	³ /h]	[impulsi/dm ³]		
	\dot{V}_{min}	$\overset{\cdot}{V}_{max}$	\dot{V}_{min}	$\overset{\cdot}{V}_{max}$	min./max.		
DN 15 / ½"	4	35	0.19	7	245280		
DN 25 / 1"	11	160	0.41	19	4855		
DN 40 / 1½"	31	375	1.1	45	1417		
DN 50/2"	50	610	1.8	73	68		
DN 80/3"	112	1370	4.0	164	1.92.4		
DN 100/4"	191	2330	6.9	279	1.11.4		
DN 150/6"	428	5210	15.4	625	0.270.32		

Prowirl	Prowirl 77 F (Flangia) / Prowirl 77 H (Alta pressione; secondo DN 150 / 6")							
DN	Aria (a 0 °C	, 1.013 bar)	Acqua	(20 °C)	Fattore K			
DIN/ANSI	[m ³	[m ³ /h] [m ³ /h		³ /h]	[impulsi/dm ³]			
	\dot{V}_{min}	\dot{V}_{max}	V _{min}	V _{max}	min./max.			
DN 15 / ½"	3	25	0.16	5	390450			
DN 25 / 1"	9	125	0.32	15	7085			
DN 40 / 1½"	25	310	0.91	37	1822			
DN 50/2"	42	510	1.5	62	811			
DN 80/3"	95	1150	3.4	140	2.53.2			
DN 100/4"	164	2000	5.9	240	1.11.4			
DN 150/6"	373	4540	13.4	550	0.30.4			
DN 200/8"	715	8710	25.7	1050	0.12660.1400			
DN 250 / 10"	1127	13740	40.6	1650	0.06770.0748			
DN 300 / 12"	1617	19700	58.2	2360	0.03640.0402			

Campi di misura Vapore saturato

Esempi di calcolo

Per determinare:

Il campo di misura per vapore saturo con un diametro nominale DN 100 ed una pressione operativa di 12 bar abs.

Informazioni supplementari ottenibili dalla tabella:

- Temperatura del valore saturo = 188 °C (a 12 bar)
- Densità = 6.13 kg/m³ (a 12 bar)

Calcolo:

I valori min. e max. del campo di misura si possono trovare dalla seguente tabella:

a 12 bar abs. ⇒ 461...12226 kg/h

					Campi di mis	ura per divers	i diametri nomi	inali in [kg/h] *				
Pressione opertiva [bar abs]	DN 15 minmax	DN 25 minmax	DN 40 minmax	DN 50 minmax	DN 80 minmax	DN 100 minmax	DN 150 minmax	DN 200 minmax	DN 250 minmax	DN 300 minmax	T _{sat}	ρsat [kg/ m ³]
0.5	1.87.8	5.639	1695	27158	60356	103616	2351401	4522689	7144258	10246107	81.3	0.31
1	2.515	7.774	22182	37303	83680	1431178	3252679	6255143	9858104	141211623	99.6	0.59
1.5	3.022	9.3108	27266	45443	100994	1731722	3933916	7557518	118911812	170516943	111	0.86
2	3.528	11141	31348	51580	1141301	1982254	4505126	8649841	136315521	195522262	120	1.13
3	4.241	13207	37506	62848	1381902	2393295	5447495	104514387	164722663	236232506	134	1.65
4	4.854	15271	42666	701111	1582492	2744317	6239820	119618851	188429668	270242554	144	2.16
5	5.467	16334	47822	781370	1763074	3045325	69212113	132823253	209536672	300552601	152	2.67
6	5.880	18397	51976	851627	1913651	3326324	75414386	144827616	228243540	327462451	159	3.17
7	6.392	19459	551129	921882	2064224	3577317	81116644	155731950	245650408	352372302	167	3.67
8	6.7105	20521	591281	982136	2194793	3808303	86418888	165936258	261557138	375081955	170	4.16
10	7.4129	23644	651584	1092642	2445928	42210269	96123360	184544842	290970735	4173101459	180	5.15
12	8.1154	25767	711886	1193145	2667058	46112226	104927811	201353388	317484196	4553120766	188	6.13
15	9.0191	28951	792337	1323898	2968746	51315150	116734463	224166157	3532104249	5066149529	198	7.59
25	11.6314	351567	1023852	1696424	38014414	65924969	149956799	2877109034	4534171825	6504246457	224	12.51

^{*} I valori in questa tabella si riferiscono alla versione flangiata.

Per la versione wafer, entrambi i valori il minimo e il massimo sono fino al 30% più alti.

Campi di misura Vapore surriscaldato

Il valore iniziale del campo di misura per il vapore surriscaldato e per i gas dipende dalla loro densità. Inoltre la densità del valore surriscaldato è funzione sia della pressione che della temperatura, come mostrato nella tabella a destra. Normalmente la portata viene espressa in unità di massa, perciò è necessaria la misura di densità per la conversione in unità di portata

Portata volumetrica (V/m)

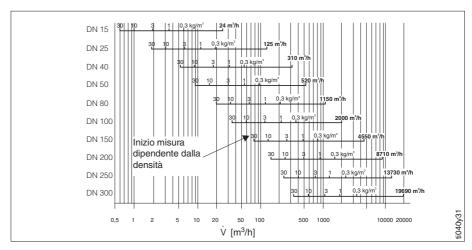
 $\dot{m} [kg/h] = \dot{V} [m^3/h] \cdot \rho [kg/m^3]$

$$\dot{V} [m^3/h] = \frac{\dot{m} [kg/h]}{\rho [kg/m^3]}$$

Р	Densità	del vapore	[kg/m ³]
[bar abs]	150 °C	200 °C	250 °C
0.5 1.0 1.5	0.26 0.52 0.78	0.23 0.46 0.70	0.21 0.42 0.62
2.0 2.5 3.0	1.04 1.31 1.58	0.93 1.16 1.39	0.83 1.04 1.25
3.5 4.0 5.0	1.85 2.12	1.63 1.87 2.35	1.46 1.68 2.11
6.0 7.0 8.0		2.84 3.33 3.83	2.54 2.97 3.41
10.0 12.0 15.0		4.86 5.91 7.55	4.30 5.20 6.58
20.0 25.0			8.98 11.49

Esempio per vapore surriscaldato

Determinare:


Diametro nominale (DN) per la misura del vapore saturo a 200 °C e 10 bar abs con una portata di 4 t/h.

