Technical Information TI 030D/06/en No. 50068989

Coriolis Mass Flow Measurement System promass 63

Simultaneous measurement of mass, density and temperature for a broad range of applications For liquids and gases

Flexible system

- The system can be customised to each application
- Wide choice of materials for process connections and measuring tubes, compatible to the fluid
- Simple and cost-effective installation
- Transmitter housing can be rotated to fit the orientation

Easy to operate

- Menu-driven dialogue for all parameters
- Two-line illuminated display
- Touch Control: remote operation without special equipment (protection not violated)

Accurate measurement

- Measurement accuracy for liquids:
- Mass flow $\pm 0.1\%$
- Volume flow ± 0.15%
 Measurement accuracy for gases:
- Mass flow $\pm 0.5\%$
- 1000:1 operable flow rangeExcellent repeatability

Safe operation

- Self-emptying measuring tubes
- Secondary containment vessel as standard
- High electromagnetic compatibility (EMC)
- Self-monitoring with alarm function
- EEPROM stores data on power failure (no batteries required)
- ISO 9001 manufacturer, quality assured

Install anywhere

- Compact design
- Insensitive to plant vibration
- Rugged and shock-proof surfaces resistant to acids and alkalis
- IP 67 protection for compact and remote versions
- Measurement independent of fluid characteristics
- High performance: simultaneous measurement of more than one process variable, special density evaluation functions, etc.

Measuring System

Fields of application

The Promass 63 system measures the mass and volume flow of fluids having widely differing characteristics:

- Chocolate, condensed milk, syrup
- Oils, fats
- Acids, alkalis
- Varnishes, paints
- Suspensions
- Pharmaceuticals
- Catalytic converters, inhibitors
- Gases and gas mixtures

The system also measures the density and temperature of fluids in order to calculate other parameters such as volumetric flow, solids content or density units (standard density, °Brix, °Baumé, °API, °Plato, °Balling). The Promass 63 is used in applications wherever mass flow measurement is of critical importance:

- Mixing and batching of various raw materials
- Controlling processes
- Measuring of quickly changing densities
- Control and monitoring of product quality.

The advantages of this measurement process are demonstrated by its successful use in food processing, the pharmaceutical industry, the chemical and petrochemical industries, waste disposal, energy production, gas applications, etc.

The modular Promass 63 measuring system

As blind versions, all Promass instruments can also be connected to the multifunctional "Procom DZL 363" transmitter. Further information can be provided in a separate documentation (TI041D/06/en).

Information on all Ex versions is available on request from your E+H Sales Centre.

Measuring system

The measuring system consists of:

- Promass 63 transmitter
- Promass A, I, M or F sensor

The Promass 63 measuring system is mechanically and electronically designed for maximum flexibility with the transmitters and sensors being combined in any variation. The wide range of materials and process connections (fittings; flanges DIN, ANSI, JIS; Tri-Clamp) ensure that the measuring point can adjust to both plant and process conditions.

The transmitter housing can be rotated for ease of reading and operation in any orientation.

Sensor **Function**

Balanced Measuring System

Two-tube systems (Promass M, F) The system balance is ensured by the two measuring tubes vibrating in antiphase.

Single tube systems (Promass A, I)

For single tube systems, other design solutions are necessary for system balance than for two-tube systems

Promass A:

For Promass A, an internal reference mass is used for this purpose

Promass I:

For Promass I, the system balance necessary for flawless measurement is generated by exciting an eccentrically located, counter-oscillating pendulum mass

This TMB[™] (Torsion Mode Balanced) system is patented and guarantees accurate measurement, also with changing process and ambient conditions. The installation of Promass I is for this reason just as easy as with two-tube systems! Special fastening measures before and after the meter are therefore not necessary.

Measuring principle

The measuring principle is based on the controlled generation of Coriolis forces. These forces are always present when both translational (straight line) and rotational (revolving) movement occur simultaneously.

$$\mathbf{F}_{\mathbf{C}} = 2 \cdot \Delta \mathbf{m} \left(\vec{\omega} \times \vec{v} \right)$$

$$\vec{F}_{C}$$
 = Coriolis force

- Δm = mass of moving body
- $\vec{\omega}$ angular velocity =
 - radial velocity in a rotating or
- v oscillating system

The amplitude of the Coriolis force depends on the moving mass Δm , its velocity \vec{v} in the system and therefore its mass flow.

The Promass uses an oscillation instead of a constant angular velocity $\vec{\omega}$ and two parallel measuring tubes, with fluid flowing through them, are made to oscillate in antiphase, so that they act like a tuning fork (Promass M and F).

The Coriolis forces produced at the measuring tubes cause a phase shift in the tube oscillation (see Fig. on left):

- When there is zero flow, i.e. with the fluid standing still, both tubes oscillate in phase (1).
- When there is mass flow, the tube oscillation is decelerated at the inlet (2) and accelerated at the outlet (3).

As the mass flowrate increases, the phase difference also increases (A-B). The oscillations of the measuring tubes are determined using electrodynamic sensors at the inlet and outlet. The measurement principle operates independent of temperature, pressure, viscosity, conductivity or flow profile.

Density measurement

The measuring tubes are continuously excited at their resonant frequency. As the mass and therefore the density of the oscillating system changes (measuring tubes and fluid), the vibrating frequency is readjusted. The resonant frequency is thus a function of the density of the fluid and, because of this, a density signal can be obtained.

Temperature measurement

The temperature of the measuring tubes is determined in order to calculate the compensation factor due to temperature effects. This signal corresponds to the process temperature and is also available as an output.

