Coriolis Mass Flow Measurement System *promass 60 (HART)*

Cost-effective mass flow measurement for liquids and gases

Flexible System

- The system can be customised to each application
- Wide choice of materials for process connections and measuring tubes, compatible to the fluid
- Simple and cost-effective installation
- Transmitter housing can be rotated to fit the orientation

Easy to Operate

- All important instrument functions
- easily configurable:
- with DIP switches / local display
- with HART protocol
- Local display: all important variables easily read off

Accurate Measurement

- Measurement accuracy for liquids:
 - Mass flow \pm 0.15 % – Volume flow \pm 0.2 %
- Measurement accuracy for gases:
 Mass flow ± 0.5 %
- 1000:1 operable flow range
- Excellent repeatability

Safe Operation

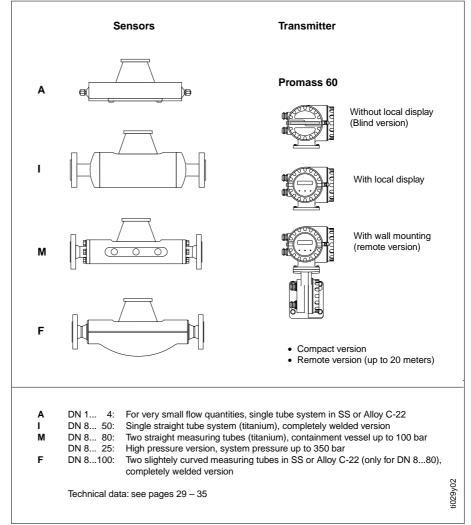
- Self-emptying measuring tubes
- Secondary containment vessel as standard
- High electromagnetic compatibility (EMC)
- Self-monitoring with alarm function
- EEPROM stores data on power failure (no batteries required)
- ISO 9001 manufacturer, quality assured

Install Anywhere

- Compact design
- Insensitive to plant vibration
- Rugged and shock-proof surfaces resistant to acids and alkalis
- IP 67 protection for compact and remote versions
- Measurement independent of fluid characteristics

Measuring System

Fields of Application


The Promass 60 system measures the mass and volume flow of fluids having widely differing characteristics:

- Chocolate, condensed milk, syrup
- Oils, fats
- Acids, alkalis
- Varnishes, paints
- Suspensions
- Pharmaceuticals
- Catalytic converters, inhibitors
- Gases and gas mixtures

The Promass 60 is used in applications wherever mass flow measurement is of critical importance:

- Mixing and batching of various raw materials
- Controlling processes
- Measuring of quickly changing densities
- Control and monitoring of product quality.

The advantages of this measurement process are demonstrated by its successful use in food processing, the pharmaceutical industry, the chemical and petrochemical industries, waste disposal, energy production, gas applications, etc.

The modular Promass 60 measuring system

Information on all Ex versions is available on request from your E+H Sales Centre.

Measuring System

The measuring system consists of:

- Promass 60 transmitterPromass A, I, M or F sensor
- FIOIIIass A, I, WIOLT SEIISO

The Promass 60 measuring system is mechanically and electronically designed for maximum flexibility with the transmitters and sensors being combined in any variation. The wide range of materials and process connections (fittings; flanges DIN, ANSI, JIS; Tri-Clamp) ensure that the measuring point can adjust to both plant and process conditions.

The transmitter housing can be rotated for ease of reading and operation in any orientation.

Sensor Function

Balanced Measuring System

Two-tube systems (Promass M, F)

The system balance is ensured by the two measuring tubes vibrating in antiphase.

Single tube systems (Promass A, I)

For single tube systems, other design solutions are necessary for system balance than for two-tube systems.

Promass A:

For Promass A, an internal reference mass is used for this purpose.

Promass I:

For Promass I, the system balance necessary for flawless measurement is generated by exciting an eccentrically located, counter-oscillating pendulum mass.

This TMB[™] (Torsion Mode Balanced) system is patented and guarantees accurate measurement, also with changing process and ambient conditions. The installation of Promass I is for this reason just as easy as with two-tube systems! Special fastening measures before and after the meter are therefore not necessary.

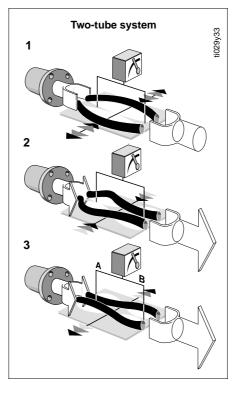
Sectional view of Promass A, I, M and F sensors

1 Housing/containment vessel

- 2 Manifold
- 3 Process connection
- 4 Measuring tube(s) A: 1 curved tube
 - I: 1 straight tube
 - M: 2 straight tubes
 - F: 2 curved tubes
- 5 Gasket
- 6 Plug
- 7 Cable gland8 Electrodynamic
- sensors
- 9 Excitation system
- 10 Pendulum mass TMB[™] System (Promass I)

Measuring Principle

The measuring principle is based on the controlled generation of Coriolis forces. These forces are always present when both translational (straight line) and rotational (revolving) movement occur simultaneously.


$$\vec{F}_{C} = 2 \cdot \Delta m (\vec{\omega} \times \vec{v})$$

 \overrightarrow{F}_{C} = Coriolis force

 \rightarrow

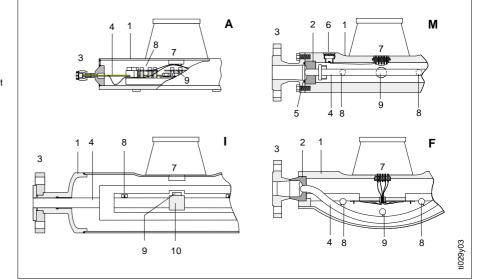
- $\Delta m = mass of moving body$
- $\vec{\omega}$ = angular velocity
- radial velocity in a rotating or oscillating system

The amplitude of the Coriolis force depends on the moving mass Δm , its velocity \vec{v} in the system and therefore its mass flow.

The Promass uses an oscillation instead of a constant angular velocity $\vec{\omega}$ and two parallel measuring tubes (Promass M and F), with fluid flowing through them, are made to oscillate in antiphase so that they act like a tuning fork.

The Coriolis forces produced at the measuring tubes cause a phase shift in the tube oscillation (see Figure on left):

- When there is zero flow, i.e. with the fluid standing still, both tubes oscillate in phase (1).
- When there is mass flow, the tube oscillation is decelerated at the inlet (2) and accelerated at the outlet (3).


As the mass flow rate increases, the phase difference also increases (**A-B**). The oscillations of the measuring tubes are determined using electrodynamic sensors at the inlet and outlet. The measurement principle operates independently of temperature, pressure, viscosity, conductivity or flow profile.

Density Measurement

The measuring tubes are continously excited at their resonant frequency. As the mass, and therefore the density, of the oscillating system changes (measuring tubes and fluid), the vibrating frequency is readjusted. The resonant frequency is thus a function of the density of the fluid and enables the microprocessor to produce a density signal.

Temperature Measurement

The temperature of the measuring tubes is determined and used to compensate for temperature effects. The signal produced is a function of the process temperature.

Transmitter Function

Function of the Promass 60

The Promass transmitter converts the measured values coming from the sensor into standardised output signals. The following outputs are available for these signals:

- Current output (with superimposed HART protocol)
- Pulse output
- Status output
- Auxiliary input

Promass 60 can be configured as a mass or volume flowmeter.

Operating Mode / Functionality

Promass can be operated and configured in two, basically different ways:

- with DIP switches and local display
- with HART protocol

The configuration mode is set using a special DIP switch ("DIP" or "HART"), and thereby also the instrument functionality. An overview of all Promass 60 instrument functions, depending on the type of configuration, can be found on page 5 ff.

Configuration with DIP Switches

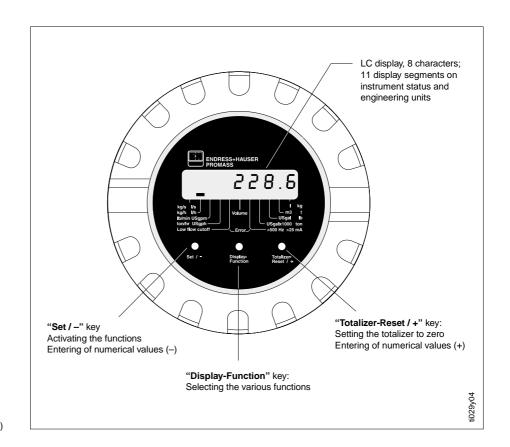
All important instrument parameters are set using DIP switches in the transmitter (see page 7):

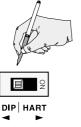
- Current range 0/4...20 mA
- End value scaling of current output
- Pulse weight
- Technical units (SI/US)

- Functions of the status output
- Creep suppression (on/off)
- Functions of the auxiliary input
- Short-cycle batching (on/off)

Configuration with Local Display

A local display is also available for the Promass 60 measuring system. This ensures that all important variables can be read off and controlled directly at the measuring point:


- Flow rate and/or totalised flow
- Technical units
- Process conditions (e.g. falling below creep limit)
- Mass or volume flow measurement
- Signal outputs exceeded
- Error messages


Various functions can be selected and activated using the operating keys, e.g. zero point calibration, density calibration, pressure pulse suppression, etc.

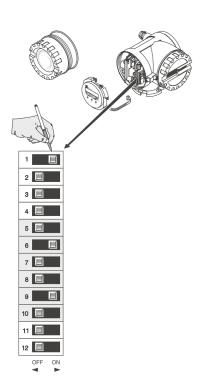
Configuration with HART Protocol

With HART protocol, Promass 60 can be operated, configured and read in different ways:

- via the DXR 275 HART handheld
- via the Commuwin II operating program (in connection with Commubox FXA 191)
- via the HART Universal Commands and Common Practice Commands.

Local display Promass 60 (optional)

Operating Mode / Functionality


	HART protocol via	DIP switches / Local display			
	Commuwin II DXR 275				
Process variables					
Mass flow	display	display			
Volume flow	display	display			
Density	display	display not possible (only for density adjustment)			
Temperature	display	display not possible			
Totalizer					
Totalizer 1	display	display			
Totalizer 1 overflow	display	display			
Reset totalizer	possible	possible			
System info					
Code entry	possible	not possible			
Diagnostic code	display of error and status messages	display not possible			
Multidrop Address (Commuwin II)	entry	entry not possible			
Software version Com	display	display not possible			
Display test function	not possible	possible			
System units					
Volume flow measurement	possible	possible			
Mass flow unit	freely selectable: kg/s, kg/h, lb/min, ton/hr	SI or US units selectable			
Mass unit	freely selectable: kg, t, lb, ton	SI or US units selectable			
Volume flow unit	freely selectable: I/s, I/h, Ugpm, Ugph	SI or US units selectable			
Volume unit	freely selectable: I, m ³ , USgal, USgal * 1000	SI or US units selectable			
Density unit	freely selectable: kg/dm ³ , g/cc	-			
Temperature unit	freely selectable: °C, K, °F, °R	-			
Current outputs					
Assign output	mass or volume flow	mass or volume flow			
Full scale value	freely selectable	8 values selectable			
Time constant	freely selectable 0.0199 s	1 s (fixed value)			
Current span	4–20 mA 4–20 mA (NAMUR)	0–20 mA or 4–20 mA			
Simulation current	possible	not possible			
Nominal current	display	display not possible			

Operating Mode / Functionality

	HART protocol via	DIP switches / Local display
	Commuwin II DXR 275	
Pulse / Freq. output		
Assign output	mass or volume flow	mass or volume flow
Operation mode	pulse or frequency	pulse or frequency
Pulse value	freely selectable	8 values selectable
Pulse width	freely selectable	max. 10 s
Full scale value (400 Hz)	freely selectable	fixed value
Simulation frequency	possible	not possible
Processing parameters		
Low flow cutoff	freely selectable	on/off switching
Noise suppression	freely selectable between 0.002.00 s	not possible
Empty pipe detection (EPD threshold)	freely selectable	not possible (no empty pipe detection)
Self checking (batching time <60 s)	selectable	selectable
Pressure pulse suppression	time period of activation freely selectable	on/off switching
Zero point adjustment	possible	possible
Density adjustment	possible	possible
Density adjust value	selectable	selectable
Assign auxiliary input	selectable: – positive zero return – zero point adjustment – totalizer reset	selectable: – positive zero return – zero point adjustment – totalizer reset
Assign status output	selectable: – error message – flow direction recognition	selectable: – error message – flow direction recognition
System reset	possible (only with Commuwin II)	not possible
Sensor data		
Calibration factor	read-write possible	not possible
Zero point	selectable	selectable
Nominal diameter	display	display not possible
Sensor coefficients/ values	display (e.g. of density coefficients C0C5)	display not possible
Serial number	display	display not possible
Software version	display	display not possible

Scaling the Outputs with DIP Switches

MASS

The various pulse value and full scale values are set using the DIP switches inside the housing (electronics area) \rightarrow see page 7.