Calcolo:

a) Convertire $t/h \Rightarrow m^3/h$ usando la densità del vapore (4.86 kg/m³) consultando la tabella sopra indicata.

b) Selezionare il diametro nominale nel grafico del campo di misura di vapore/gas $\dot{V}=823~\text{m}^3/\text{h} \Rightarrow \text{DN 80}.$ Per densità $\rho=4.86~\text{kg/m}^3$ il valore inferiore di campo 42 m³/h. Questo campo è 42...1150 m³/h oppure 204...5590 kg/h.

$$\dot{V}[m^3/h] = \frac{\dot{m}}{\rho} = \frac{4000 \, kg/h}{4.86 \, kg/m^3} = 823 \, m^3/h$$

Campi di misura Gas

Densità compensata/operativa (ρ_N/ρ)

Il valore inferiore del campo di misura per un gas dipende dalla sua densità. Per i gas ideali si usano le equazioni sotto riportate per la conversione tra densità compensate ed operative:

$$\rho \left[kg/m^3 \right] \, = \, \frac{\rho_N \left[kg/Nm^3 \right] \, \cdot \, P \left[bar \, abs \right] \, \cdot \, 273.15 \, K}{T \left[K \right] \, \cdot \, 1.013 \left[bar \, abs \right]}$$

$$\rho_N \left[kg/Nm^3 \right] \ = \ \frac{\rho \left[kg/m^3 \right] \cdot T \left[K \right] \cdot 1.013 \left[bar \, abs \right]}{P \left[bar \, abs \right] \cdot 273.15 \, K}$$

L'equazione riportata sopra alla voce "Campi di Misura, Vapore surriscaldato" si può usare per convertire la portata massica in portata volumetrica.

Volumi compensati/operativi (V_N/V)

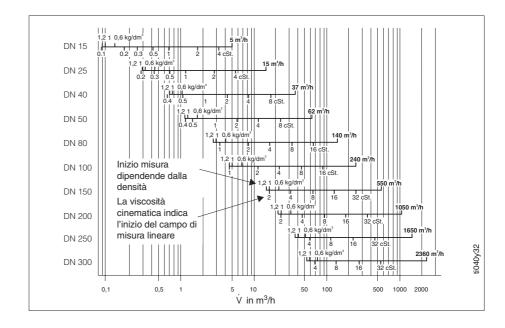
La portata di gas è spesso espressa in volume compensato. Per i gas ideali si usano le equazioni riportate sotto per la conversione tra volumi compensati/operativi:

$$\dot{V}$$
 [m³/h] = $\frac{\dot{V}_{N}$ [Nm³/h] · T [K] · 1.013 [bar abs]
273.15 K · P [bar abs]

$$\dot{V}_{N} \ [Nm^{3}/h] = \frac{\dot{V} \ [m^{3}/h] \cdot 273.15 \, K \cdot P \ [bar \, abs]}{T \ [K] \cdot 1.013 \ [bar \, abs]}$$

P = pressione operativa T = temperatura operativa

Campi di misura Liquidi


Esempio per liquidi

Determinare:

Il diametro nominale (DN) per la misura di un liquido con una densità di 0.8 kg/dm³ ed una viscosità cinematica di 2 cSt con una portata di 40 m³/h.

Calcolo:

Selezionare il diametro nominale nel grafico dei campi di misura per i liquidi riportato sotto per V = $40 \text{ m}^3/\text{h} \Rightarrow \text{DN } 50$. Per ρ = $0.8 \text{ kg/dm}^3\text{ed}$ una viscosità cinematica di 2 cSt. il valore inferiore di campo è $1.5 \text{ m}^3/\text{h}$ ed il campo di misura lineare inizia a $5.6 \text{ m}^3/\text{h}$. Questo determina un campo di misura di $1.5...62 \text{ m}^3/\text{h}$ or 1200...49600 kg/h.

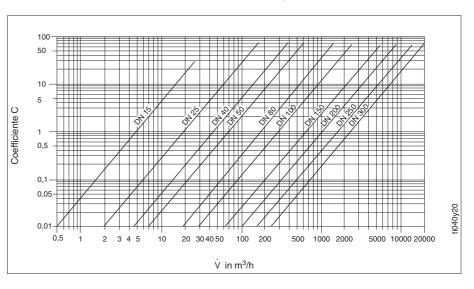
Perdita di carico

Perdita di carico:

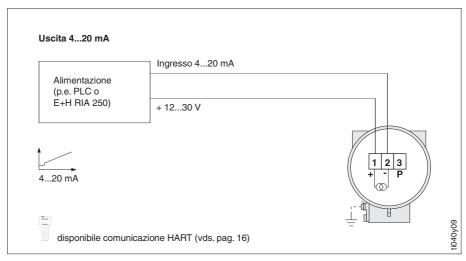
 Δp [mbar] = coefficiente $C \cdot densità \rho$ [kg/m³] Determinare il coefficiente C dal grafico riportato sotto

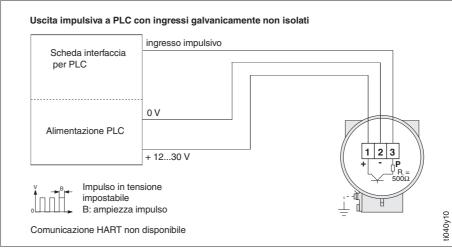
Esempio per vapore saturo

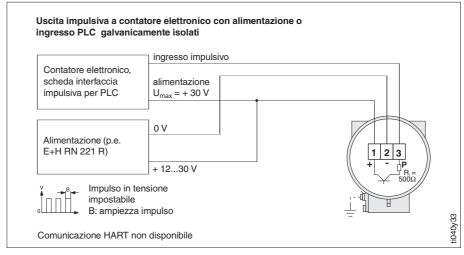
Determinare:


La perdita di carico del vapore saturo con una portata di 8 t/h (12 bar abs.) con un diametro nominale DN 100.