Sectional view of Promass A, I, M and F sensors

- 1 Housing/containment vessel
- 2 Manifold
- 3 Process connection
- 4 Measuring tube(s) A: 1 curved tube
 - 1 straight tube Ŀ
 - M: 2 straight tubes
 - F: 2 curved tubes
- 5 Gasket
- 6 Plug

7 Cable gland 8 Electrodynamic

- sensors 9 Excitation system
- 10 Pendulum mass TMB[™] System (Promass I)

Transmitter Function

Function of the Promass 63

The Promass transmitter converts the measured values coming from the sensor into standardised output signals. According to their configuration, a number of outputs are therefore available:

- Current output with HART protocol
- Pulse/frequency output or 2nd current output
- Relay 1, e.g. fault
- Relay 2, e.g. limit value
- RS 485 interface

Display

Promass 63 has a two-line, illuminated LC display. This enables two of the following measured values to be read simultaneously:

- Actual mass, volume, standard volume as well as % content of target/carrier liquid with multiphase fluids.
- Density (e.g. kg/m³, °Brix, °Baumé, °API, °Plato, °Balling, etc.)
- Temperature
- Totalised flows

The following are also displayed:

- Alarm messages (process faults)
- Error messages (instrument faults)
- Status messages
- Programming messages

Communication

The Promass 63 can communicate with higher level control systems using an application-specific interface:

- Direct communication with personal computers and the E+H Rackbus environment (MODBUS, PROFIBUS, FIPBUS) is possible via a Rackbus RS 485 interface.
- The current output is available for the HART protocol using SMART technology.
- Promass 63 is also available as PROFIBUS-PA version for direct connection to process control systems, segment couplers or Commutec II.

Remote operation using these interfaces can also be carried out with the E+H programm Commuwin II. Detailed information on this is available from your local E+H Sales Centre.

Operational safety

- The Promass 63 measuring system fulfils the safety requirements according to EN 61010.
- The Promass 63 measuring system fulfils all general requirements for electromagnetic compatibility (EMC) according to EN 50081 Part 1 and 2 / EN 50082 Part 1 and 2 as well as to NAMUR recommendations.
- Extensive self-monitoring of the measuring system gives complete operational safety.

Selecting functions in the E+H operating matrix.

On power failure, all measuring system data are safely stored in the EEPROM (no batteries required).

Mounting

No special fittings such as brackets are needed. External forces are absorbed by the construction of the device, e.g. the secondary containment vessel. The high frequency oscillation of the measuring tubes ensures that correct operation of the measuring system is unaffected by plant vibration.

When mounting, no special precautions need to be taken for turbulencegenerating devices (valves, bends T-pieces, etc.) as long as no cavitation occurs.

Orientation (Promass A)

Vertical

This is best with the flow direction upwards. Entrained solids sink downward and gases rise away from the measuring tube. This also allows the measuring tube to be completely drained and protects it from solids build-up.

Horizontal

When correctly installed, the transmitter housing is either above or below the piping. This assures that no gas bubbles may collect or solids be deposited in the curved measuring tube.

Wall and post mounting

The sensor may not be suspended in the piping, that is, without support or fixation to avoid excessive stress on the material around the process connection.

The sensor housing base plate allows table, wall, or post mounting. The post mounting requires a special mounting set.

Orientation (Promass I, M, F)

Vertical

This is best with the flow direction upwards. Entrained solids sink downward and gases rise away from the measuring tubes when the product is not flowing. This also allows the measuring tubes to be completely drained and protects them from solids build-up.

Horizontal

ti030y11

- Promass I (single tube) can be mounted in any horizontal piping.
- Promass M, F measuring tubes must lie side by side. When correctly installed, the transmitter housing is either above or below the piping (see view A).
- Promass F measuring tubes are slightly curved. Therefore, the sensor position is to be adapted to the fluid properties for horizontal installation:
 - F1: not suitable for outgassing fluids
 - F2: not suitable for fluids with solids content

Orientation Promass A

Orientation Promass I, M, F

Mounting

Mounting location (vertical piping)

Mounting location

Air or entrained gases in the measuring tube may cause errors in measurement and therefore the following mounting installations are to be avoided:

- Do not install at the highest point of the piping.
- Do not install in a vertical pipeline directly upstream of a free pipe outlet.

Correct installation is still possible using the recommendation in the adjacent figure. Restrictions in the piping or an orifice with a smaller cross section than the measuring instrument can prevent the sensor from running empty during measurement.

Nominal diameter	Ø Orifice/restriction
DN 1	0.8 mm
DN 2	1.5 mm
DN 4	3.0 mm
DN 8	6.0 mm
DN 15	10.0 mm
DN 15*	15.0 mm
DN 25	14.0 mm
DN 25 *	24.0 mm
DN 40	22.0 mm
DN 40*	35.0 mm
DN 50	25.0 mm
DN 80	50.0 mm
DN 100	65.0 mm

* DN 15, 25, 40 "FB" Full bore versions of Promass I

Zero point adjustment

To ensure accurate measurement also with very low flow rates, we recommend to carry out a zero point adjustment under process conditions.

The zero point adjustment should be carried out only with the measuring tubes full and with no flow. This can be achieved with shut-off valves both upstream and downstream of the sensor (or use existing valves if present).

Normal operation

• Open valves A and B

Zero point adjustment **with** pumping pressure

- Open valve A
- Close valve B

Zero point adjustment **without** pumping pressure

- Close valve A
- Open valve B

ti030y14

Zero point adjustment and shut-off valves

Planning and Installation

System pressure

It is important to avoid cavitation as this can affect tube oscillation.

No special measures need be taken for fluids which have properties similar to those of water under normal conditions.

With volatile liquids (hydrocarbons, solvents, liquefied gases) or liquids in suction lines, the vapour pressure of the liquid must not drop below a point where the liquid begins to boil. It is also important not to release gases which are found naturally in many liquids. This can be prevented by ensuring that there is sufficient system pressure.

Ideally the sensor should be mounted • on the discharge side of pumps

- (avoiding low pressure),
- at the lowest point of a vertical pipeline.

Corrosion resistance

With corrosive liquids, the chemical resistance of all wetted parts such as measuring tubes, gaskets and process connections must be thoroughly checked. This also applies to the liquids used for cleaning the Promass sensor.

Tracing, thermal insulation

With certain products heat transfer at the sensor must be avoided. A wide range of materials can be used for the necessary insulation.