If a different pulse- or full scale value, than the selection given with the DIP switches is required, the meter can be configured via HART \rightarrow see page 4.

On request, Promass 60 measuring instruments are also available with customised parameterisation.

			MASS	– Puls	e value			
SI unit	s [g, kg, t]							
DN	ON OFF	E E E 5 6 7	E 5 6 7	5 6 7	E 5 6 7	5 6 7	5 6 7	5 6 7
1	0.0001 g	0.001 g	0.01 g	0.1 g	1 g	10 g	100 g	0.000020 kg
2	0.01 g	0.1 g	1g	10 g	100 g	1 kg	10 kg	0.000079 kg
4	0.1 g	1 g	10 g	100 g	1 kg	10 kg	100 kg	0.000314 kg
8	1 g	10 g	100 g	1 kg	10 kg	100 kg	1 t	0.001257 kg
15	1 g	10 g	100 g	1 kg	10 kg	100 kg	1 t	0.004418 kg
15*/25	10 g	100 g	1 kg	10 kg	100 kg	1 t	10 t	0.012272 kg
25*/40	10 g	100 g	1 kg	10 kg	100 kg	1 t	10 t	0.031416 kg
40*/50	10 g	100 g	1 kg	10 kg	100 kg	1 t	10 t	0.049087 kg
80	100 g	1 kg	10 kg	100 kg	1 t	10 t	100 t	0.125664 kg
100	1 kg	10 kg	100 kg	1 t	10 t	100 t	1000 t	0.196350 kg
US uni	ts [lb]							
1	0.0000001	0.000001	0.00001	0.0001	0.001	0.01	0.1	0.000043
2	0.00001	0.0001	0.001	0.01	0.1	1	10	0.000174
4	0.0001	0.001	0.01	0.1	1	10	100	0.000697
8	0.001	0.01	0.1	1	10	100	1000	0.002787
15	0.001	0.01	0.1	1	10	100	1000	0.009797
15*/25	0.01	0.1	1	10	100	1000	10000	0.027213
25*/40	0.01	0.1	1	10	100	1000	10000	0.069665
40*/50	0.01	0.1	1	10	100	1000	10000	0.108851
80	0.1	1	10	100	1000	10000	100000	0.278659
100	1	10	100	1000	10000	100000	1000000	0.435397
* DN	ı 15, 25, 40 "FB"	= Full bore ve	ersions Prom	ass I				

		MASS	– Full sc	ale value	e (curren	t output)		
SI unit	s [kg/h]							
DN	ON OFF 8 9 10	EE 8 9 10	国 国 8 9 10	8 9 10	E E 8 9 10	8 9 10	8 9 10	8 9 10
1	1	2	3	4	5	10	16	20
2	5	10	15	20	25	50	80	100
4	20	40	60	80	100	200	320	400
8	100	200	300	400	500	1000	1600	2000
15	300	600	900	1200	1500	3000	4800	6000
15*/25	1000	2000	3000	4000	5000	10000	16000	20000
25*/40	2000	4000	6000	8000	10000	20000	32000	40000
40*/50	4000	8000	12000	16000	20000	40000	64000	80000
80	9000	18000	27000	36000	45000	90000	144000	180000
100	14000	28000	42000	56000	70000	140000	224000	280000
US uni	ts [lb/min]					·	·	
1	0.05	0.10	0.15	0.20	0.25	0.50	0.80	1.00
2	0.20	0.40	0.60	0.80	1.00	2.00	3.20	4.00
4	0.75	1.50	2.25	3.00	3.75	7.50	12.00	15.00
8	4.00	8.00	12.00	16.00	20.00	40.00	64.00	80.00
15	10.00	20.00	30.00	40.00	50.00	100.00	160.00	200.00
15*/25	30.00	60.00	90.00	120.00	150.00	300.00	480.00	600.00
25*/40	75.00	150.00	225.00	300.00	375.00	750.00	1200.00	1500.00
40*/50	125.00	250.00	375.00	500.00	625.00	1250.00	2000.00	2500.00
80	325.00	650.00	975.00	1300.00	1625.00	3250.00	5200.00	6500.00
100	425.00	850.00	1275.00	1700.00	2125.00	4250.00	6800.00	8500.00
* DN	I 15, 25, 40 "FB"	I = Full bore ve	ersions Proma	ass I			I	

Factory settings (grey shaded area)

7

Scaling the Outputs with DIP Switches

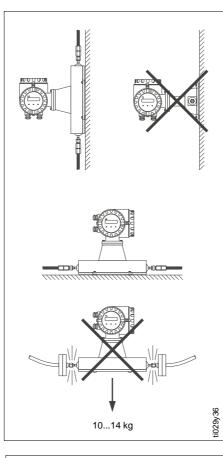
VOLUME

The various pulse values and full scale values are set using the DIP switches inside the housing (electronics area) \rightarrow see page 7.

If a different pulse- or full scale value, than the selection given with the DIP switches is required, the meter can be configured via HART \rightarrow see page 4.

On request, Promass 60 measuring instruments are also available with customised parameterisation.

			VOLUM	E – Puls	se value			
SI units	[ml, l, m ³]							
DN	ON OFF 567	E E 5 6 7	5 6 7	5 6 7	E E 5 6 7		5 6 7	5 6 7
1	0.0001 ml	0.001 ml	0.01 ml	0.1 ml	1 ml	10 ml	100 ml	0.000020
2	0.01 ml	0.1 ml	1 ml	10 ml	100 ml	11	101	0.000079
4	0.1 ml	1 ml	10 ml	100 ml	11	10	1001	0.000314
8	1 ml	10 ml	100 ml	11	10 I	1001	1 m3	0.001257
15	1 ml	10 ml	100 ml	11	10 I	100	1 m ³	0.004418
15*/25	10 ml	100 ml	11	101	100 I	1 m3	10 m ³	0.012272
25*/40	10 ml	100 ml	11	101	100 I	1 m ³	10 m ³	0.031416
40*/50	10 ml	100 ml	11	10 I	100 I	1 m ³	10 m ³	0.049087
80	100 ml	11	10	100 I	1 m3	10 m ³	100 m ³	0.125664
100	11	10	100 I	1 m ³	10 m ³	100 m ³	1000 m ³	0.196350
US unit	s [USgal]							
1	0.0000001	0.000001	0.00001	0.0001	0.001	0.01	0.1	0.00000
2	0.00001	0.0001	0.001	0.01	0.1	1	10	0.00002
4	0.0001	0.001	0.01	0.1	1	10	100	0.000083
8	0.001	0.01	0.1	1	10	100	1000	0.000334
15	0.001	0.01	0.1	1	10	100	1000	0.001174
15*/25	0.01	0.1	1	10	100	1000	10000	0.00326
25*/40	0.01	0.1	1	10	100	1000	10000	0.008348
40*/50	0.01	0.1	1	10	100	1000	10000	0.013043
80	0.1	1	10	100	1000	10000	100000	0.03339
100	1	10	100	1000	10000	100000	1000000	0.052173


		VOLUME	– Full s	cale valu	ie (curre	nt outpu	t)	
SI units	[l/h]							
DN	ON OFF 8 9 10	5 5 9 10	E 8 9 10	8 9 10	E E 8 9 10	E E 8 9 10	8 9 10	8 9 10
1	1	2	3	4	5	10	16	20
2	5	10	15	20	25	50	80	100
4	20	40	60	80	100	200	320	400
8	100	200	300	400	500	1000	1600	2000
15	300	600	900	1200	1500	3000	4800	6000
15*/25	1000	2000	3000	4000	5000	10000	16000	20000
25*/40	2000	4000	6000	8000	10000	20000	32000	40000
40*/50	4000	8000	12000	16000	20000	40000	64000	80000
80	9000	18000	27000	36000	45000	90000	144000	180000
100	14000	28000	42000	56000	70000	140000	224000	280000
US unit	s [USgal/mir	n]						
1	0.005	0.010	0.015	0.020	0.025	0.050	0.080	0.100
2	0.025	0.050	0.075	0.100	0.125	0.250	0.400	0.500
4	0.100	0.200	0.300	0.400	0.500	1.000	1.600	2.000
8	0.500	1.000	1.500	2.000	2.500	5.000	8.000	10.000
15	1.500	3.000	4.500	6.000	7.500	15.000	24.000	30.000
15*/25	4.000	8.000	12.000	16.000	20.000	40.000	64.000	80.000
25*/40	10.000	20.000	30.000	40.000	50.000	100.000	160.000	200.000
40*/50	15.000	30.000	45.000	60.000	75.000	150.000	240.000	300.000
80	40.000	80.000	120.000	160.000	200.000	400.000	640.000	800.000
100	50.000	100.000	150.000	200.000	250.000	500.000	800.000	1000.000
* DN 1	5, 25, 40 "FB" :	= Full bore ve	rsions Proma	ass I				

Factory settings (grey shaded area)

 * DN 15, 25, 40 "FB" = Full bore versions Promass I

Mounting

No special fittings such as brackets are needed. External forces are absorbed by the construction of the device, e.g. the secondary containment vessel. The high frequency oscillation of the measuring tubes ensures that correct operation of the measuring system is unaffected by plant vibration.

Promass I (an be mounted in any position) view A view A (Promass M, F) F1 F1 Positioning Promass F When mounting, no special precautions need to be taken for turbulencegenerating devices (valves, bends T-pieces, etc.) as long as no cavitation occurs.

Orientation (Promass A)

Vertical

This is best with the flow direction upwards. Entrained solids sink downward and gases rise away from the measuring tube. This also allows the measuring tube to be completely drained and protects it from solids build-up.

Horizontal

When correctly installed, the transmitter housing is either above or below the piping. This assures that no gas bubbles may collect or solids be deposited in the curved measuring tube.

Wall and post mounting

The sensor may not be suspended in the piping, that is, without support or fixation to avoid excessive stress on the material around the process connection.

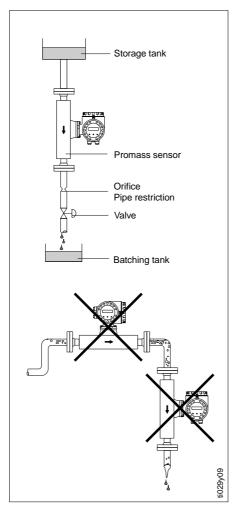
The sensor housing base plate allows table, wall, or post mounting. The post mounting requires a special mounting set.