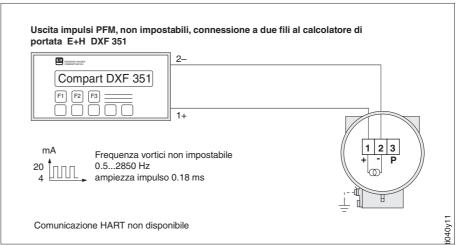
Calcolo:


Convertire kg/h \Rightarrow m³/h usando la densità del vapore (6.13 kg/m³) indicata nella tabella a pag. 10.

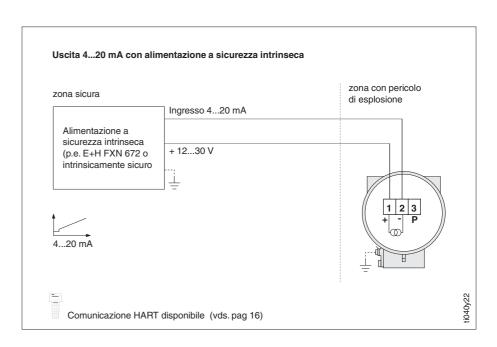

$$\dot{V}$$
 [m³/h] = $\frac{\dot{m}}{\rho}$ = $\frac{8000 \text{ kg/h}}{6.13 \text{ kg/m}^3}$ = 1305 m³/h

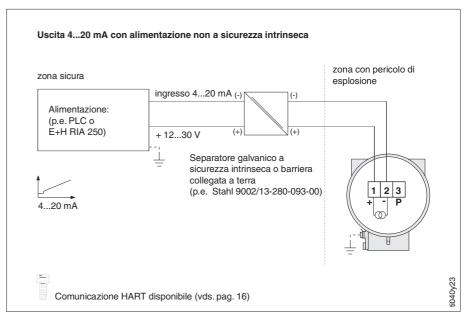

$$\dot{V} = 1305 \text{ m}^3/\text{h} \text{ e DN} = 100 \Rightarrow C = 20$$

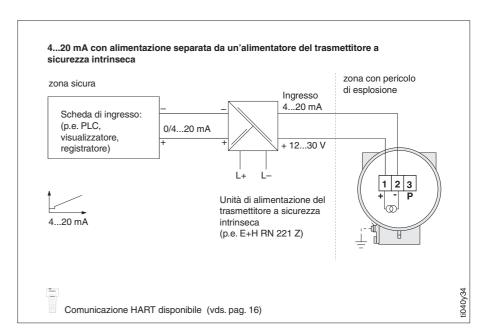
 $\Delta p = C \cdot p = 20 \cdot 6.13 \text{ kg/m}^3 \Rightarrow 123 \text{ mbar}$



Versione per area sicura

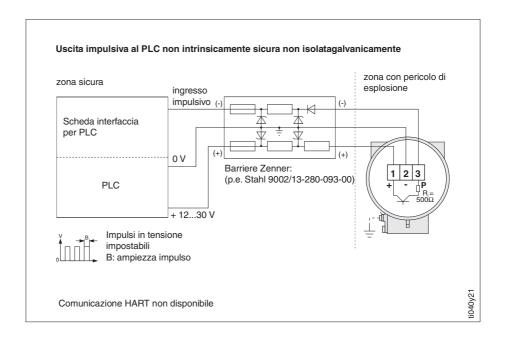


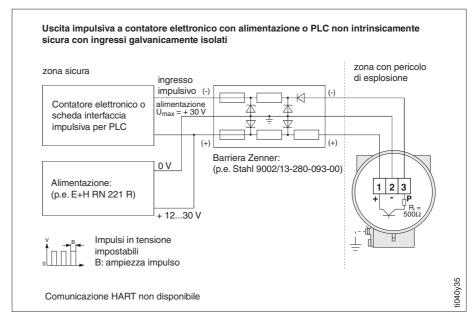


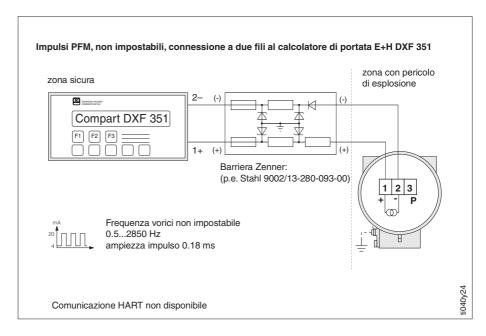


Versione Ex i

Attenzione!
Deve essere stata eseguita
l'equalizzazione del potenziale di terra
tra la zona con pericolo di esplosione e
quella sicura.

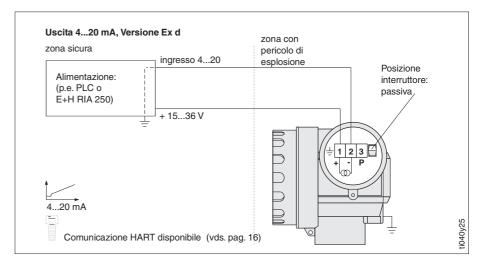


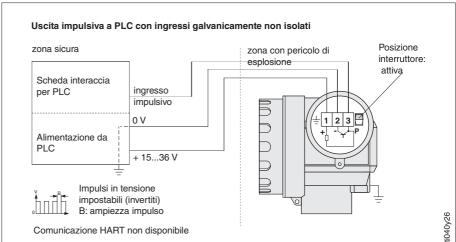


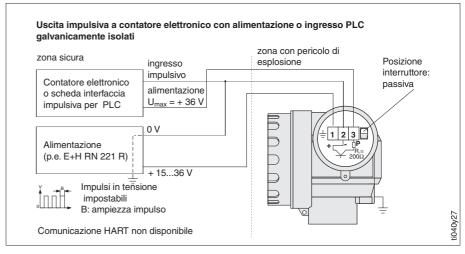


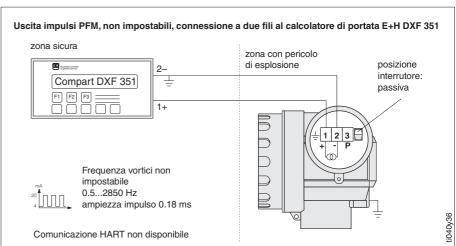
(continua alla prossima pagina)