Heating can be provided either electrically, e.g. by heating jackets, or supplied by copper pipes with heated water or steam. Heating elements for heat tracing are available for all sensors.

Caution!

Ensure that the meter electronics are not overheated. The connector between the sensor and the transmitter housings as well as the connection housing of the remote version must therefore always be kept free.

Fluid temperature/Orientation

To ensure that the permitted ambient temperature range for the transmitter is not exceeded (-25...+60 °C) positioning is recommended as follows:

High fluid temperature

- Vertical piping: Position A
- Horizontal piping: Position C

Low fluid temperature

- Vertical piping: Position A
- Horizontal piping: Position B

Full scale value / Nominal diameter

The most suitable nominal diameter is selected by taking into account the measuring range required and the permitted pressure drop. The full scales values for each nominal diameter are defined on page 26.

- The minimum recommended full scale value is about ¹/₂₀ of the indicated maximum values above.
- With most applications, the optimum is considered to be between 20...50% of the maximum full scale value.
- With abrasive fluids, e.g. liquids containing solids, a lower full scale value should be used (v_{fluid} <1 m/s).
- For gas applications the following rules applies:
 - The flow velocity in the tubes should not exceed half of the sonic speed (mach 0.5).
- The maximum massflow depends on the density of the gas and can be calculated from the formula on page 26.

"Applicator" design software

All important instrument data are contained in the E+H software in order to optimise the design of the measuring system. The Applicator software is used for the following calculations:

- Nominal diameter of the sensor with regard to the characteristics of the fluid such as viscosity, density, etc.
- Pressure loss downstream of the measuring point
- Converting mass flow to volumetric flow, etc.
- Simultaneous display of various nominal diameters

Pressure Loss

The pressure drop is dependent on the characteristics of the fluid and its flowrate. The following formulae can be used for liquids to approximately calculate the pressure loss:

Note!

Calculations on pressure loss can be carried out using the Endress+Hauser "Applicator" software (see page 7).

	Promass A / I	Promass M / F							
Reynolds No.	$Re = \frac{4 \cdot \mathbf{m}}{\pi \cdot \mathbf{d} \cdot \mathbf{v} \cdot \mathbf{\rho}}$	$Re = \frac{2 \cdot \mathbf{m}}{\pi \cdot d \cdot \upsilon \cdot \rho}$							
Re ≥ 2300 *	$\Delta p = K \cdot \upsilon^{0.25} \cdot \overset{\bullet}{m}^{1.75} \cdot \rho^{-0.75} + \frac{K3 \cdot \overset{\bullet}{m}^2}{\rho}$	$\Delta p = K \cdot \upsilon^{0.25} \cdot \dot{m}^{1.85} \cdot \rho^{-0.86}$							
Re < 2300	$\Delta p = K1 \cdot \upsilon \cdot \mathbf{m} + \frac{K3 \cdot \mathbf{m}^2}{\rho}$	$\Delta p = K1 \cdot \upsilon \cdot \dot{m} + \frac{K2 \cdot \upsilon^{0.25} \cdot \dot{m}^2}{\rho}$							
$\begin{array}{llllllllllllllllllllllllllllllllllll$									
* For gases for Re ≥ 2	* For gases the pressure loss has always to be calculated by use of the formula for Re ≥ 2300.								