Orientation (Promass I, M, F)

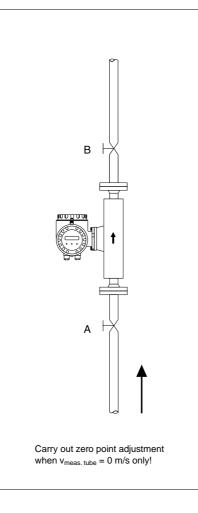
Vertical

This is best with the flow direction upwards. Entrained solids sink downward and gases rise away from the measuring tubes when the product is not flowing. This also allows the measuring tubes to be completely drained and protects them from solids build-up.

Horizontal


ti029y07

- Promass I (single tube) can be freely installed in a horizontal piping.
- For Promass M and F the measuring tubes must lie side by side. When correctly installed, the transmitter housing is either above or below the piping (see view A).
- Promass F measuring tubes are slightly curved. Therefore, the sensor position is to be adapted to the fluid properties for horizontal installation:
 - F1: not suitable for outgassing fluids
 - F2: not suitable for fluids with solids content


Orientation Promass A

Orientation Promass I, M, F

Mounting

Mounting location (vertical piping)

Zero point adjustment and shut-off valves

Mounting Location

Air or entrained gases in the measuring tube may cause errors in measurement and therefore the following mounting installations are to be avoided:

- Do not install at the highest point of the piping.
- Do not install in a vertical pipeline directly upstream of a free pipe outlet.

Correct installation is still possible using the recommendation in the adjacent figure. Restrictions in the piping or an orifice with a smaller cross section than the measuring instrument can prevent the sensor from running empty during measurement.

Diameter	Ø Orifice / restriction
DN 1	0.8 mm
DN 2	1.5 mm
DN 4	3.0 mm
DN 8	6.0 mm
DN 15	10.0 mm
DN 15*	15.0 mm
DN 25	14.0 mm
DN 25*	24.0 mm
DN 40	22.0 mm
DN 40*	35.0 mm
DN 50	28.0 mm
DN 80	50.0 mm
DN 100	65.0 mm
	1

* DN 15, 25, 40 "FB" Full bore versions of Promass I

Zero Point adjustment

To ensure accurate measurement also with very low flow rates, we recommend to carry out a zero point adjustment under process conditions.

The zero point adjustment should be carried out only with the measuring tubes full and with no flow. This can be achieved with shut-off valves both upstream and downstream of the sensor (or use existing valves if present).

Normal operation

• Open valves A and B

Zero point adjustment **with** pumping pressure

- Open valve A
- Close valve B

Zero point adjustment **without** pumping pressure

Close valve A

ti029y10

• Open valve B

Planning and Installation

System Pressure

It is important to avoid cavitation as this can affect tube oscillation.

No special measures need be taken for fluids which have properties similar to those of water under normal conditions.

With volatile liquids (hydrocarbons, solvents, liquefied gases) or liquids in suction lines, the vapour pressure of the liquid must not drop below a point where the liquid begins to boil. It is also important not to release gases which are found naturally in many liquids. This can be prevented by ensuring that there is sufficient system pressure.

Ideally the sensor should be mounted • on the descharge side of pumps

- (avoiding low pressure),
- at the lowest point of a vertical pipeline.

Corrosion Resistance

With corrosive liquids, the chemical resistance of all wetted parts such as measuring tubes, gaskets and process connections must be thoroughly checked. This also applies to the liquids used for cleaning the Promass sensor.

Tracing, Thermal Insulation

With certain products heat transfer at the sensor must be avoided. A wide range of materials can be used for the necessary insulation.

Heating can be provided either electrically, e.g. by heating jackets, or supplied by copper pipes with heated water or steam. Heating elements for heat tracing are available for all sensors.

Caution!

Ensure that the meter electronics are not overheated. The connector between the sensor and the transmitter housings as well as the connection housing of the remote version must therefore always be kept free.

Full Scale Value / Nominal Diameter

The most suitable nominal diameter is selected by taking into account the measuring range required and the permitted pressure drop. The full scales values for each nominal diameter are defined on page 29.

- The minimum recommended full scale value is about ¹/₂₀ of the indicated max. values above.
- With most applications, the optimum is considered to be between 20...50% of the maximum full scale value.
- With abrasive fluids, e.g. liquids containing solids, a lower full scale value should be used (flow velocity <1 m/s).
- For gas applications the following rules applies:
 - The flow velocity in the tubes should not exceed half of the sonic speed (mach 0.5).
 - The maximum massflow depends on the density of the gas and can be calculated from the formula on page 29.

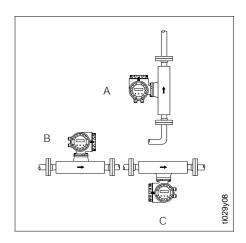
"Applicator" Design Software

All important instrument data are contained in the E+H software in order to optimise the design of the measuring system.

The Applicator software is used for the following calculations:

- Nominal diameter of the sensor with regard to the characteristics of the fluid such as viscosity, density, etc.
- Pressure loss downstream of the measuring point
- Converting mass flow to volumetric flow, etc.
- Simultaneous display of various nominal diameters.

Fluid Temperature / Orientation


To ensure that the permitted ambient temperature range for the transmitter is not exceeded (-25...+60 °C) positioning is recommended as follows:

High fluid temperature

- Vertical piping: Position A
- Horizontal piping: Position C

Low fluid temperature

- Vertical piping: Position A
- Horizontal piping: Position B

Pressure Loss

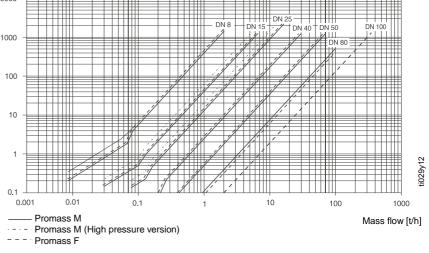
The pressure drop is dependent on the characteristics of the fluid and its flow rate. The following formulae can be used for liquids to approximately calculate the pressure loss:

Note!

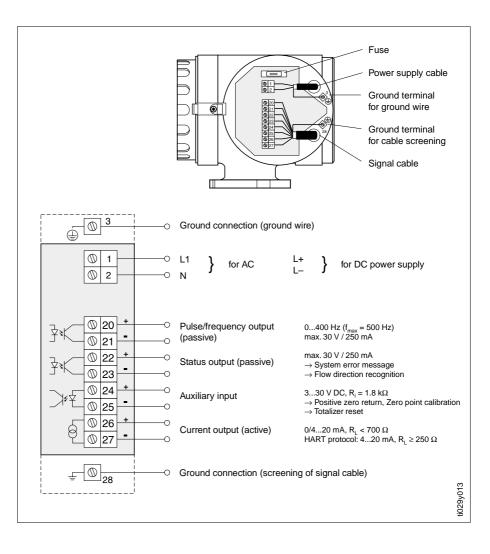
Calculations on pressure loss can be carried out using the Endress+Hauser "Applicator" software (see page 11).

	Promass A / I	Promass M / F					
Reynolds No.	$Re = \frac{4 \cdot \mathbf{m}}{\pi \cdot d \cdot \upsilon \cdot \rho}$	$Re = \frac{2 \cdot \mathbf{\hat{m}}}{\pi \cdot \mathbf{d} \cdot \mathbf{v} \cdot \mathbf{\rho}}$					
Re≥2300 *	$\Delta p = K \cdot \upsilon^{0.25} \cdot \overset{\bullet}{m}^{1.75} \cdot \rho^{-0.75} + \frac{K3 \cdot \overset{\bullet}{m}^2}{\rho}$	$\Delta p = K \cdot \upsilon^{0.25} \cdot \dot{m}^{1.85} \cdot \rho^{-0.86}$					
Re < 2300	$\Delta p = K1 \cdot \upsilon \cdot \dot{m} + \frac{K3 \cdot \dot{m}^2}{\rho}$	$\Delta p = K1 \cdot \upsilon \cdot \mathbf{m} + \frac{K2 \cdot \upsilon^{0.25} \cdot \mathbf{m}^2}{\rho}$					
	ssure loss [mbar] ρ = fluid density [kg/m ³] ematic viscosity [m ² /s] d = internal diameter of measuring tubes [m] ss flow rate [kg/s] KK3 = constants dependent on the nominal diameter						
* For gases for Re≥2	s the pressure loss has always to be calculate 2300.	d by use of the formula					