Versione Ex i

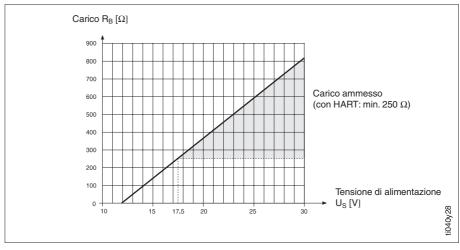







Versione Ex d

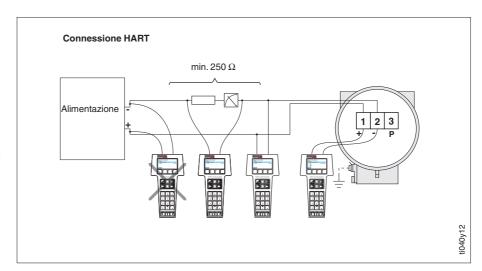
Attenzione!
Deve essere stata eseguita
l'equalizzazione del potenziale di terra
tra la zona con pericolo di esplosione e
quella sicura.



Carico

$$R_B = \frac{U_S - U_{KI}}{I_{max} \cdot 10^{-3}} = \frac{U_S - 12}{0.022}$$

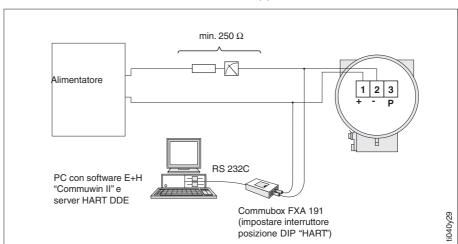
R_B = resistenza carico


U_S = tensione di alimentazione (12...30 V DC)

U_{KI} = tensione ai morsetti del Prowirl 77 (min. 12 V DC)

 I_{max} = uscita in corrente (22 mA)

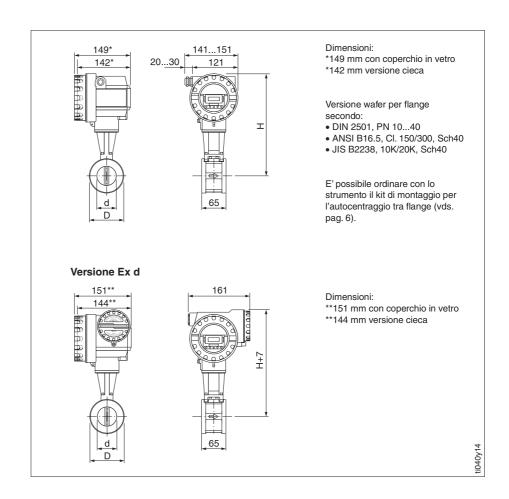
HART


Nota! Alimentazione 17.5...30 V (20.5...36 V for Ex d). Se l'alimentazione ha una resistenza interna di min. 250 Ω , l'alimentazione può avere un campo tra 12 e 30 V (15...36 V per Ex d versione). In questo caso, il terminale HART può essere collegato direttamente all'alimentatore.

Note speciali per la connessione delle versioni Ex si possono trovare nella documentazione Ex supplementare.

Il Prowirl 77 si può collegare ad un'interfaccia seriale RS 232C di un personal computer mediante il Commubox FXA 191 E+H. Il misuratore di portata può essere così utilizzato a distanza usando il software E+H "Commuwin II" e il server HART DDF

Collegamento analogico tra il carico, il cavo di segnale e il terminale HART. Per le versioni Ex vedere anche la documentazione supplementazione Ex

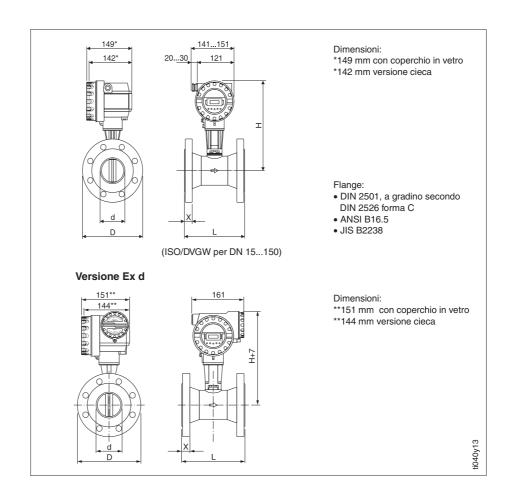


Commuwin II

Nota! Alimentazione 17.5...30 V (20.5...36 V per Ex d). Se l'alimentazione ha una resistenza interna di min. 250 Ω, l'alimentazione può avere un campo tra 12 e 30 V (15...36 V per Ex d versione). In questo caso il Commubox può essere direttamente all'alimentatore.

Dimensioni e pesi

Prowirl 77 W


Per l'opzione di alta/bassa temperatura, la quota $\rm H$ aumenta di 40 mm ed il peso aumenta di circa $\rm 0.5~kg.$

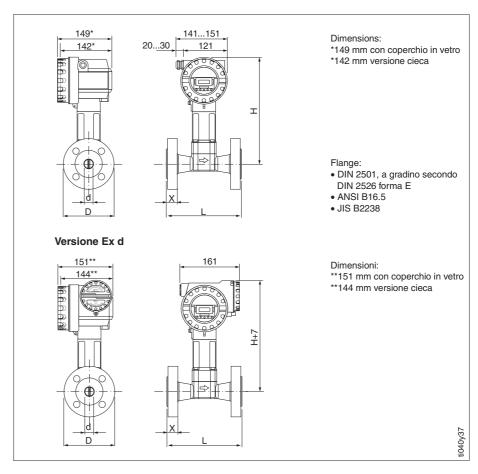
La versione Ex d è ca.0.5 kg più pesante della versione standard.