	Diameter	d [m]	К	K1	K2	KЗ
Promass A	DN 1 DN 2 DN 4	1.10 · 10 ⁻³ 1.80 · 10 ⁻³ 3.50 · 10 ⁻³	1.2 · 10 ¹¹ 1.6 · 10 ¹⁰ 9.4 · 10 ⁸	1.3 · 10 ¹¹ 2.4 · 10 ¹⁰ 2.3 · 10 ⁹	-	0 0 0
Promass A High press.	DN 2 DN 4	$\frac{1.40 \cdot 10^{-3}}{3.00 \cdot 10^{-3}}$	$5.4 \cdot 10^{10} \\ 2.0 \cdot 10^{9}$	$6.6 \cdot 10^{10} \\ 4.3 \cdot 10^{9}$	_	0 0
Promass I	DN 8 DN 15 DN 15* DN 25 DN 25* DN 40 DN 40* DN 50	$\begin{array}{c} 8.55 \cdot 10^{-3} \\ 11.38 \cdot 10^{-3} \\ 17.07 \cdot 10^{-3} \\ 25.60 \cdot 10^{-3} \\ 25.60 \cdot 10^{-3} \\ 35.62 \cdot 10^{-3} \\ 35.62 \cdot 10^{-3} \end{array}$	$\begin{array}{c} 8.1 \cdot 10^6 \\ 2.3 \cdot 10^6 \\ 4.1 \cdot 10^5 \\ 4.1 \cdot 10^5 \\ 7.8 \cdot 10^4 \\ 7.8 \cdot 10^4 \\ 1.3 \cdot 10^4 \\ 1.3 \cdot 10^4 \end{array}$	$\begin{array}{c} 3.9 \cdot 10^7 \\ 1.3 \cdot 10^7 \\ 3.3 \cdot 10^6 \\ 3.3 \cdot 10^6 \\ 8.5 \cdot 10^5 \\ 8.5 \cdot 10^5 \\ 2.0 \cdot 10^5 \\ 2.0 \cdot 10^5 \end{array}$		$\begin{array}{c} 129.95 \cdot 10^4 \\ 23.33 \cdot 10^4 \\ 0.01 \cdot 10^4 \\ 5.89 \cdot 10^4 \\ 0.11 \cdot 10^4 \\ 1.19 \cdot 10^4 \\ 0.08 \cdot 10^4 \\ 0.25 \cdot 10^4 \end{array}$
Promass M	DN 8 DN 15 DN 25 DN 40 DN 50 DN 80	$\begin{array}{c} 5.53 \cdot 10^{-3} \\ 8.55 \cdot 10^{-3} \\ 11.38 \cdot 10^{-3} \\ 17.07 \cdot 10^{-3} \\ 25.60 \cdot 10^{-3} \\ 38.46 \cdot 10^{-3} \end{array}$	$\begin{array}{c} 5.2 \cdot 10^{7} \\ 5.3 \cdot 10^{6} \\ 1.7 \cdot 10^{6} \\ 3.2 \cdot 10^{5} \\ 6.4 \cdot 10^{4} \\ 1.4 \cdot 10^{4} \end{array}$	$\begin{array}{c} 8.6 \cdot 10^{7} \\ 1.7 \cdot 10^{7} \\ 5.8 \cdot 10^{6} \\ 1.2 \cdot 10^{6} \\ 4.5 \cdot 10^{5} \\ 8.2 \cdot 10^{4} \end{array}$	$\begin{array}{c} 1.7 \cdot 10^{7} \\ 9.7 \cdot 10^{5} \\ 4.1 \cdot 10^{5} \\ 1.2 \cdot 10^{5} \\ 1.3 \cdot 10^{4} \\ 3.7 \cdot 10^{3} \end{array}$	
Promass M High press.	DN 8 DN 15 DN 25	4.93 · 10 ⁻³ 7.75 · 10 ⁻³ 10.20 · 10 ⁻³	$6.0 \cdot 10^{7}$ $8.0 \cdot 10^{6}$ $2.7 \cdot 10^{6}$	$\begin{array}{c} 1.4 \cdot 10^8 \\ 2.5 \cdot 10^7 \\ 8.9 \cdot 10^6 \end{array}$	$\begin{array}{c} 2.8 \cdot 10^{7} \\ 1.4 \cdot 10^{6} \\ 6.3 \cdot 10^{5} \end{array}$	- -
Promass F	DN 8 DN 15 DN 25 DN 40 DN 50 DN 80 DN 100	$\begin{array}{c} 5.35 \cdot 10^{-3} \\ 8.30 \cdot 10^{-3} \\ 12.00 \cdot 10^{-3} \\ 17.60 \cdot 10^{-3} \\ 26.00 \cdot 10^{-3} \\ 40.50 \cdot 10^{-3} \\ 51.20 \cdot 10^{-3} \end{array}$	$\begin{array}{c} 5.70 \cdot 10^{7} \\ 5.80 \cdot 10^{6} \\ 1.90 \cdot 10^{6} \\ 3.50 \cdot 10^{5} \\ 7.00 \cdot 10^{4} \\ 1.10 \cdot 10^{4} \\ 3.54 \cdot 10^{3} \end{array}$	$\begin{array}{c} 9.60 \cdot 10^{7} \\ 1.90 \cdot 10^{7} \\ 6.40 \cdot 10^{6} \\ 1.30 \cdot 10^{6} \\ 5.00 \cdot 10^{5} \\ 7.71 \cdot 10^{4} \\ 3.54 \cdot 10^{4} \end{array}$	$\begin{array}{c} 1.90 \cdot 10^{7} \\ 10.60 \cdot 10^{5} \\ 4.50 \cdot 10^{5} \\ 1.30 \cdot 10^{5} \\ 1.40 \cdot 10^{4} \\ 1.42 \cdot 10^{4} \\ 5.40 \cdot 10^{3} \end{array}$	

Pressure loss data **inclusive** interface measuring tube(s) / piping Pressure loss diagrams for water can be found on the following page.

* DN 15, 25, 40 "FB" = Full bore versions of Promass I

 \odot

Promass A Pressure loss [mbar] DN 4 10000 1000 100 þe 10 Mass flow [kg/h] 1 0.1 10 100 1000 Standard version ---- High pressure version Promass I Pressure loss [mbar] 1000 DN 25 DN 15 DN 15 DN 40 DN 50 DN 25 * DN 40 * DN 8 100 10 1 0.1 Mass flow [t/h] 0.01 0.1 10 100 Standard versions: inclusive interface measuring tube(s) / piping - - -Full bore versions * Promass M, F Pressure loss [mbar] 10000 DN DN 100 DN 15 DN 40 DN: DN 80 1000 0 \odot 100 10 1 ti030y16 0.1 0.001 0.01 10 0.1 100 1000 1 Mass flow [t/h] Promass M Promass M (high pressure version)

. _ . _ . - - -

Promass F

Electrical Connections

- Note!
- Depending on the order information, the transmitter electronics contain different
- boards: HART RS 485 2 CUR. (2 current outputs) PROFIBUS-PA
- Ex i
- DZL (for connecting trans-mitter "Procom DZL 363")
- Technical data on instruments with Ex approvals are given in separate documentation available from E+H on request.

	HART – Cu	rrent-loop output	RS 485		2 Current-loop outputs (2 CUR.)		
3	Ground connecti	on (ground wire)	Ground connecti	on (ground wire)	Ground connect	ion (ground wire)	
1 2	L1 for AC N	L+ for DC power supply L-	L1 for AC N	L+ for DC power supply L-	L1 for AC	L+ for DC power supply L-	
20 (+) 21 (-)	Pulse/frequency output	active/passive, f = 210000 Hz (max. 16383 Hz) active: 24 V DC, 25 mA (250 mA during 20 ms) passive: 30 V DC, 25 mA (250 mA during 20 ms)	Input/ output	RS 485 or auxiliary input A +/- B -/+ 330 V DC	Current output 2	active, 0/420 mA R _L <700 Ω	
22 (+) 23 (–)	Relay 1	max. 60 V AC / 0.5 A max. 30 V DC / 0.1 A can be configured: e.g. for failure	Relay 1	max. 60 V AC / 0.5 A max. 30 V DC / 0.1 A can be configured: e.g. for failure	Relay 1	max. 60 V AC / 0.5 A max. 30 V DC / 0.1 A can be configured: e.g. for failure	
24 (+) 25 (–)	Relay 2	max. 60 V AC / 0.5 A max. 30 V DC / 0.1 A can be configured: e.g. for limit value	Relay 2	elay 2 max. 60 V AC / 0.5 A max. 30 V DC / 0.1 A can be configured: e.g. for limit value		max. 60 V AC / 0.5 A max. 30 V DC / 0.1 A can be configured: e.g. for limit value	
26 (+) 27 (-)	Current output 1	active, 0/420 mA, R _L <700 Ω with HART protocol: 420 mA, R _L ≥ 250 Ω	Current output or Pulse/frequency output	$\begin{array}{l} \mbox{active, 0/420 mA, R_L <700 } \Omega \\ \mbox{active/passive, f = 210000 Hz} \\ \mbox{active: 24 V DC, 25 mA} \\ \mbox{(250 mA during 20 ms)} \\ \mbox{passive: 30 V DC, 250 mA} \\ \mbox{(250 mA during 20ms)} \end{array}$	Current output 1	active, 0/420 mA, RL < 700 Ω with HART protocol: 420 mA, R _L ≥ 250 Ω	
28	Ground connecti	on (screen of signal cable)	Ground connecti	on (screen of signal cable)	Ground connection (screen of signal cable)		