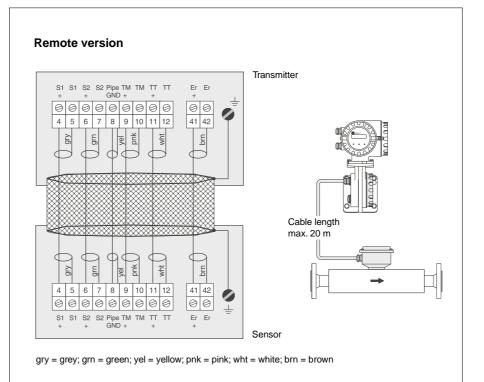
	Diameter	d [m]	К	K1	К2	К3
Promass A	DN 1 DN 2 DN 4	$\begin{array}{c} 1.10 \cdot 10^{-3} \\ 1.80 \cdot 10^{-3} \\ 3.50 \cdot 10^{-3} \end{array}$	1.2 · 10 ¹¹ 1.6 · 10 ¹⁰ 9.4 · 10 ⁸	1.3 · 10 ¹¹ 2.4 · 10 ¹⁰ 2.3 · 10 ⁹	- - -	0 0 0
Promass A High press.	DN 2 DN 4	$\frac{1.40 \cdot 10^{-3}}{3.00 \cdot 10^{-3}}$	5.4 · 10 ¹⁰ 2.0 · 10 ⁹	6.6 · 10 ¹⁰ 4.3 · 10 ⁹	-	0 0
Promass I	DN 8 DN 15 DN 15* DN 25 DN 25* DN 40 DN 40* DN 50	$\begin{array}{c} 8.55 \cdot 10^{-3} \\ 11.38 \cdot 10^{-3} \\ 17.07 \cdot 10^{-3} \\ 25.60 \cdot 10^{-3} \\ 25.60 \cdot 10^{-3} \\ 35.62 \cdot 10^{-3} \\ 35.62 \cdot 10^{-3} \end{array}$	$\begin{array}{c} 8.1 \cdot 10^6 \\ 2.3 \cdot 10^6 \\ 4.1 \cdot 10^5 \\ 4.1 \cdot 10^5 \\ 7.8 \cdot 10^4 \\ 7.8 \cdot 10^4 \\ 1.3 \cdot 10^4 \\ 1.3 \cdot 10^4 \end{array}$	$\begin{array}{c} 3.9 \cdot 10^7 \\ 1.3 \cdot 10^7 \\ 3.3 \cdot 10^6 \\ 3.3 \cdot 10^6 \\ 8.5 \cdot 10^5 \\ 8.5 \cdot 10^5 \\ 2.0 \cdot 10^5 \\ 2.0 \cdot 10^5 \end{array}$		$\begin{array}{c} 129.95 \cdot 10^4 \\ 23.33 \cdot 10^4 \\ 0.01 \cdot 10^4 \\ 5.89 \cdot 10^4 \\ 0.11 \cdot 10^4 \\ 1.19 \cdot 10^4 \\ 0.08 \cdot 10^4 \\ 0.25 \cdot 10^4 \end{array}$
Promass M	DN 8 DN 15 DN 25 DN 40 DN 50 DN 80	$\begin{array}{c} 5.53 \cdot 10^{-3} \\ 8.55 \cdot 10^{-3} \\ 11.38 \cdot 10^{-3} \\ 17.07 \cdot 10^{-3} \\ 25.60 \cdot 10^{-3} \\ 38.46 \cdot 10^{-3} \end{array}$	$\begin{array}{c} 5.2 \cdot 10^{7} \\ 5.3 \cdot 10^{6} \\ 1.7 \cdot 10^{6} \\ 3.2 \cdot 10^{5} \\ 6.4 \cdot 10^{4} \\ 1.4 \cdot 10^{4} \end{array}$	$\begin{array}{c} 8.6 \cdot 10^{7} \\ 1.7 \cdot 10^{7} \\ 5.8 \cdot 10^{6} \\ 1.2 \cdot 10^{6} \\ 4.5 \cdot 10^{5} \\ 8.2 \cdot 10^{4} \end{array}$	$\begin{array}{c} 1.7 \cdot 10^{7} \\ 9.7 \cdot 10^{5} \\ 4.1 \cdot 10^{5} \\ 1.2 \cdot 10^{5} \\ 1.3 \cdot 10^{4} \\ 3.7 \cdot 10^{3} \end{array}$	
Promass M High press.	DN 8 DN 15 DN 25	4.93 · 10 ⁻³ 7.75 · 10 ⁻³ 10.20 · 10 ⁻³	6.0 · 10 ⁷ 8.0 · 10 ⁶ 2.7 · 10 ⁶	1.4 · 10 ⁸ 2.5 · 10 ⁷ 8.9 · 10 ⁶	$2.8 \cdot 10^7$ $1.4 \cdot 10^6$ $6.3 \cdot 10^5$	- - -
Promass F	DN 8 DN 15 DN 25 DN 40 DN 50 DN 80 DN 100	$\begin{array}{c} 5.35 \cdot 10^{-3} \\ 8.30 \cdot 10^{-3} \\ 12.00 \cdot 10^{-3} \\ 17.60 \cdot 10^{-3} \\ 26.00 \cdot 10^{-3} \\ 40.50 \cdot 10^{-3} \\ 51.20 \cdot 10^{-3} \end{array}$	$\begin{array}{c} 5.70 \cdot 10^{7} \\ 5.80 \cdot 10^{6} \\ 1.90 \cdot 10^{6} \\ 3.50 \cdot 10^{5} \\ 7.00 \cdot 10^{4} \\ 1.10 \cdot 10^{4} \\ 3.54 \cdot 10^{3} \end{array}$	$\begin{array}{c} 9.60 \cdot 10^{7} \\ 1.90 \cdot 10^{7} \\ 6.40 \cdot 10^{6} \\ 1.30 \cdot 10^{6} \\ 5.00 \cdot 10^{5} \\ 7.71 \cdot 10^{4} \\ 3.54 \cdot 10^{4} \end{array}$	$\begin{array}{c} 1.90 \cdot 10^{7} \\ 10.60 \cdot 10^{5} \\ 4.50 \cdot 10^{5} \\ 1.30 \cdot 10^{5} \\ 1.40 \cdot 10^{4} \\ 1.42 \cdot 10^{4} \\ 5.40 \cdot 10^{3} \end{array}$	


Pressure loss data **inclusive** interface measuring tube(s) / piping Pressure loss diagrams for water can be found on the following page.

* DN 15, 25, 40 "FB" = Full bore versions of Promass I

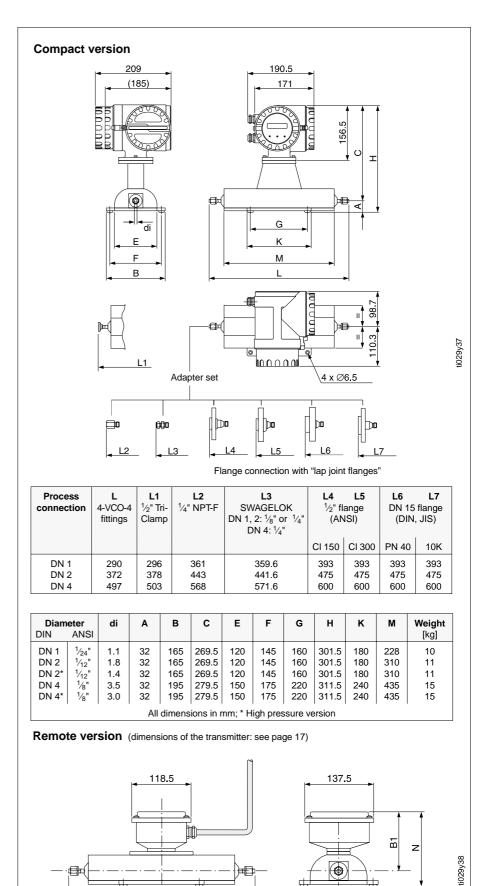

Pressure Loss with Water

Pressure loss [mbar] Promass A 10000 Z DN 4 1000 100 đ hρ 10 1 Mass flow [kg/h] 10 100 1000 0.1 Standard version ---- High pressure version Pressure loss [mbar] **Promass I** 1000 DN 25 DN 15 DN 15 DN 40 DN 50 DN 25 * DN 40 . ⊞ DN 8 100 10 0.1 Mass flow [t/h] 0.01 10 100 0.1 1 Standard versions: inclusive interface measuring tube(s) / piping _ _ Full bore versions Pressure loss [mbar] Promass M, F 10000 D١ DN 100 ΟN 40 1000 I 0 0) 100



Electrical Connections

Electrical connections: power supply, input and outputs


Cable specifications for the remote version

6 x 0.38 mm² PVC cable with common screening and individually screened cores. Conductor resistance: \leq 50 Ω /km; Capacitance: core/screen \leq 420 pF/m

ti029e14

Note! Technical data on Ex versions are given in separate documentation available from E+H on request.

Dimensions Promass 60 A

Note! Dimensions of Ex instruments are given in separate documentation available from E+H on request. ANSI

1/24

¹/₁₂"

1/8"

B1

[mm]

122

122

132

Ν

[mm]

154

154

164

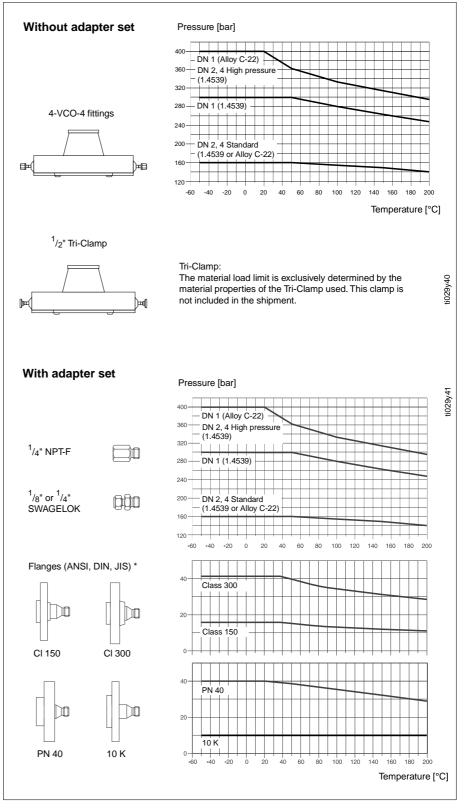
L

Dimensions dependent on the

process connections (see above)

Diameter

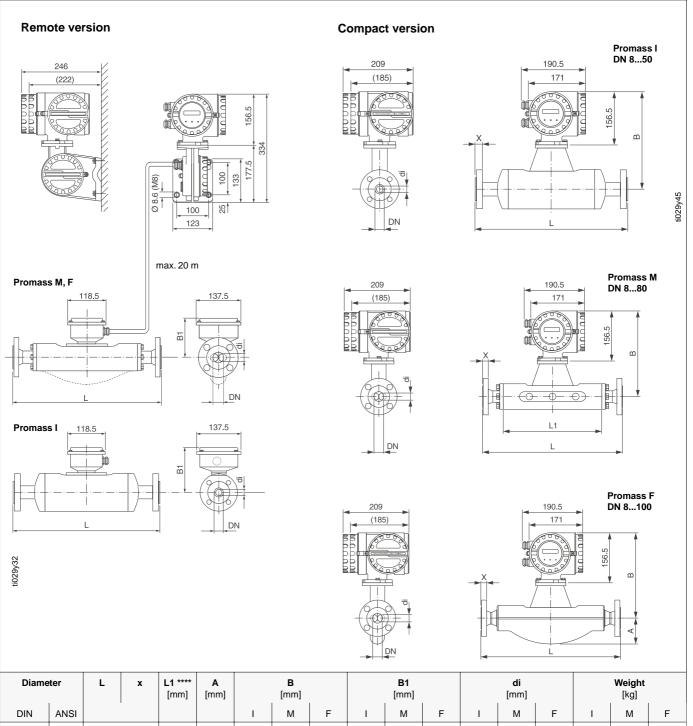
DIN


DN 1

DN 2

DN 4

Wetted Parts Materials


Measuring tube:	SS 1.4539 (904L), Alloy C-22 2.4602 (N 06022)
4-VCO-4 fittings	SS 1.4539 (904L), Alloy C-22 2.4602 (N 06022)
¹ / ₂ " Tri-Clamp	SS 1.4539 (904L)
Adapter sets: ¹ /8" or ¹ /4" SWAGELOK ¹ /4" NPT-F	SS 1.4401 (316) SS 1.4539 (904L), Alloy C-22 2.4602 (N 06022)
Flange:	SS 1.4539 (904L), Alloy C-22 2.4602 (N 06022),
DIN, ANSI, JIS	lap joint flanges (not wetted) SS 1.4404 (316L)
Gaskets (O-ring)	Viton (-15+200 °C), EPDM (-40+160 °C), Silicone (-60+200 °C), Kalrez (-30+210 °C)

Material load curves Promass A

* with ¹/₂" or DN 15 flanges as standard

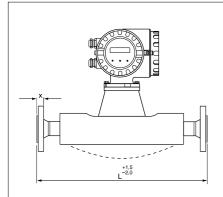
Dimensions Promass 60 I, M, F

			[[]	frind		. []			. [iiiiii]			[initial			[149]	
DIN	ANSI				I	М	F	Ι	М	F	I	М	F	I	М	F
DN 8	3⁄8"		256	75	288.0	262.5	262.5	138.5	113.0	113.0	8.55	5.53	5.35	12	11	11
DN 15	1/2"		286	75	288.0	264.5	262.5	138.5	114.5	113.0	11.38	8.55	8.30	15	12	12
DN 15*	1/2"	Dimensions	-	-	288.0	-	-	138.5	-	-	17.07	-	-	20	-	-
DN 25	1"	dependent on	310	75	288.0	268.5	262.5	138.5	119.0	113.0	17.07	11.38	12.00	20	15	14
DN 25*	1"	the process	-	-	301.5	-	-	152.0	-	-	25.60	-	-	41	-	-
DN 40	11/2"	connections	410	105	301.5	279.5	267.5	152.0	130.0	118.0	25.60	17.07	17.60	41	24	19
DN 40*	11/2"	(see following	-	-	316.5	-	-	167.0	-	-	35.62	-	-	67	-	-
DN 50	2"	pages)	544	141	316.5	289.5	279.5	167.0	140.0	130.0	35.62	25.60	26.00	67	41	30
DN 80	3"		644	200	-	305.5	301.0	-	156.0	151.5	-	38.46	40.50	-	67	55
DN 100**	4"		-	200	-	305.5	301.0	-	156.0	151.5	-	38.46	40.50	-	71	61
DN 100	4"		-	247	-	-	320.0	-	-	163.0	-	-	51.20	-	-	96
DN 150***	6"		-	247	-	-	320.0	-	-	163.0	-	-	51.20	-	-	108