DN		d	D	н	Peso
DIN / JIS	ANSI	[mm]	[mm]	[mm]	[kg]
15	1/2"	16.50	45.0	247	3.0
25	1"	27.60	64.0	257	3.2
40	1½"	42.00	82.0	265	3.8
50	2"	53.50	92.0	272	4.1
80	3"	80.25	127.0	286	5.5
100	4"	104.75	157.2	299	6.5
150	6"	156.75	215.9	325	9.0

Dimensioni e pesi

Prowirl 77 F

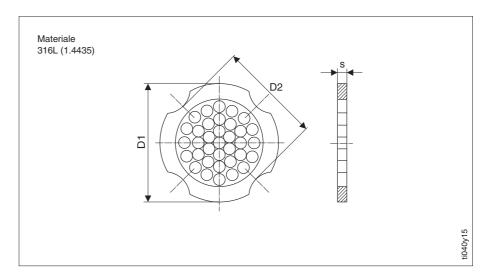
Per l'opzione alta/bassa temperatura, la quota H aumenta di 40 mm ed il peso aumenta di circa 0.5 kg.


La versione Ex d è più pesante rispetto alla versione standard di circa 0.5 kg.

DN	Standard	Pressione nominale	d [mm]	D [mm]	H [mm]	L [mm]	X [mm]	Peso [kg]
	DIN	PN 40	17.3	95.0				
	ANSI SCHED 40	Cl. 150	15.7	88.9				
	ANSI SCHED 40	CI. 300	15.7	95.0				
15 / ½"	ANSI SCHED 80	Cl. 150	13.9	88.9	248 200	17	5	
	ANSI SCHED 60	CI. 300	13.9	95.0				
	JIS SCHED 40	CI. 20K	16.1	95.0				
	JIS SCHED 80	Cl. 20K	13.9	95.0				
	DIN	PN 40	28.5	115.0				
	ANSI SCHED 40	Cl. 150	26.7	107.9	255 2			ļ
	ANSI SCHED 40	CI. 300	26.7	123.8				
25 / 1"	ANSI SCHED 80	Cl. 150	24.3	107.9		200	19	7
		CI. 300	24.3	123.8				
	JIS SCHED 40	CI. 20K	27.2	125.0				
	JIS SCHED 80	Cl. 20K	24.3	125.0				
	DIN	PN 40	43.1	150				
	ANSI SCHED 40	Cl. 150	40.9	127				
	ANSI SCHED 40	CI. 300	40.9	155.6				
40 / 1½"	ANSI SCHED 80	Cl. 150	38.1	127	263	200	21	10
	ANSI SCHED 60	CI. 300	38.1	155.6				
	JIS SCHED 40	CI. 20K	41.2	140				
	JIS SCHED 80	CI. 20K	38.1	140				
	(Continua alla prossima pagina)							

DN	Standard	Pressione nominale	d [mm]	D [mm]	H [mm]	L [mm]	X [mm]	Peso [kg]
	DIN	PN 40	54.5	165				
	ANSI SCHED 40	Cl. 150	52.6	152.4				
50 / 2"	71101001125 10	CI. 300	52.6	165			24	12
	ANSI SCHED 80	Cl. 150 Cl. 300	49.2 49.2	152.4 165	270	200		
		CI. 10K	52.7	155	270	200		
	JIS SCHED 40	CI. 20K	52.7	155				
	JIS SCHED 80	CI. 10K	49.2	155				
		CI. 20K	49.2	155				
	DIN	PN 40 Cl. 150	82.5 78	200 190.5				
	ANSI SCHED 40	CI. 300	78	210				
	ANCI COHED 90	Cl. 150	73.7	190.5				
80 / 3"	ANSI SCHED 80	CI. 300	73.7	210	283	200	30	20
	JIS SCHED 40	CI. 10K	78.1	185				
		CI. 20K CI. 10K	78.1 73.7	200 185				
	JIS SCHED 80	CI. 20K	73.7	200				
	DINI	PN 16	107.1	220				
	DIN	PN 40	107.1	235				
	ANSI SCHED 40	Cl. 150	102.4	228.6				27
	7.1.10.00.12	Cl. 300	102.4	254			33	
100 / 4"	ANSI SCHED 80	Cl. 150 Cl. 300	97 97	228.6 254	295	250		
		Cl. 10K	102.3	210				
	JIS SCHED 40	CI. 20K	102.3	225				
	JIS SCHED 80	CI. 10K	97	210				
	010 001125 00	CI. 20K	97	225				
	DIN	PN 16 PN 40	159.3 159.3	285 300				
	ANSI SCHED 40 ANSI SCHED 80	Cl. 150	154.2	279.4				
		CI. 300	154.2	317.5				
150 / 6"		Cl. 150	146.3	279.4	319	300	38	51
100 / 0		Cl. 300	146.3	317.5				01
	JIS SCHED 40	CI. 10K	151	280				
		CI. 20K CI. 10K	151 146.3	305 280				
	JIS SCHED 80	CI. 20K	146.3	305				
		PN 10	207.3	340				63
	DIN	PN 16	207.5					62
		PN 25	206.5	360				68
200 / 8"		PN 40 Cl. 150		375 342.9	348	300	43	72 64
	ANSI SCHED 40	Cl. 300		381				76
	JIS SCHED 40	CI. 10K	202.7	330				58
	313 3CHED 40	CI. 20K		350				64
		PN 10	260.4	395				88
	DIN	PN 16 PN 25		405 425				92 100
		PN 40	258.8	450				111
250 / 10"	ANICI COLIED 40	Cl. 150		406.4	375	380	49	92
	ANSI SCHED 40	Cl. 300	254.5	444.5				109
	JIS SCHED 40	CI. 10K	204.0	400				90
		CI. 20K		430				104
		PN 10 PN 16	309.7	445 460				121 129
	DIN	PN 25	007.0	485				140
300 / 12"		PN 40	307.9	515	398	450	53	158
JUU / 12	ANSI SCHED 40	Cl. 150		482.6	290	430		143
		Cl. 300	304.8	520.7				162
	JIS SCHED 40	CI. 10K CI. 20K		445 480				119 139
		OI. ZUN		+00	<u> </u>	<u> </u>		108

Dimensioni e Pesi

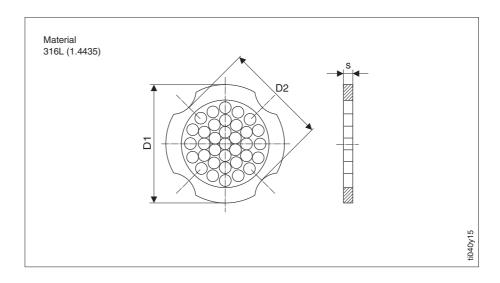

Prowirl 77 H

La versione Ex d ca. 0.5 kg più pesante della versione standard.