	PROFIBUS-PA	Intrinsically safe Ex i outputs	DZL 363	
3	Ground connection (ground wire)	Ground connection (ground wire)	Ground connection (ground wire)	
1 2	$\begin{array}{c} L1 \\ N \end{array}$ for AC $\begin{array}{c} L+ \\ L- \end{array}$ for DC power supply	L1 for AC L+ for DC power supply L-	DoS version* Dx version*** 1 connected with 24 L1 2 connected with 25 n L+ for DC power L- supply	
20 (+) 21 (-)	not used	not used	DoS version Dx version DoS+ not used DoS-	
22 (+) 23 (-)	Current output active, 0/420 mA, $R_L < 350 \Omega$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	DoS version Dx version not used Dx+ (A-data) Dx- (B-data)	
24 (+) 25 (-)	not used	not used	DoS version Dx version 24 connected with 1 not used 25 connected with 2	
26 (+) 27 (-)	Bus PROFIBUS-PA (EN 50170, Volume 2, IEC 1158-2)	Pulse/frequency passive, f = 210000 Hz output can be used as a NAMUR contact according to DIN 19234	not used	
28	Ground connection (screen of signal cable)	Ground connection (screen of signal cable)	Ground connection (screen of signal cable)	
	-			

DoS version: The Promass sensor is powered by the "Procom DZL 363" transmitter.

** Dx version: Promass sensor and "Procom DZL 363" transmitter are powered with separate power supplies.

Electrical Connections

Remote version

gry = grey; grn = green; yel = yellow; pnk = pink; wht = white; brn = brown

Cable specifications for the remote version

 $6 \times 0.38 \text{ mm}^2$ PVC cable with common screening and individually screened cores. Conductor resistance: $\leq 50 \Omega$ /km; Capacitance: core/screen $\leq 420 \text{ pF/m}$

Connection to the "Procom DZL 363" transmitter

The terminal assignment of Procom DZL 363 is described in separate documentation (TI 041D/06/en).

With the DoS version (DZL board), the connecting cable between the Promass sensor and the "Procom DZL 363" transmitter is galvanically connected to its power supply. For cabling use only screened cable which can also carry the power supply load.

Dimensions Promass 63 A

Compact version

Proce connect DN DN DN	ess ction 1 2 4	L 4-VCO-4 fittings 290 372 497	L1 1/2" T Clan 296 378 503	iri- ½	L2 [™] NPT-F 361 443 568	SI DN 1	L3 WAGEL0 , 2: ¹ / ₈ " DN 4: ¹ / ₂ 359.6 441.6 571.6	OK or ¹ ⁄4"	L4 1⁄2" fl (AN CI 150 393 475 600	L5 ange ISI) CI 300 393 475 600	L6 DN (D) PN 4 393 475 600	L7 15 flange IN, JIS) 0 10K 393 475 600
Diam DIN	neter ANSI	di	Α	В	С	E	F	G	Н	к	М	Weight [kg]
DN 1 DN 2 DN 2* DN 4 DN 4*	¹ / ₂₄ " ¹ / ₁₂ " ¹ / ₁₂ " ¹ / ₁ " ¹ / ₈ "	1.1 1.8 1.4 3.5 3.0	32 32 32 32 32 32	165 165 165 195 195	269.5 269.5 269.5 279.5 279.5	120 120 120 150 150	145 145 145 175 175	160 160 160 220 220	301.5 301.5 301.5 311.5 311.5 311.5	180 180 180 240 240	228 310 310 435 435	10 11 11 15 15
			*	ligh pro	essure v	ersion,	All dime	ensions	in mm			

Remote version (dimensions of the transmitter: see page 14)

ti030y39

Diameter		B1	N	L
DIN	ANSI	[mm]	[mm]	
DN 1	1/24"	122	154	Dimensions dependent on the
DN 2	¹ / ₁₂ "	122	154	process connections (see above)
DN 4	1/8"	132	164	

Note! Dimensions of Ex instru-ments are given in separate documentation available from E+H on request.

Process Connections Promass 63 A

Wetted parts materials

Measuring tube:	SS 1.4539 (904L), Alloy C-22 2.4602 (N 06022)
4-VCO-4 fittings	SS 1.4539 (904L), Alloy C-22 2.4602 (N 06022)
¹ / ₂ " Tri-Clamp	SS 1.4539 (904L)
Adapter sets: ¹ /8" or ¹ /4" SWAGELOK ¹ /4" NPT-F	SS 1.4401 (316) SS 1.4539 (904L), Alloy C-22 2.4602 (N 06022)
Flange:	SS 1.4539 (904L), Alloy C-22 2.4602 (N 06022)
DIN, ANSI, JIS	lap joint flanges (not wetted) SS 1.4404 (316L)
Gaskets (O-ring):	Viton (–15+200 °C), EPDM (–40+160 °C), Silicone (–60+200 °C), Kalrez (–30+210 °C)