All weights stated are those for the compact version;

DN 8: with DN 15 flanges as standard;

* DN 15, 25, 40 "FB" = Full bore versions of Promass I;


** DN 100 / 4" : Nominal diameter DN 80 / 3" with DN 100 / 4" flanges;

*** DN 150 / 6" : Nominal diameter DN 100 / 4" with DN 150 / 6" flanges;

**** Promass M, high pressure version (DN 8, 15, 25), same dimensions as the standard version

Process Connections Promass 60 I, M, F DIN 2501

Promass I Wetted parts: Gasket material:	titanium Grade 9 no internal gaskets with welded process connections
Promass M	
Flange material:	SS 1.4404 (316L), titanium Grade 2
Gasket material:	O-ring in Viton (-15+200 °C), EPDM (-40+160 °C),
	Silicone (-60+200 °C), Kalrez (-30+210 °C),
	FEP coated (-60+200 °C)
Promass F	
Flange material:	(DN 8100) SS 1.4404 (316L),
	(DN 880) Alloy C-22 2.4602 (N 06022)
Gasket material:	no internal gaskets with welded process connections

Flanges also available with grooves to DIN 2512 N (not for Promass I)

ti029y17

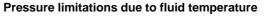
			Promass I				
	PN	40	PN	64	PN 100		
Diameter	L [mm]	x [mm]	L [mm]	x [mm]	L [mm]	x [mm]	
DN 8	402	20	-	-	402	25	
DN 15	438	20	-	-	438	25	
DN 15*	572	19	-	-	578	26	
DN 25	578	23	-	-	578	29	
DN 25*	700	22	-	-	706	31	
DN 40	708	26	-	-	708	32	
DN 40*	819	24	-	-	825	33	
DN 50	827	28	832	34	832	36	

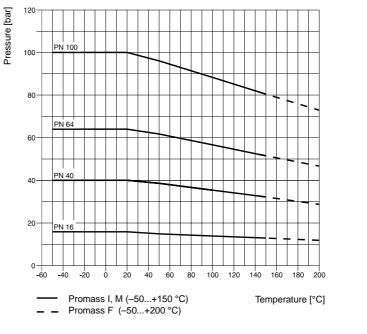
DN 8: with DN 15 flanges as standard;

* DN 15, 25, 40 "FB" = Full bore versions of Promass I

	Promass M, F							
	PN	16	PN 40 PN 64			64	PN 100	
Diameter	L [mm]	x [mm]	L [mm]	x [mm]	L [mm]	x [mm]	L [mm]	x [mm]
DN 8**	-	-	370	16	400	20	400	20
DN 15 **	-	-	404	16	420	20	420	20
DN 25	-	-	440	18	470	24	470	24
DN 40	-	-	550	18	590	26	590	26
DN 50	-	-	715	20	724	26	740	28
DN 80	-	-	840	24	875	28	885	32
DN 100 ***	874	20	874	24	-	-	-	-
DN 100	1128	20	1128	24	1128	30	1128	36
DN 150 ****	1168	22	1168	28	-	-	-	-

DN 8: with DN 15 flanges as standard; DN 100 only for Promass F available; ** DN 8, DN 15: also available with DN 25, PN 40 flanges (L = 440 mm, x = 18 mm); *** DN 100: Diameter DN 80 with DN 100 flanges;


**** DN 150: Diameter DN 100 with DN 150 flanges

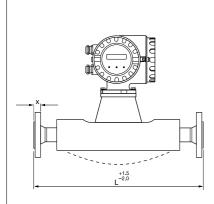

ti029y18

Surface finish of the flanges

For PN 16, PN 40: DIN 2526 Form C, R_{a} 6.3...12.5 μm

For PN 64, PN 100: DIN 2526 Form E, R_a 1.6...3.2 μm

Process Connections Promass 60 I. M. F **ANSI B16.5**


Wetted parts: titanium Grade 9 Gasket material: no internal gaskets with welded process connections

Promass M

Promass I

Flange material: SS 1.4404 (316L), titanium Grade 2 Gasket material: O-ring in Viton (-15...+200 °C), EPDM (-40...+160 °C), Silicone (-60...+200 °C), Kalrez (-30...+210 °C), FEP coated (-60...+200 °C) Promass F

Flange material: (DN 8...100) SS 1.4404 (316L), (DN 8...80) Alloy C-22 2.4602 (N 06022) Gasket material: no internal gaskets with welded process connections

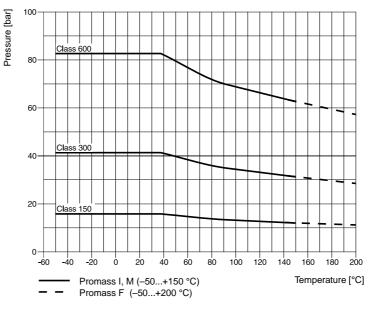
i029y19

			Pro	mass I				
Dian	neter	CI [,]	150	CI :	300	CI 600		
ANSI	DIN	L [mm]	x [mm]	L [mm]	x [mm]	L [mm]	x [mm]	
³ ⁄8"	DN 8	402	20	402	20	402	20	
1/2" 1/2" *	DN 15 DN 15*	438 572	20 19	438 572	20 19	438 578	20 22	
1" 1" *	DN 25 DN 25 *	578 700	23 22	578 700	23 22	578 706	23	
1 1½"	DN 25 DN 40	700	22	700	22	708	25 28	
1 ¹ ⁄2" *	DN 40*	819	24	819	24	825	29	
2"	DN 50	827	28	827	28	832	33	

 3_{8} ": with 1_{2} " flanges as standard; * DN 15, 25, 40 "FB" = Full bore versions of Promass I

			Promas	s M, F			
Nen	nweite	CI	150 CI 300			CI 600	
ANSI	DIN	L [mm]	x [mm]	L [mm]	x [mm]	L [mm]	x [mm]
3⁄8"	DN 8	370	11.2	370	14.2	400	20.6
1/2"	DN 15	404	11.2	404	14.2	420	20.6
1"	DN 25	440	14.2	440	17.5	490	23.9
1½"	DN 40	550	17.5	550	20.6	600	28.7
2"	DN 50	715	19.1	715	22.3	742	31.8
3"	DN 80	840	23.9	840	28.4	900	38.2
4" **	DN 100 **	874	23.9	894	31.7	-	-
4"	DN 100	1128	23.9	1128	31.7	1158	48.4
6" ***	DN 150 ***	1168	25.4	-	-	-	-

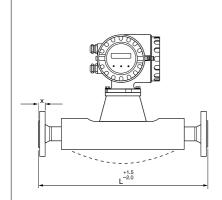
 3_{8} ": with 1_{2} " flanges as standard;


4" / DN 100: only for Promass F available;

** 4" / DN 100: Diameter 3"/DN 80 with 4"/DN 100 flanges; *** 6" / DN 150: Diameter 4" / DN 100 with 6" / DN 150 flanges

Surface finish of the flanges

For Class 150, Class 300, Class 600: Ra 3.2...6.3 µm


Pressure limitations due to fluid temperature

ti029y20

Process Connections Promass 60 I, M, F JIS B2238

Promass I Wetted parts Gasket mate	
0	 al: SS 1.4404 (316L), titanium Grade 2 ial: O-ring in Viton (-15+200 °C), EPDM (-40+160 °C), Silicone (-60+200 °C), Kalrez (-30+210 °C), FEP coated (-60+200 °C)
Promass F	
Wetted parts	(DN 8100) SS 1.4404 (316L), (DN 880) Alloy C-22 2.4602 (N 06022)
Gasket mate	ial: no internal gaskets with welded process connections

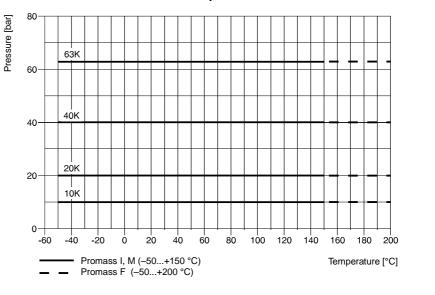
ti029y19

			I	Promass I				
	10	ж	20	ж	40	ж	63	зк
Diameter	L [mm]	x [mm]	L [mm]	x [mm]	L [mm]	x [mm]	L [mm]	x [mm]
DN 8	_	-	402	20	402	25	402	28
DN 15	-	-	438	20	438	25	438	28
DN 15*	-	-	572	19	578	26	578	29
DN 25	-	-	578	23	578	27	578	30
DN 25*	-	-	700	22	706	29	706	32
DN 40	-	-	708	26	708	30	708	36
DN 40*	-	-	819	24	825	31	825	37
DN 50	827	28	827	28	827	32	832	40

DN 8: with DN 15 flanges as standard * DN 15, 25, 40 "FB" = Full bore versions of Promass I

			Pr	omass M, F				
	10K 20K 40K 63K							ЗK
Diameter	L [mm]	x [mm]	L [mm]	x [mm]	L [mm]	x [mm]	L [mm]	x [mm]
DN 8	_	-	370	14	400	20	420	23
DN 15	-	-	404	14	425	20	440	23
DN 25	-	-	440	16	485	22	494	27
DN 40	-	-	550	18	600	24	620	32
DN 50	715	16	715	18	760	26	775	34
DN 80	832	18	832	22	890	32	915	40
DN 100 **	864	18	_	-	-	-	-	-
DN 100	1128	18	1128	24	1168	36	1168	44
DN 150 ***	1168	22	-	-	-	-	-	-

DN 8: with DN 15 flanges as standard; DN 100: only for Promass F available; ** DN 100: Diameter DN 80 with DN 100 flanges;

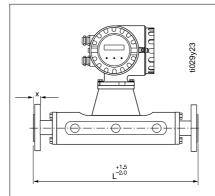

DN 150: Diameter DN 100 with DN 150 flanges

DN 150. Diameter DN 100 with DN 150 hang

Surface finish of the flanges

For 10K, 20K, 40K, 63K: R_a 3.2...6.3 μm

Pressure limitations due to fluid temperature

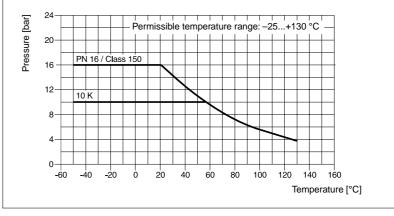

ti029y28

PVDF Process Connections Promass 60 M

Wetted Parts Materials (DIN 2501 / ANSI B16.5 / JIS B2238)

Flange material: PVDF

Gasket material: O-ring in Viton (-15...+200 °C), EPDM (-40...+160 °C), Silicone (-60...+200 °C), Kalrez (-30...+210 °C),


Dian	neter	PN 16 / CI 150 / 10K			
DIN	ANSI	L [mm]	x [mm]		
DN 8 DN 15 DN 25 DN 40 DN 50	³ ⁄8" ¹ ⁄2" 1" 1 ¹ ⁄2" 2"	370 404 440 550 715	16 16 18 21 22		

DN 8 resp. $^{3}\!/_{8}"\!:$ instrument fitted with DN 15 resp. $^{1}\!/_{2}"$ flanges

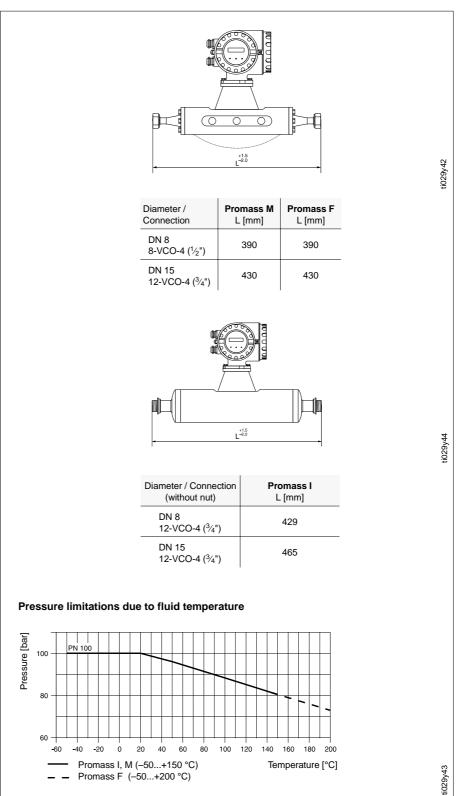
Caution!