DN	Standard	Pressione nominale	d [mm]	D [mm]	H [mm]	L [mm]	X [mm]	Peso [kg]
	DIN	PN 160	17.3	105				7
15 / 1/2"	ANSI SCHED 80	CI. 600	13.9	95.3	288	200	22.4	6
	JIS SCHED 80	CI. 40K	13.9	115				8
05 / 411	DIN	PN 100 PN 160	28.5 27.9	140 140	005	000	00.4	11 11
25 / 1"	ANSI SCHED 80	CI. 600	24.3	124	295	200	26.4	9
	JIS SCHED 80	CI. 40K	24.3	130				10
40 / 41/11	DIN	PN 100 PN 160	42.5 41.1	170 170		000	20.0	15 15
40 / 1½"	ANSI SCHED 80	CI. 600	38.1	155.4	303	200	30.9	13
	JIS SCHED 80	CI. 40K	38.1	160				14
50 / 2"	DIN	PN 64 PN 100 PN 160	54.5 53.9 52.3	180 195 195	310	200	32.4	17 19 19
00 / 2	ANSI SCHED 80	CI. 600	49.2	165.1	0.0		02.1	14
	JIS SCHED 80	CI. 40K	49.2	165				15
80 / 3"	DIN	PN 64 PN 100 PN 160	81.7 80.9 76.3	215 230 230	323	200 3	38.2	24 27 27
	ANSI SCHED 80	CI. 600	73.7	209.6				22
	JIS SCHED 80	CI. 40K	73.7	210				24
100 / 4"	DIN	PN 64 PN 100 PN 160	106.3 104.3 98.3	250 265 265	335	250	48.9	39 42 42
100/ 4	ANSI SCHED 80	CI. 600	97	273.1	. 000	200	230 40.9	43
	JIS SCHED 80	CI. 40K	97	240				36

Dimensioni e pesi Raddrizzatore di Flusso DIN

Spiegazione dei dati nella colonna D1 / D2:


D1: Il raddrizzatore di flusso viene fissato fra i bulloni in corrispondenza del diametro esterno.

D2: Il raddrizzatore di flusso viene fissato fra i bulloni in corrispondenza degli incavi

	DIN						
DN	Pressione nominale	Diametro di centraggio [mm]	D1 / D2	s	Peso		
					[kg]		
15	PN 1040 PN 64	54.3 64.3	D2 D1	2.0	0.04 0.05		
25	PN 1040 PN 64	74.3 85.3	D1 D1	3.5	0.12 0.15		
40	PN 1040 PN 64	95.3 106.3	D1 D1	5.3	0.3 0.4		
50	PN 1040 PN 64	110.0 116.3	D2 D1	6.8	0.5 0.6		
80	PN 1040 PN 64	145.3 151.3	D2 D1	10.1	1.4 1.4		
100	PN 10/16 PN 25/40 PN 64	165.3 171.3 252.0	D2 D1 D1	13.3	2.4 2.4 2.4		
150	PN 10/16 PN 25/40 PN 64	221.0 227.0 252.0	D2 D2 D1	20.0	6.3 7.8 7.8		
200	PN 10 PN 16 PN 25 PN 40 PN 64	274.0 274.0 280.0 294.0 309.0	D1 D2 D1 D2 D1	26.3	11.5 12.3 12.3 15.9 15.9		
250	PN 10/16 PN 25 PN 40 PN 64	330.0 340.0 355.0 363.0	D2 D1 D2 D1	33.0	25.7 25.7 27.5 27.5		
300	PN 10/16 PN 25 PN 40/64	380.0 404.0 420.0	D2 D1 D1	39.6	36.4 36.4 44.7		

Dimensioni e Pesi

Raddrizzatore di flusso ANSI

Spiegazione dei dati nella colonna D1 / D2:

D1: Il raddrizzatore di flusso viene fissato fra i bulloni in corrispondenza del diametro esterno

D2: Il raddrizzatore di flusso viene fissato fra i bulloni in corrispondenza degli incavi.

	ANSI						
DN	Pressione nominale	Diametro di centraggio	D1 / D2	s	Peso		
		[mm]			[kg]		
1/2"	Cl. 150 Cl. 300	51.1 56.5	D1 D1	2.0	0.03 0.04		
1"	CI. 150 CI. 300	69.2 74.3	D2 D1	3.5	0.12 0.12		
1½"	Cl. 150 Cl. 300	88.2 97.7	D2 D2	5.3	0.3 0.3		
2"	Cl. 150 Cl. 300	106.6 113.0	D2 D1	6.8	0.5 0.5		
3"	Cl. 150 Cl. 300	138.4 151.3	D1 D1	10.1	1.2 1.4		
4"	Cl. 150 Cl. 300	176.5 182.6	D2 D1	13.3	2.7 2.7		
6"	Cl. 150 Cl. 300	223.9 252.0	D1 D1	20.0	6.3 7.8		
8"	Cl. 150 Cl. 300	274.0 309.0	D2 D1	26.3	12.3 15.8		
10"	Cl. 150 Cl. 300	340.0 363.0	D1 D1	33.0	25.7 27.5		
12"	CI. 150 CI. 300	404.0 420.0	D1 D1	39.6	36.4 44.6		