Material load curves Promass A

* with ¹/₂" or DN 15 flanges as standard

Dimensions Promass 63 I, M, F

DN 8: with DN 15 flanges as standard; All weights stated are those for the compact version;

Promass M, high pressure version (DN 8, 15, 25), same dimension as the standard version;

** DN 15, 25, 40 "FB" = Full bore versions of Promass I;

*** DN 100 / 4" : Nominal diameter DN 80 / 3" with DN 100 / 4" flanges;

**** DN 150 / 6" : Nominal diameter DN 100 / 4" with DN 150 / 6" flanges

Process Connections Promass 63 I, M, F **DIN 2501**

Promass I Wetted parts: titanium Grade 9 No internal gaskets with welded process connections

Promass M

Flange material: SS 1.4404 (316L), titanium Grade 2 Gasket material: O-ring in Viton (-15...+200 °C), EPDM (-40...+160 °C), Silicone (-60...+200 °C), Kalrez (-30...+210 °C), FEP coated (-60...+200 °C)

Promass F

Flange material: (DN 8...100) SS 1.4404 (316L), (DN 8...80) Alloy C-22 2.4602 (N 06022) No internal gaskets with welded process connections

Flanges also available with grooves to DIN 2512 N (not for Promass I)

Promass I										
	PN 40		PN	64	PN 100					
Diameter	L [mm]	x [mm]	L [mm]	x [mm]	L [mm]	x [mm]				
DN 8	402	20	-	_	402	25				
DN 15	438	20	-	-	438	25				
DN 15*	572	19	-	-	578	26				
DN 25	578	23	-	-	578	29				
DN 25*	700	22	_	_	706	31				
DN 40	708	26	-	-	708	32				
DN 40*	819	24	-	-	825	33				
DN 50	827	28	832	34	832	36				

DN 8: with DN 15 flanges as standard; * DN 15, 25, 40 "FB" = Full bore versions of Promass I

	Promass M, F											
	PN	16	PN 40		PN 64		PN 100					
Diameter	L [mm]	x [mm]	L [mm]	x [mm]	L [mm]	x [mm]	L [mm]	x [mm]				
DN 8**	-	_	370	16	400	20	400	20				
DN 15 **	-	_	404	16	420	20	420	20				
DN 25	-	-	440	18	470	24	470	24				
DN 40	-	-	550	18	590	26	590	26				
DN 50	-	-	715	20	724	26	740	28				
DN 80	-	-	840	24	875	28	885	32				
DN 100 ***	874	20	874	24	_	-	-	-				
DN 100	1128	20	1128	24	1128	30	1128	36				
DN 150 ****	1168	22	1168	28	-	-	-	-				

DN 8: with DN 15 flanges as standard; DN 100 only with Promass F available; ** DN 8, DN 15: also available with DN 25, PN 40 flanges (L = 440 mm, x = 18 mm); *** DN 10: Diameter DN 80 with DN 100 flanges;

**** DN 150: Diameter DN 100 with DN 150 flanges

Pressure limitations due to fluid temperature

Surface finish of the flanges

For PN 16, PN 40: DIN 2526 Form C, R_a 6.3...12.5 μ m

For PN 64, PN 100: DIN 2526 Form E, R_a 1.6...3.2 μm

Process Connections Promass 63 I, M, F **ANSI B16.5**

Promass I Wetted parts: titanium Grade 9 No internal gaskets with welded process connections

Promass M

SS 1.4404 (316L), titanium Grade 2
O-ring in Viton (-15+200 °C), EPDM (-40+160 °C),
Silicone (-60+200 °C), Kalrez (-30+210 °C),
FEP coated (-60+200 °C)
(DN 8100) SS 1.4404 (316L),
(DN 880) Alloy C-22 2.4602 (N 06022)

No internal gaskets with welded process connections

ti030y23

Promass I										
Diameter		CI 150		CI	300	CI 600				
ANSI	DIN	L [mm]	x [mm]	L [mm]	x [mm]	L [mm]	x [mm]			
3⁄8" 1⁄2" 1⁄2" * 1" 1" 1" * 11/4"	DN 8 DN 15 DN 15 * DN 25 DN 25 *	402 438 572 578 700 708	20 20 19 23 22	402 438 572 578 700 708	20 20 19 23 22 26	402 438 578 578 706 708	20 20 22 23 25 28			
1½" * 2"	DN 40* DN 50	819 827	24 28	819 827	24 28	825 832	29 33			

 $^{3}\text{/}_{8}$ ": with $^{1}\text{/}_{2}$ " flanges as standard; * DN 15, 25, 40 "FB" = Full bore versions of Promass I

Promass M, F									
Nennweite		CI 150		CLS	300	CI 600			
ANSI	DIN	L [mm]	x [mm]	L [mm]	x [mm]	L [mm]	x [mm]		
3/8" 1/2" 1" 1 ¹ /2" 2" 3" 4" ** 4"	DN 8 DN 15 DN 25 DN 40 DN 50 DN 80 DN 100 ** DN 100 DN 150 ***	370 404 550 715 840 874 1128	11.2 11.2 14.2 17.5 19.1 23.9 23.9 23.9 25.4	370 404 550 715 840 894 1128	14.2 14.2 17.5 20.6 22.3 28.4 31.7 31.7	400 420 490 600 742 900 - 1158	20.6 20.6 23.9 28.7 31.8 38.2 - 48,4		

Surface finish of the flanges

For CI 150, CI 300, CI 600: R_a 3.2...6.3 μm

ti030y24

Process Connections Promass 63 I, M, F **JIS B2238**

Promass I Wetted parts: titanium Grade 9 No internal gaskets with welded process connections

Promass M

Flange material: SS 1.4404 (316L), titanium Grade 2 Gasket material: O-ring in Viton (-15...+200 °C), EPDM (-40...+160 °C), Silicone (-60...+200 °C), Kalrez (-30...+210 °C), FEP coated (-60...+200 °C) Promass F

Flange material: (DN 8...100) SS 1.4404 (316L), (DN 8...80) Alloy C-22 2.4602 (N 06022)