- When using PVDF process connections
- Use only gaskets with a hardness Shore A \leq 75
- Use only the specified screw tightening torques (see Operating Manual)
- For large diameters and heavy dead weights: sensor must be supported

Pressure limitations due to fluid temperature

VCO Process Connections Promass 60 I, M, F

Wetted Parts Materials

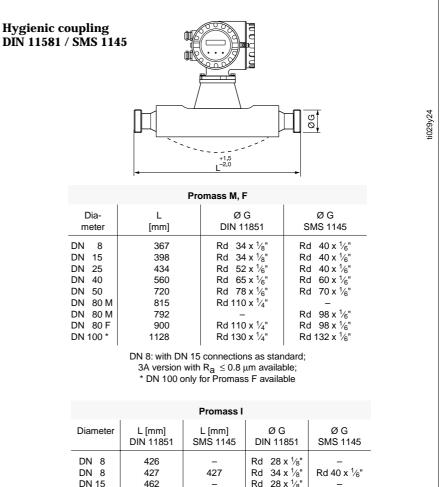

Promass I Process connection materials: titanium Grade 2 Gasket material: no internal gaskets with welded process connections

Promass M Process connection materials: Gasket materials (O-ring):

SS 1.4404 (316L) Viton (–15...+200 °C), Kalrez (–30...+210 °C), Silicone (–60...+200 °C), EPDM (–40...+160 °C

Promass F

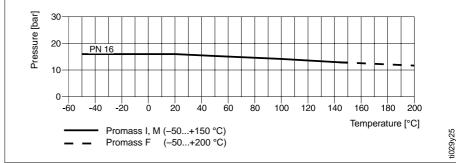
Process connection materials: SS 1.4404 (316L) Gasket material: no internal gaskets with welded process connections


Sanitary Process Connections Promass 60 I, M, F

Wetted Parts Materials

Promass I (completely welded version) Coupling: titanium Grade 2

Promass M (connections with internal gaskets) Coupling: SS 1.4404 (316L) Gasket: Silicone flat gasket (-60...+200 °C) or EPDM (-40...+160 °C), FDA licensed materials


Promass F (completely welded version) Coupling: SS 1.4404 (316L)

DN 8	426	-	Rd	28 x 1⁄8"	_
DN 8	427	427	Rd	34 x 1⁄8"	Rd 40 x ¹ ⁄6"
DN 15	462	-	Rd	28 x 1⁄8"	-
DN 15	463	463	Rd	34 x 1⁄8"	Rd 40 x 1⁄6"
DN 15 **	602	-	Rd	34 x 1⁄8"	-
DN 25	603	603	Rd	52 x 1⁄6"	Rd 40 x 1⁄6"
DN 25 **	736	736	Rd	52 x 1⁄6"	Rd 40 x 1⁄6"
DN 40	731	738	Rd	65 x ½"	Rd 60 x ½"
DN 40 **	855	857	Rd	65 x ¼"	Rd 60 x 1⁄6"
DN 50	856	858	Rd	78 x 1⁄6"	Rd 70 x 1⁄6"
**	DN 15 25 40 "I	EP" – Full boro	voroic	one of Drov	

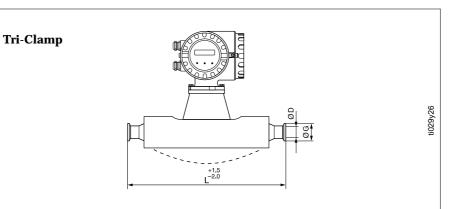
 * DN 15, 25, 40 "FB" = Full bore versions of Promass I 3A version with R_{a} \leq 0.8 μm as standard

Pressure limitations due to fluid temperature

Sanitary Process Connections Promass 60 I, M, F

Wetted Parts Materials

Promass I (completely welded version) Tri-Clamp: titanium Grade 2


 Promass M (connections with internal gaskets)

 Tri-Clamp:
 SS 1.4404 (316L)

 Gasket:
 Silicone flat gasket (-60...+200 °C) or

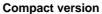
 EPDM (-40...+160 °C), FDA licensed materials

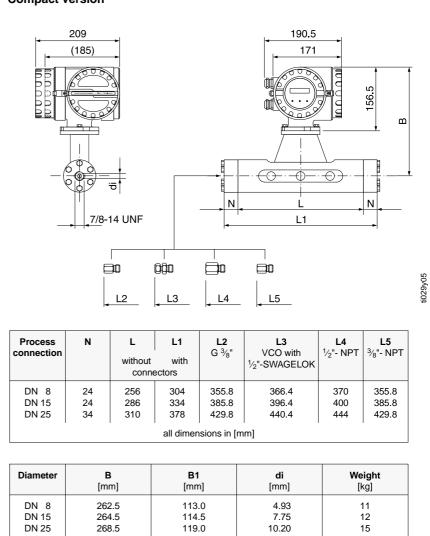
Promass F (completely welded version) Tri-Clamp: SS 1.4404 (316L)

	Promass M, F					
Diam	neter	Clamp	L	ØG	ØD	
DIN	ANSI		[mm]	[mm]	[mm]	
DN 8	3⁄8"	1/2"	367	25.0	9.5	
DN 8	3⁄8"	1"	367	50.4	22.1	
DN 15	¹ /2"	1/2"	398	25.0	9.5	
DN 15	1/2"	1"	398	50.4	22.1	
DN 25	1"	1"	434	50.4	22.1	
DN 40	1½"	1½"	560	50.4	34.8	
DN 50	2"	2"	720	63.9	47.5	
DN 80 M	3"	2"	801	90.9	72.9	
DN 80 F	3"	3"	900	90.9	72.9	
DN 100 *	4"	4"	1128	118.9	97.4	

 $^{3}\!\prime_{8}"$ and $^{1}\!\prime_{2}"$: with 1" connections as standard; 3A version with $R_{a} \leq 0.8~\mu m$ available; * DN 100 / 4" only for Promass F available

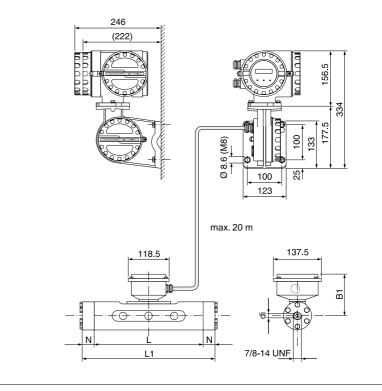
	Promass I					
Dian	neter	Clamp	L	ØG	ØD	
DIN	ANSI		[mm]	[mm]	[mm]	
DN 8	³ ⁄8"	1/2"	426	25.0	9.5	
DN 8	3⁄8"	3⁄4"	426	25.0	16.0	
DN 8	³ ⁄8"	1"	427	50.4	22.1	
DN 15	1/2"	1/2"	462	25.0	9.5	
DN 15	1/2"	3⁄4"	462	25.0	16.0	
DN 15	¹ /2"	1"	463	50.4	22.1	
DN 15 **	1/2"	3⁄4"	602	25.0	16.0	
DN 25	1"	1"	603	50.4	22.1	
DN 25 **	1"	1"	730	50.4	22.1	
DN 40	1½"	1½"	731	50.4	34.8	
DN 40 **	1½"	1 ¹ / ₂ "	849	50.4	34.8	
DN 50	2"	2"	850	63.9	47.5	


** DN 15, 25, 40 "FB" = Full bore versions of Promass I 3A version with $R_{a}~\leq 0.8~\mu m$ or $R_{a}~\leq 0.4~\mu m$ as standard


Pressure limitations due to fluid temperature

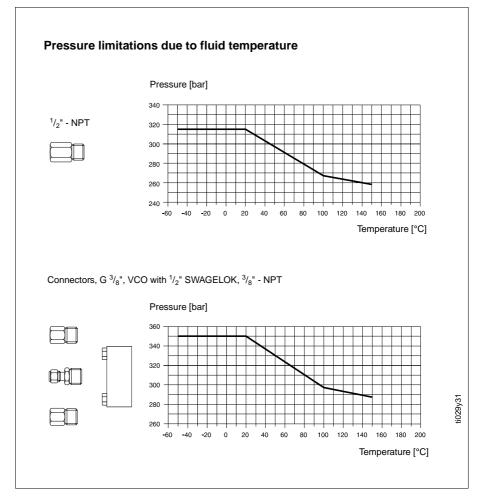
The material load limit is exclusively determined by the material properties of the Tri-Clamp used. This clamp is not included in the shipment.

Dimensions **Process Connections**


Promass 60 M (high pressure)

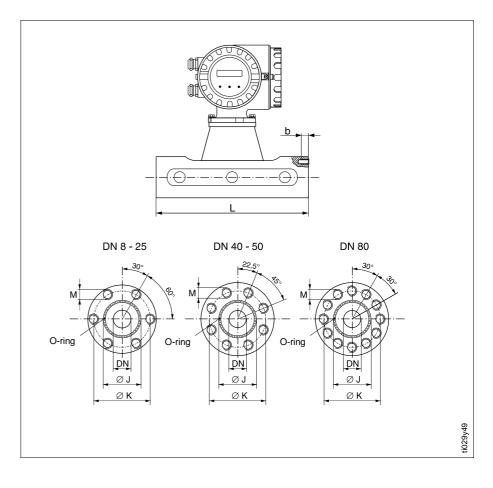
Remote version

DN 25


Pressure Limitations

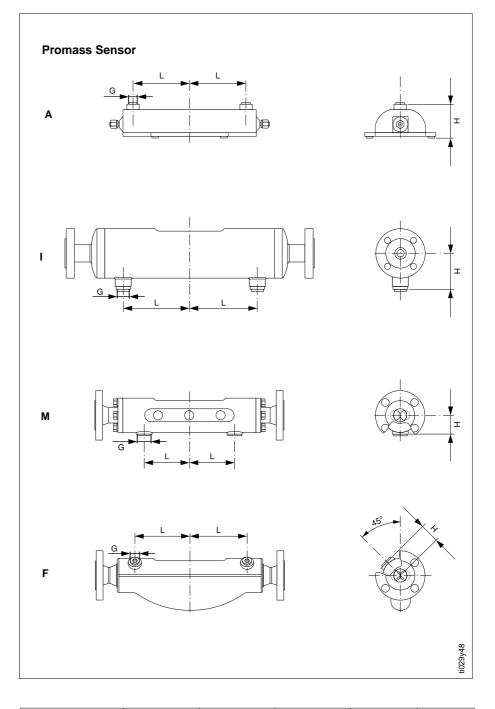
Promass 60 M (high pressure)

Wetted Parts Materials


Measuring tube:	titanium Grade 9
Connectors:	SS 1.4404 (316L)
Fittings:	SS 1.4401 (316)
Gaskets:	O-rings in Viton (-15+200 °C), Silicone (-60+200 °C)

Couplings and connectors optimized for CNG (Compressed Natural Gas) applications.