Dati tecnici

Denominazione					
Benominazione	Sistema di misura	di portata "Prowirl 77"			
Funzione	Misura della portata volumetrica del vapore saturo, vapore surriscaldato, gas e liquidi. Con temperatura e pressione di processo costanti, il Prowirl 77 è in grado di indicare in uscita portate in unità di massa, di energia e volume compensata.				
	Funzionamento	e struttura del sistema			
Principio di misura		Il misuratore di portata a precessione di vortici Prowirl 77 funziona secondo il principio fisico dei vortici di Von Karman.			
Sistema di misura	La serie di strume	enti "Prowirl 77" è costituita da:			
	Trasmettitore:	Prowirl 77 "PFM" Prowirl 77 "420 mA/HART" Prowirl 77 "PROFIBUS-PA"			
	Corpo del: misuratore	Prowirl 77 W versione wafer, DN 15150			
		Prowirl 77 F versione flangiata, DN 15300, diametri nominali maggiori su richieste			
		Prowirl 77 H versione per alta pressione, DN 15150			
	Variabi	li di ingresso			
Variabili misurate		del flusso e la portata volumetrica sono frequenza di distacco dei vortici a valle della			
Campi di misura	Il campo di misur tubazione (vds. p	a dipende dal fluido e dal diametro della ag. 8 ss).			
	 Valore di fondo : Gas / vapore:v_m (DN 15: v_{max} = 46) 				
		ende dalla densità del fluido e Reynolds, Re _{min} = 4000, O			
	DN 15 / 25:v _{min}	$=\frac{6}{\sqrt{\rho}}$ m/s, con ρ in $\frac{kg}{m^3}$			
	DN 40300: v _m	$_{\text{in}} = \frac{7}{\sqrt{\rho}}$ m/s con ρ in $\frac{\text{kg}}{\text{m}^3}$			
	Variabili di us	scita PROFIBUS-PA			
Uscita segnale	PROFIBUS-PA into PROFIBUS-PA se separata galvanio	condo EN 50170 Volume 2, IEC 1158-2,			
Consumo	Consumo = 12 m.	A			
Tensioni ammessa	Non a sicurezza in a sicurezza intrise	ntrinseca = 9 V32 V eca = 9 V24 V			
FDE (Fault Disconnection Electronic)	0 mA				
Velocità di trasmissione	Baud rate utilizza 31.25 kBit/s	te:			
Decodifica del segnale	Manchester II				

Dati tecnici

	Variabili di uscita
Segnale in uscita	420 mA, opzionale con HART
Gegnale III uscila	Valore di fondo scala e costante tempo regolabili
	PFM: uscite impulsive in corrente a due fili non regolabile 0.52850 Hz, largheza impulso 0.18 ms
	• Uscita a impulsi impostabili (larghezza 0.052 s, f _{max} = 100 Hz) Standard and Ex i: U _{max} = 30 V, I _{max} = 10 mA, R _i = 500 Ω Ex d, switch "passiva": U _{max} = 36 V, I _{max} = 10 mA, R _i = 200 Ω Ex d, switch "attiva": U _{max} = 36 V, R _i = 38 k Ω
Segnale in caso di allarme	Per la durata dell'anomalia si verficano le seguenti condizioni:
anao	LED:non si accende Uscita in corrente:programmabile (3.6 mA, 22 mA o mantiene l'ultimo valore corretto nonostante l'errore) Open collector /
	uscita impulsiva:non attiva, non fornisce più impulsi
	Totalizzatore:mantiene l'ultimo valore misurato
Carico	vds. grafico a pag.16
Separazione galvanica	Le connessioni elettriche sono isolate galvanicamente del sensore.
	Precisione di misura
Condizioni di	Limiti di errore secondo la norma ISO/DIN 11631:
riferimento	 2030 °C, 24 bar Banco di taratura tracciabile secondo standard nazionali
Errore di misura	Liquidi < 0.75% v.i. per Re >20000 < 0.75% v.f.s. per Re 400020000
	Gas / vapore < 1% v.i. per Re >20000 < 1% v.f.s. per Re 400020000
	Coefficiente di temperatura dell'uscita in corrente < 0.03% v.f.s./Kelvin
Ripetibilità	≤ ±0.25% v.i.
	Condizioni operative
Orientamento	Qualsiasi posizione (verticale, orizzontale) Per eventuali limitazioni vds. pag. 6
Tratti di ingresso / uscita	Tratto in ingresso:>10 x DN Tratto in uscita: > 5 x DN
	(Per informazioni dettagliate sul rapporto esistente tra installazione sulla tubazione e diametri interni vds. pag. 5)
Temperatura	−40+60 °C
ambiente	In caso di installazione all'esterno, si raccomanda di proteggere lo strumento dall'irraggiamento solare diretto per mezo di un tettuccio, in particolare per climi caldi ed alte temperature di processo.
Classe di protezione	IP 67 (NEMA 4X)
Resistenza agli urti ed alle vibrazioni	1 g su tutti gli assi fino a 500 Hz
Compatibilità elettromagnetica (EMC)	Conforme a EN 50081 Parte 1 e 2 / EN 50082 Parte 1 e 2, e standard industriali NAMUR

	Condizioni di processo
Temperatura di processo	•Fluido:Sensore standard -40+260 °C Sensore per alta/bassa temperatura -200+400 °C Strumenti tipo wafer DN 100 (4") e DN 150 (6") non possono essere orientati secondo la posizione B (vds pag. 6) per fluidi temperature oltre 200 °C. •Guarnizioni:Grafite-200+400 °C Viton- 15+175 °C Kalrez- 20+220 °C Gylon (PTFE)-200+260 °C
Limiti pressione temperatura	DIN: PN 1040 ANSI: Classe 150 / 300 JIS: 10K / 20K Curva pressione-temperatura del Prowirl 77 F e 77 W: Pressione [bar] 50 40 40 -200 -100 0 100 200 300 400 ° C Curva pressione-temperatura del Prowirl 77 H: Pressione [bar] 180 PN 160 140 120 PN 160 140 120 100 80 PN 64 140 120 100 80 PN 64 100 80 80 PN 64 100 80 PN 64 1
	Dipende dal diametro nominale e dal fluido (vds. pag. 11)
Perdita di carco	Diperiae dai diametro nominare e dai narao (vae. pag. 11)
Perdita di carco	Costruzione meccanica
Perdita di carco Costruzione/ dimensioni	
Costruzione/	Costruzione meccanica