No internal gaskets with welded process connections

Promass I									
	10	ж	20K		40K		63K		
Diameter	L [mm]	x [mm]							
DN 8	_	-	402	20	402	25	402	28	
DN 15	_	-	438	20	438	25	438	28	
DN 15*	-	-	572	19	578	26	578	29	
DN 25	-	-	578	23	578	27	578	30	
DN 25*	-	-	700	22	706	29	706	32	
DN 40	-	-	708	26	708	30	708	36	
DN 40*	-	-	819	24	825	31	825	37	
DN 50	827	28	827	28	827	32	832	40	

DN 8: with DN 15 flanges as standard; * DN 15, 25, 40 "FB" = Full bore versions of Promass I

Promass M, F									
	10	ж	20K		40K		63K		
Diameter	L [mm]	x [mm]							
DN 8	-	-	370	14	400	20	420	23	
DN 15	-	-	404	14	425	20	440	23	
DN 25	-	-	440	16	485	22	494	27	
DN 40	-	-	550	18	600	24	620	32	
DN 50	715	16	715	18	760	26	775	34	
DN 80	832	18	832	22	890	32	915	40	
DN 100 **	864	18	_	_	_	-	-	-	
DN 100	1128	18	1128	24	1168	36	1168	44	
DN 150 ***	1168	22	_	_	_	-	-	-	

DN 8: with DN 15 flanges as standard; DN 100: only for Promass F available;

** DN 100: Diameter DN 80 with DN 100 flanges;

*** DN 150: Diameter DN 100 with DN 150 flanges

Surface finish of the flanges

Für 10K, 20K, 40K, 63K: R_a 3.2...6.3 μm

Pressure limitations due to fluid temperature

Wetted parts materials (DIN 2501 / ANSI B16.5 / JIS B2238)

PVDF Process Connections Promass 63 M

Flange material: PVDF

Gasket material: O-Ring in Viton (–15...+200 °C), EPDM (–40...+160 °C), Silicone (–60...+200 °C), Kalrez (–30...+210 °C),

VCO Process Connections Promass 63 I, M, F

Wetted Parts Materials

Promass I

Process connection materials: titanium Grade 2 No internal gaskets with welded process connections

Process connection materials: SS 1.4404 (316L) Gasket materials (O-ring): Viton (-15...+200 °C), EPDM (-40...+160 °C), Silicone (-60...+200 °C), Kalrez (-30...+210 °C)

Promass F

Process connection materials: SS 1.4404 (316L) No internal gaskets with welded process connections

Diameter (without nut)	Promass I L [mm]
DN 8 12-VCO-4 (³ / ₄ ")	429
DN 15 12-VCO-4 (³ / ₄ ")	465

Pressure limitations due fluid temperature

ti030y09

ti030y07

Sanitary Process Connections Promass 63 I, M, F

Wetted parts materials

Promass I (completely welded version) Coupling / Tri-Clamp: titanium Grade 2

Promass M (connections with internal gaskets) Coupling / Tri-Clamp: SS 1.4404 (316L) Gasket: Silicone flat gasket (EPDM (40 + 160 °

SS 1.4404 (316L) Silicone flat gasket (-60...+200 °C) or EPDM (-40...+160 °C), FDA licensed gasket materials

Promass F (completely welded version) Coupling / Tri-Clamp: SS 1.4404 (316L)

Wetted parts materials

Promass I (completely welded version) Coupling / Tri-Clamp: titanium Grade 2

Promass M (connections with internal gaskets) Coupling / Tri-Clamp: SS 1.4404 (316L) Gasket: Silicone flat gasket (-60...+200 °C) or EPDM (-40...+160 °C), FDA licensed gasket materials

Promass F (completely welded version) Coupling / Tri-Clamp: SS 1.4404 (316L)

Promass M, F								
Diam	eter	Clamp	L	ØG	ØD			
DIN	ANSI		[mm]	[mm]	[mm]			
DN 8	3⁄8"	1/2"	367	25.0	9.5			
DN 8	3/8"	1"	367	50.4	22.1			
DN 15	1/2"	1/2"	398	25.0	9.5			
DN 15	1/2"	1"	398	50.4	22.1			
DN 25	1"	1"	434	50.4	22.1			
DN 40	1 ¹ ⁄2"	1 ¹ /2"	560	50.4	34.8			
DN 50	2"	2"	720	63.9	47.5			
DN 80 M	3"	3"	801	90.9	72.9			
DN 80 F	3"	3"	900	90.9	72.9			
DN 100 *	4"	4"	1128	118.9	97.4			

 $^{3}\text{/}_{8}"$ and $^{1}\text{/}_{2}":$ with 1" connections as standard; 3A-version with $R_{a}~\leq0.8~\mu m$ available; DN 100: only for Promass F available

Pressure limitations due to fluid temperature

The material load limit is exclusively determined by the material properties of the Tri-Clamp used. This clamp is not included in the shipment.

			Promas	ss I		
d	Diar	neter	Clamp	L	ØG	ØD
d.	DIN	ANSI		[mm]	[mm]	[mm]
	DN 8	3⁄8"	1⁄2"	426	25.0	9.5
	DN 8	3⁄8"	3⁄4"	426	25.0	16.0
	DN 8	3⁄8"	1"	427	50.4	22.1
	DN 15	1/2"	1/2"	462	25.0	9.5
	DN 15	1/2"	3⁄4"	462	25.0	16.0
	DN 15	1/2"	1"	463	50.4	22.1
	DN 15**	1/2"	3⁄4"	602	25.0	16.0
	DN 25	1"	1"	603	50.4	22.1
	DN 25**	1"	1"	730	50.4	22.1
	DN 40	1 ¹ /2"	1 ¹ ⁄2"	731	50.4	34.8
	DN 40**	1½"	1½"	849	50.4	34.8
	DN 50	2"	2"	850	63.9	47.5

**DN 15, 25, 40 "FB" = Full bore version of Promass I; 3A-version with $R_a~{\leq}\,0.8$ or $R_a~{\leq}\,0.4~\mu m$ as standard

Dimensions Process Connections

Promass 63 M (high pressure)

Diameter		В	B1	di	Weight
DN	ANSI	[mm]	[mm]	[mm]	[mm]
DN 8 DN 15 DN 25	³ ⁄8 " ¹ ⁄2 " 1 "	262.5 264.5 268.5	113.0 114.5 119.0	4.93 7.75 10.20	11 12 15

Remote version

Promass 63 M (high pressure)

Wetted parts materials

Measuring tube: Connectors: Fittings: Gaskets: titanium Grade 9 SS 1.4404 (316L) SS 1.4401 (316) O-ring in Viton (–15...+200 °C), Silicone (–60...+200 °C)

Couplings and connectors optimized for CNG (Compressed Natural Gas) applications.