Dimensions


Promass 60 M (without Process Connections)

Diam D		Į	Dimension	5	Coupl	ing	Minimum screw depth	Torque	Lubricated thread	0-	ring
		ØL	ØJ	ØΚ	Screws	Depth				Diam.	Inside Ø
DIN	ANSI	[mm]	[mm]	[mm]	М	b [mm]	[mm]	[Nm]	yes/no	[mm]	[mm]
DN 8	3⁄8"	256	27	54	6 x M 8	12	10	30.0	no	2.62	21.89
DN 8*	3/8"	256	27	54	6 x M 8	12	10	19.3	yes	2.62	21.89
DN 15	1/2"	286	35	56	6 x M 8	12	10	30.0	no	2.62	29.82
DN 15*	1/2"	286	35	56	6 x M 8	12	10	19.3	yes	2.62	29.82
DN 25	1"	310	40	62	6 x M 8	12	10	30.0	no	2.62	34.60
DN 25*	1"	310	40	62	6 x M 8	12	10	19.3	yes	2.62	34.60
DN 40	1½"	410	53	80	8 x M 10	15	13	60.0	no	2.62	47.30
DN 50	2 "	544	73	94	8 x M 10	15	13	60.0	yes	2.62	67.95
DN 80	3 "	644	102	128	12 x M 12	18	15	100.0	yes	3.53	94.84
	* High pressure version; Permissible thread: A4 - 80; Lubricant: Molykote P37										

Dimensions

Purge Connection Pressure vessel control

Diameter		Prom	ass A	Promass I Promass N		ass M	M Promass F		Connection	
DIN	ANSI	L [mm]	H [mm]	L [mm]	H [mm]	L [mm]	H [mm]	L [mm]	H [mm]	G
DN 1 DN 2 DN 4 DN 8 DN 15 DN 15 * DN 25 DN 25 * DN 40	$\begin{array}{c} 1/24"\\ 1/12"\\ 1/8"\\ 3/8"\\ 3/8"\\ 1/2"\\ 1"\\ 1"\\ 1"\\ 1^{1}/2"\end{array}$	92.0 130.0 192.5 - - - - - - - - -	87.0 87.0 97.1 - - - - -	- - 61 79 79 148 148 196	- 78.15 78.15 78.15 78.15 78.15 78.15 90.85	- - 85 100 - 110 - 155	- - 44.0 46.5 - 50.0 - 59.0	- - 108 110 - 130 - 155	- - 47 47 47 - 47 - 52	1/2" NPT 1/2" NPT 1/2" NPT 1/2" NPT 1/2" NPT 1/2" NPT 1/2" NPT 1/2" NPT 1/2" NPT
DN 40 * DN 50 DN 80 DN 100	1 ¹ /2" 2" 3" 4"	- - - - * DN 1	_ _ _ 5, 25, 40	196 254 – – "FB" = F	90.85 105.25 – – ull bore ve	– 210 210 – ersions of	– 67.5 81.5 – Promass	- 226 280 342	- 64 86 100	1⁄2" NPT 1⁄2" NPT 1⁄2" NPT 1⁄2" NPT 1⁄2" NPT

		Applic	ation			
Instrument name	Flow measuring system "Promass 60 (HART)"					
Instrument function	Mass and volumetric flow measurement of liquids and gases in closed piping.					
	F	Function and s	ystem design			
Measuring principle	Mass flow measurement according to the Coriolis measuring principle (see page 3)					
Measuring system	Instrument family "Promass 60" consisting of: Transmitter: Promass 60 Sensors: Promass A, I, M and F					
	Prom		4 and DN 2, 4 high pressure version. be system in SS or Alloy C-22			
	 Promass I DN 8, 15, 25, 40, 50 (completely welded version) Straight single tube system in titanium DN 15 "FB", DN 25 "FB", DN 40 "FB": Full bore versions of Promass I with a higher full scale value (see table below) 					
	Promass F DN 8, 15, 25, 40, 50, 80, 100 (completely welded version) Two slightly curved measuring tubes in SS (DN 8100) or Alloy C-22 (DN 880)					
	Promass M DN 8, 15, 25, 40, 50, 80 (two straight measu tubes in titanium) Containment vessel up to 100 bar. DN 8,15, 25 high pressure version for operating pressures up to 350 bar					
	Two vers	sions are availabl	e: Compact versionRemote version (max. 20 m)			
	1	Input va	riables			
Measured variables	 Mass flow rate (is proportional to the phase difference of two on the measuring tubes which detect differences in its oscill Fluid density (is proportional to the resonance frequency of measuring tubes) 					
	Fluid	temperature (is n	Fluid temperature (is measured with temperature sensors)			
Measuring range						
weasunny range			Range of full scale values			
weasunny i di lye	DN	Liquid	Gas			
weasuring tange	[mm] 1 2 4 8 15 15* 25 25*	• m _{min (L)} • m _{max (L)} 0 20.0 kg/h 0100.0 kg/h 0450.0 kg/h 0 2.0 t/h 0 6.5 t/h 0 18.0 t/h 0 18.0 t/h 0 45.0 t/h	0			
weasuring tange	[mm] 1 2 4 8 15 15* 25 25* 40 40* 50	• m _{min (L)} • m _{max (L)} 0 20.0 kg/h 0100.0 kg/h 0450.0 kg/h 0 2.0 t/h 0 6.5 t/h 0 18.0 t/h 0 45.0 t/h 0 45.0 t/h 0 45.0 t/h 0 70.0 t/h	Gas $\dot{m}_{min} (G) \dot{m}_{max} (G)$ The full scale depends on the density of the gas. The full scale value can be determined with the following formula: $\dot{m}_{max(G)} = \frac{\dot{m}_{max(L)} \cdot \rho_{(G)}}{x \cdot 16}$ $\dot{m}_{max(G)} = Full scale value gas [t/h]$ $\dot{m}_{max(L)} = Full scale value liquid [t/h]$ (value from table)			
weasuring tange	[mm] 1 2 4 8 15 15* 25 25* 40 40*	• m _{min (L)} • m _{max (L)} 0 20.0 kg/h 0100.0 kg/h 0450.0 kg/h 0 2.0 t/h 0 6.5 t/h 0 18.0 t/h 0 18.0 t/h 0 45.0 t/h 0 45.0 t/h 0 70.0 t/h	$\begin{array}{rcl} & Gas \\ & \stackrel{\bullet}{m_{min}}_{(G)} & \vdots & \stackrel{\bullet}{m_{max}}_{(G)} \end{array}$ The full scale depends on the density of the gas. The full scale value can be determined with the following formula: $\dot{m}_{max(G)} = \frac{\dot{m}_{max(L)} \cdot \rho_{(G)}}{x \cdot 16}$ $\dot{m}_{max(G)} = Full scale value gas [t/h]$ $\dot{m}_{max(L)} = Full scale value liquid [t/h]$ $(value from table)$ $\rho_{(G)} = gas density [kg/m^3]$ $(at operating conditions)$ $x = constant [kg/m^3]$ $Promass A: x = 20$			
weasuring fallge	[mm] 1 2 4 8 15 15* 25 25* 40 40* 50 80	• m _{min (L)} • m _{max (L)} 0 20.0 kg/h 0100.0 kg/h 0450.0 kg/h 0 2.0 t/h 0 6.5 t/h 0 18.0 t/h 0 45.0 t/h 0 45.0 t/h 0 70.0 t/h 0 70.0 t/h 0350.0 t/h	$\begin{array}{rcl} & Gas \\ & \stackrel{\bullet}{m_{min}}_{(G)} & \vdots & \stackrel{\bullet}{m_{max}}_{(G)} \end{array}$ The full scale depends on the density of the gas. The full scale value can be determined with the following formula: $\dot{m}_{max(G)} = \frac{\dot{m}_{max(L)} \cdot \rho_{(G)}}{x \cdot 16}$ $\dot{m}_{max(G)} = Full scale value gas [t/h]$ $\dot{m}_{max(L)} = Full scale value gas [t/h]$ $\dot{m}_{max(L)} = Full scale value liquid [t/h]$ $(value from table)$ $\rho_{(G)} = gas density [kg/m^3]$ $(at operating conditions)$ $x = constant [kg/m^3]$			

	Input variables (continued)
<i>Measuring range</i> (continued)	Example for calculating a gas full scale value: Sensor: Promass F $\rightarrow x = 100$
	Promass F \rightarrow x = 100Nominal Diameter DN 50 \rightarrow 70.0 t/h(full scale value from table on page 29)
	Gas: Air with a density of 60.3 kg/m ³ (at 20°C and 50 bar)
	$\dot{m}_{max(G)} = \frac{\dot{m}_{max(L)} \cdot \rho_{(G)}}{x \cdot 1.6} = \frac{70.0 \cdot 60.3}{100 \cdot 1.6} = 26.4 \text{ t/h}$
Operable flow range	up to 1000 : 1. This enables totalizer values to be accurately determined.
Auxiliary input	U = 330 V DC, R_i = 1.8 k Ω Configurable for: zero point adjustment, positive zero return, totalizer reset.
	Output variables
Output signal	• Current output (with HART protocol) $0/420 \text{ mA}$; $R_L < 700 \Omega$ (DIP switches) or 420 mA ; $R_L \ge 250 \Omega$ (HART) Time constant: approx. 1 s (DIP switches) or freely selectable (HART) Full scale value: 8 values selectable (DIP switches) or freely selectable (HART) Temperature coefficient: typ. 0.01% o.f.s./°C
	 o.f.s. = of full scale <i>Pulse output</i> Open Collector: 0400 Hz (f_{max} = 500 Hz) U_{max} = 30 V, I_{max} = 250 mA Pulse value: 8 values selectable (DIP switch) or freely selectable (HART) Pulse width: max. 10 s (DIP switch) or freely selectable (HART) <i>Status output</i> Open Collector: U_{max} = 30 V, I_{max} = 250 mA configurable for error messages or flow direction recognition
Signal on alarm	 The following applies until the fault has been cleared: Current output: is set to a defined value (020 mA → 0 mA; 420 mA → 2 mA) Pulse output: no pulses Status output: Output is open, if configured for "error", (i.e. the Open Collector is not conducting).
Load	See specifications "Output signal"
Creep suppression	 DIP switch configuration: Switch on point at v ≤ 0.02 m/s (for water) Switch off point at v ≥ 0.04 m/s (for water) HART configuration:
	 Freely selectable switching points (hysteresis: -50%)
	Accuracy
Reference	Error limits based on ISO / DIS 11631:
conditions	 2030 °C; 24 bar Calibration facilities based on national standards Zero point calibrated under operating conditions Field density calibration carried out