Dati tecnici

Materiali:			
Custodia del trasmettitore	Fusione di alluminio verniciato con vernice epossidica		
Sensore – Wafer / flangiato	Acciaio inox, A351-CF3M (1.4404), conforme a NACE MR0175		
– Sensore	Acciaio inox parti a contatto:		
	Sensore standard e per alte/basse temperature: 316L (1.4435), conforme a NACE MR0175		
	Sensore per alte pressioni: A637 (2.4668) (Inconel 718), conforme a NACE MR0175		
	Parti non a contatto: - CF3 (1.4306)		
-Distanziale	Acciaio inox, 304L (1.4308)		
Guarnizioni	Grafite Viton		
Guarriiziorii	Kalrez		
Ingrandi aqvi	Gylon (PTFE)		
Ingressi cavi	Cavi di alimentazione a segnale (uscite): Pressacavo PG 13.5 (511.5 mm) o		
	Filettatura per ingresso cavi:M20 x 1.5 (811.5 mm) ½" NPT		
	<i>G½</i> "		
Attacchi al processo	Wafer: Set di montaggio (vds.pag. 7) per flange:		
	DIN 2501, PN 1040ANSI B16.5, Classe 150/300, Sch40		
	- JIS B2238, 10K/20K, Sch40		
	Flange: – DIN 2501, PN 1040,		
	a gradino secondo DIN 2526 form C - ANSI B16.5, Classe 150/300, Sch40/80		
	(Sch80 DN 15150) - JIS B2238, 10K/20K, Sch40/80		
	(Sch80 DN 15150)		
	Alta pressione: – DIN 2501, PN 64160,		
	a gradino secondo DIN 2526 forma E - ANSI B16.5, Class 600, Sch80		
	- JIS B2238, 40K, Sch80		
Interfaccia utente			
Procedura operativa Display Comunicazione	Operazionalità locale usando 4 tasti per programmare tutte le funzioni della matrice operativa E+H		
Comunicazione	LCD4-caratteri con 3 punti decimali acceptari con acceptante.		
	2-caratteri con esponente Bargraph come indicatore in %		
	LEDper indicazione di stato		
	Funzionamento HART mediante il terminale portatile DXR 275 o Commuwin II.		
	PROFIBUS-PA		
	Alimentazione		
Alimentazione/	1230 V DC (con HART: 17.530 V DC)		
Frequenza	Ex d: 1536 V DC (con HART: 20.536 V DC) PROFIBUS-PA: 932 V DC, consumo 12 mA		
Assorbimento	<1 W DC (incl. sensore)		
Mancanza rete	• LED → off		
	Il totalizzatore rimane all'ultimo valore visualizzato. Tutti i dati programmati rimangono nella EEPROM		

Certificates and approvals			
Approvazione per			
l'impiego in aree con pericolo di esplosione	ATEX/CENELEC ऒ II2G, EEx ib IIC T1T6 (non soloPROFIBUS-PA)		
	 ☑ II2G, EEx ib/ia IIC T1T6 (solo PROFIBUS-PA) ATEX ☑ II3G, EEx nA IIC T1T6 X 		
	FM CI I/II/III Div 1, Gruppi AG CSA Classe I Div 1, Gruppi AD		
	Classe II Div 1, Gruppi EG Classe III Div 1		
	Ex d / XP (not for PROFIBUS-PA):		
	ATEX/CENELEC ऒ II2G, EEx d [ib] IIC T1T6 FM CI I/II/III Div 1, Gruppi AG		
	CSA Classe I Div 1, Gruppi AD Classe II Div 1, Gruppi EG		
	Classe III Div 1		
	 Schemi di connessioni elettriche a pag. 13 ss. Ulteriori informazioni sulle approvazioni per l'impiego in aree0 con pericolo di esplosione sono fornite nella documentazione Ex. 		
Marchio CE	Applicando il marchio CE, Endress+Hauser conferma che il Prowirl 77 è stato collaudato e soddisfa tutti i requsiti legali delle principali direttive CE.		
Ordini			
Accessori	Set di montaggio per la versione wafer Pezzi di ricambio secondo listino separato Computer di portata Compart DXF 351 Raddrizzatore di flusso		
Documentazione	Manuale OperativoProwirl 77 "PFM"BA 034D/06/en		
supplementare	Manuale Operativo Prowirl 77 "420 mA/HART"BA 032D/06/en Manuale Operativo Prowirl 77 "PROFIBUS-PA"BA 037D/06/en		
	Informazioni di sistema Prowirl SI 015D/06/en		
	Informazioni di sistema Prowirl 77SI 021D/06/en Documentazione Ex		
	ATEX II2G/CENELEC Zona 1XA 017D/06/a3 ATEX II3G/CENELEC Zona 2XA 018D/06/a3		
	FM: StandardEX 016D/06/a2 CSA: StandardEX 017D/06/D2		
Standard esterni e linee guida			
	Controllo, Procedure di regolazione e laboratorio		
	EN 50081 Parte 1 e 2 (Emissione di interferenze) EN 50082 Parte 1 e 2 (immunità alle interferenze)		
	NAMUR Normenarbeitsgemeinschaft für Meß- und		
	Regeltechnik in der Chemischen Industrie		
	NACENational Association of Corrosion Engineers		
EN 00500 0 1 1			
EN 60529 Grado di protezione			
EN 61010 (IP Misure di protezione per			
equipaggiamento			
elettrico per procedure di misura,			
controllo, regolazione e laboratorio)			

Italia Svizzera

Endress+Hauser Italia S.p.a.
Via Donat Cattin, 2/A
20063
Cernusco S/N-MI
Tel. 02.92192.1
Fax 02.92192362

E. Meikenneukenza elienti@it endress ek

E-Mail:consulenza.clienti@it.endress.com Internet: http://www.endress.com Endress+Hauser AG. Sternenhofstrasse 21 CH-4153 Reinach Tel.061.7156222 Fax 061.7111650