Accuracy (continued)							
Measured error • Mass flow rate (liquids):							
	Promass A, M, F $\pm 0.15\% \pm [(\text{zero stability / flow rate}) \times 100]\%$ of rate I $\pm 0.20\% \pm [(\text{zero stability / flow rate}) \times 100]\%$ of rate						
		low rate (gas):					
	Promas A, I, M,	ate) x 100]% of rate					
	Volume Promas						
	PromassA, M $\pm 0.25\% \pm [(\text{zero stability / flow rate}) \times 100]\%$ ofI $\pm 0.50\% \pm [(\text{zero stability / flow rate}) \times 100]\%$ ofF $\pm 0.20\% \pm [(\text{zero stability / flow rate}) \times 100]\%$ of						
	Zero st	ability see table be	elow				
			e pulse/frequency o f the current outpu				
	Dia- meter	Max. full scale [kg/h] or [l/h]	Zero stability Promass A, M, F [kg/h] or [l/h]	Zero stability Promass I [kg/h] or [l/h]			
	DN 1 DN 2 DN 4 DN 8 DN 15 DN 15* DN 25 DN 25* DN 40* DN 40* DN 50 DN 80 DN 100	20 100 450 2000 6500 18000 45000 45000 70000 70000 180000 350000	0.0010 0.0050 0.0225 0.1000 0.3250 0.90 2.25 3.50 9.00 14.00				
	Example f Promass DN 25; Fl	for calculating the F $\rightarrow \pm 0.15\% \pm [(z \text{ ow rate: } 3.6 \text{ t/h} = 3)]$	zero stability/flow ra 600 kg/h	te) x 100]% of rate			
	Measuring	g error $\rightarrow \pm 0.15\%$	$t = \frac{0.9 \text{ kg/h}}{3600 \text{ kg/h}} \cdot 10$	0% = ± 0.175%			
Repeatability	Promas A, I, M, Mass fi Promas A, I, M, Volume Promas A, M	F $\pm 0.05\% \pm [^{1}/_{2}]$ low rate (gas): S F $\pm 0.25\% \pm [^{1}/_{2}]$ e flow rate (liquids):	2 x (zero stability / fl	ow rate) x 100]% of rate ow rate) x 100]% of rate ow rate) x 100]% of rate			
	F	A, M $\pm 0.10\% \pm [\frac{1}{2} x \text{ (zero stability / flow rate) x 100]\% of rate}$ I $\pm 0.20\% \pm [\frac{1}{2} x \text{ (zero stability / flow rate) x 100]\% of rate}$ F $\pm 0.05\% \pm [\frac{1}{2} x \text{ (zero stability / flow rate) x 100]\% of rate}$ Zero stability \rightarrow see table above					
Example for calculating the repeatability: Promass F $F \rightarrow \pm 0.05\% \pm [(\text{zero stability / flow rate}) \times 100]\%$ of rate DN 25; Flow rate: 3.6 t/h = 3600 kg/h							
	00% = ± 0.0625%						

		Accura	cy (continu	ued)			
 Process effects Process temperature effect: The below value represents the zero point error due to change process temperature away from temperature at which a zero adjustment was carried out: Promass A, I, M, F typical = ± 0,0002% of full scale / °C 							
	 Process pressure effect: The below defined values represent the effect on accuracy of mass flow due to changing process pressure away from calibration pressure (values in % of rate / bar). 						
	DN [mm]	Promass A flow rate % o.r.** / bar	Promass I flow rate % o.r.** / bar	Promass M flow rate % o.r.** / bar	Promass MP flow rate % o.r.** / bar	Promass F flow rate % o.r.** / ba	
	1 2 4	none none none	 	 	 		
	8 15 15 *		0.006 0.004 0.006	0.009 0.008	0.006 0.005 -	none none —	
	25 25 *		0.006 none	0.009	0.003	none	
	40 40 *		none 0.006	0.005	_	-0.003	
	50 80 100		0.006	none none —	 	-0.008 -0.009 -0.012	
	*	DN 15, 25, 40		ss I mit vollem I .r. = of rate	Nennweitenque	erschnitt	
		Operat	ing conditi	ons			
Installation condition	ons						
Installation instructions		Orientation: vertical or horizontal. Restrictions on installation and other recommendations: see page 9 – 11					
Inlet and outlet sections	Installa	Installation site is independent of inlet and outlet sections.					
Connection cable length	Remote	e version: ma	x. 20 meters				
Ambient conditions	5						
Ambient temperature	Transmitter and Sensor: -25+60 °C (Version with enhanced climate resistance: -40+60 °C)						
	 Depending on the fluid temperature, certain installation positions are to be observed to ensure that the permitted ambient temperature range for the transmitter is not exceeded (see page 11). An all-weather cover should be used to protect the housing from direct sunlight when mounting in the open. This is especially important in warmer climates and with high ambient temperatures. If the ambient temperature is below -25 °C, it is not recommended to use a version with display. 						
Storage temperature	-40+	80 °C					
Degree of protection (EN 60529)		nitter: IP 67; N :: IP 67; NEM					
	according to IEC 68-2-31						
Shock resistance	accord						
Shock resistance Vibration resistance		g, 10150 ł		to IEC 68-2-	6		

Operating conditions (continued)

Process conditions				
Fluid temperature	EPDM (-40 Silicone (-60	150 °C 150 °C 200 °C +200 °C) +160 °C) +200 °C) +210 °C)		
Nominal pressure Material load curves (p-T- diagrams): s. page 16, 18 ff.	Promass A Fittings: Flanges:	max. 160 bar (standard version) max. 400 bar (high pressure version) DIN PN 40 ANSI CI 150, CI 300 JIS 10K		
	Containment vessel: • Promass I Flanges:	DIN PN 40100 ANSI CI 150, CI 300, CI 600 JIS 10K, 20K, 40K, 63K		
	Containment vessel: • <i>Promass M</i> Flanges:	25 bar (optional 40 bar) resp. 375 psi (optional 600 psi) DIN PN 40100 ANSI CI 150, CI 300, CI 600 JIS 10K, 20K, 40K, 63K		
		40 bar (optional 100 bar) resp. 600 psi (optional 1500 psi)		
		essure version) nnector, fittings: max. 350 bar 100 bar resp. 1500 psi		
	Promass F Flanges:	DIN PN 16100 ANSI CI 150, CI 300, CI 600 JIS 10K, 20K, 40K, 63K		
	Containment vessel:	DN 880: 25 bar resp. 375 psi DN 100: 16 bar resp. 250 psi DN 850: optional 40 bar resp.600 psi		
Pressure loss	dependent on nominal (see page 12, 13)	diameter and sensor type		

	Mechanical construction					
Design, dimensions	see page 15 ff.					
Weights	see page 15, 17, 25					
Materials	Transmitter housing Powder-coated die-cast aluminium					
	Sensor housing / containment vessel Promass A, I, F Surfaces resistant to acids and alkalis, SS 1.4301 (304) Promass M Surfaces resistant to acids and alkalis, DN 850: chemically nickel-plated steel DN 80: SS 1.4313					
	Sensor connection housing (remote version) SS 1.4301 (304)					
	 Process connections Promass A see page 16 Promass M high pressure version see page 26 Promass I, M, F see page 18 – 24 					
	 Measuring tubes Promass A SS 1.4539 (904L), Alloy C-22 2.4602 (N 06022) 					
	Promass I titanium Grade 9					
	Promass M DN 80: titanium Grade 2, DN 850: titanium Grade 9					
	Promass F DN 8100: SS 1.4539 (904L) DN 880: Alloy C-22 2.4602					
	Gaskets Promass A, F, I no internal gaskets Promass M see page 18 – 24 Promass M silicone, viton (for high pressu	re version)				
Process connections	Promass A Welded process connection 4-VCO-4 fittings, ½" Tri-Cla Screw-on process connection Flanges (DIN 2501, ANSI I NPT-F and SWAGELOK fitted	amp tions: 316.5, JIS B2238),				
	Promass I, F Welded process connection 8-VCO-4 fittings (only for F 12-VCO-4 fittings, Flanges (DIN 2501, ANSI I Sanitary connections: Tri-C Hygienic coupling DIN 118	Promass F), 316.5, JIS B2238), Clamp,				
	Promass M Screw-on process connect Flanges (DIN 2501, ANSI I Sanitary connections: Tri-C Hygienic coupling DIN 118	B16.5, JIS B2238), Clamp,				
	 Promass M (High press.) Screw-on process connect G ³/₈", ¹/₂" NPT, ³/₈" NPT fitti ¹/₂" SWAGELOK coupling, connector with 7/8 14UNF 	ngs and VCO with				
Electrical connection	• Wiring diagram: see page 14					
Connection	 Cable glands (In-/outputs; remote version): PG 13.5 cable glands (515 mm) or ½" NPT, M 20 x 1.5 (815 mm), G ½" threads for cable glands 					
	Galvanic isolation: All circuits for inputs, outputs, power supply, and are galvanically isolated from each other.	d sensor				
	Cable specifications (remote version): see page	e 14				

	User interface					
Operation	 The instrument can basically be configured in two different ways: <i>Configuration with DIP switches and/or the local display:</i> DIP switches for setting basic instrument functions Local display and push-buttons for additional functions Jumper for configuring the auxiliary input <i>Configuration using HART protocol:</i> HART "Communicator DXR 275" handheld Commuwin II software for remote configuration and process visualization 					
Display	LC-display, 8 digits 11 segments for displayed engineering units and operating status					
Communication	Current output with superimposed H	ART protocol				
	Power supply					
Supply voltage, Frequency	Transmitter 85260 V AC (5060 Hz) 20 55 V AC, 1662 V DC Sensor is supplied by the transmitter					
Power consumption	AC: <15 VA (incl. sensor) DC: <15 W (incl. sensor)					
	Power supply (continue	ed)				
Power supply fail- ure	 Bridges min. 1 power cycle (22 ms). EEPROM saves measuring system data on power failure (no batteries required). DAT = exchangeable data storage module which stores all sensor data such as calibration data, nominal diameter, sensor version, etc. 					
	Certificates and approv	als				
Ex approvals	Information on presently available Ex versions (e.g. CENELEC, SEV, FM, CSA) can be supplied by your E+H Sales Centre on request. All explosion protection data are given in separate documentation available on request.					
CE mark	By attaching the CE-mark, Endress+Hauser confirms that the Promass 60 measurement system has been successfully tested and fulfils all legal requirements of the relevant EC directives.					
	Order information					
Accessories	 Post mounting set for Promass A: DN 1, 2: Order No. 50077972 DN 4: Order No. 50079218 Post mounting set for remote trans 	smitter housing:				
	Order No. 50076905					
Supplementary documentation	System Information PromassSI 014D/06/enOperating Manual Promass 60BA 013D/06/enTechnical Information Promass 63TI 030D/06/enOperating Manual Promass 63BA 014D/06/en					
	Other standards and guide	elines				
EN 61010 Protection Regulation EN 50081 Part 1 an EN 50082 Part 1 an	of protection (IP-Code) n Measures for Electronic Equipment f on and Laboratory Procedures d 2 (interference emission) d 2 (interference immunity) ion of Standards for Control and Regul					

Registered Trademarks

KALREZ[®] Registered Trademark of E.I. Du Pont de Nemours & Co., Wilmington, USA

SWAGELOK[®] Registered Trademark of Swagelok & Co., Solon, USA

TRI-CLAMP[®] Registered Trademark of Ladish & Co., Inc., Kenosha, USA

VITON [®] Registered Trademark of E.I. Du Pont de Nemours & Co., Wilmington, USA

HART [®] Registered Trademark of HART Communication Foundation, Austin, USA

Subject to modification

Endress+Hauser GmbH+Co. Instruments International P.O. Box 2222 D-79574 Weil am Rhein Germany

Tel. (07621) 975-02 Tx 773926 Fax (07621) 975 345 http://www.endress.com info@ii.endress.com