Dimensions

Promass 63 M (without Process Connections)

Diam D	neter N	[Dimensions Coupling		ing	Minimum screw depth	Torque	Lubricated thread	0-1	ring	
		ØL	ØJ	ØK	Screws	Depth				Diam.	Inside Ø
DIN	ANSI	[mm]	[mm]	[mm]	М	b [mm]	[mm]	[Nm]	yes/no	[mm]	[mm]
DN 8	3⁄8"	256	27	54	6 x M 8	12	10	30.0	no	2.62	21.89
DN 8*	3/8"	256	27	54	6 x M 8	12	10	19.3	yes	2.62	21.89
DN 15	1/2"	286	35	56	6 x M 8	12	10	30.0	no	2.62	29.82
DN 15*	1/2"	286	35	56	6 x M 8	12	10	19.3	yes	2.62	29.82
DN 25	1"	310	40	62	6 x M 8	12	10	30.0	no	2.62	34.60
DN 25*	1"	310	40	62	6 x M 8	12	10	19.3	yes	2.62	34.60
DN 40	1½"	410	53	80	8 x M 10	15	13	60.0	no	2.62	47.30
DN 50	2 "	544	73	94	8 x M 10	15	13	60.0	yes	2.62	67.95
DN 80	3 "	644	102	128	12 x M 12	18	15	100.0	yes	3.53	94.84
	* High pressure version; Permissible thread: A4 - 80; Lubricant: Molykote P37										

Dimensions

Purge Connection Pressure Vessel Control

Diam	neter	Prom	ass A	Pron	nass I	Promass M		Promass F		Connection
DIN	ANSI	L [mm]	H [mm]	L [mm]	H [mm]	L [mm]	H [mm]	L [mm]	H [mm]	G
DN 1 DN 2 DN 4 DN 8 DN 15 DN 15* DN 25 DN 25* DN 40 DN 40* DN 50 DN 80 DN 100**	$\begin{array}{c} \frac{1}{24^{"}} \\ \frac{1}{124^{"}} \\ \frac{1}{12^{"}} \\ \frac{1}{8^{"}} \\ \frac{3}{8^{"}} \\ \frac{1}{2^{"}} \\ \frac{1}{2^{"}} \\ \frac{1}{12^{"}} \\ \frac{1}{12^{"}} \\ \frac{2}{3^{"}} \\ \frac{3}{4^{"}} \end{array}$	92.0 130.0 192.5 - - - - - - - - - - - - - - - -	87.0 87.0 97.1 - - - - - - - - - - - - - - - - - - -	- - 61 79 79 148 148 196 196 254 - -	- - 78.15 78.15 78.15 78.15 78.15 90.85 90.85 105.25 - -	- - 85 100 - 110 - 155 - 210 210 - -	- - 44.0 46.5 - 59.0 - 59.0 - 67.5 81.5 -	- - 108 110 - 130 - 155 - 226 280 342	- - 47 47 - 47 - 52 - 64 86 100	1/2" NPT 1/2" NPT
		^ DN 1	** DN 1	B'' = F 00: only f	uii bore ve or Promas	ersions of ss F avail	able	s I;		

Flow mea					
	suring system "	Promass 63"			
Mass and closed pip	d volumetric flow pings.	v measurement of liquids and gases in			
Fu	unction and s	ystem design			
Mass flow (see page	v measurement e 3)	according to the Coriolis measuring principle			
Instrumer Transmitte Sensors:	nt family "Proma er: Promass Promass	ss 63" consisting of: 63 A, I, F and M			
Promas	Promass A DN 1, 2, 4 and DN 2, 4 (high pressure version) Single tube system in SS or Alloy C-22				
Promass I DN 8, 15, 25, 40, 50 (completely welded version) Straight single tube system in titanium					
DN 15 "FB", DN 25 "FB", DN 40 "FB": Full bore versions of Promass I with a higher full scale value (see table below)					
 Promass F DN 8, 15, 25, 40, 50, 80, 100 (completely welded version) Two slightly curved measuring tubes in SS (DN 8100) or Alloy C-22 (DN 880) 					
 Promass M DN 8, 15, 25, 40, 50, 80 (two straight measuring tubes in titanium). Containment vessel up to 100 bar. DN 8,15, 25 high pressure version for operating pressures up to 350 bar 					
Two versions are available: • Compact version • Remote version (max. 20 m)					
	Input va	riables			
 Mass fl two ser oscillat Fluid de of the r Fluid te 	low rate (is prop nsors on the me tion) lensity (is propo measuring tube emperature (is n	portional to the phase difference between easuring tube which detect differences in its rtional to the resonance frequency s) neasured with temperature sensors)			
		Range of full scale values			
DN [mm] r	Liquid • m _{min (L)} • m _{max (L)}	Gas m ^m min (G) m ^m max (G)			
1 2 4 8 15 15* 25 25* 40 40* 50 80 100	0 20.0 kg/h 0450.0 kg/h 0450.0 kg/h 0 2.0 t/h 0 6.5 t/h 0 18.0 t/h 0 18.0 t/h 0 45.0 t/h 0 45.0 t/h 0 70.0 t/h 0180.0 t/h 0350.0 t/h 0350.0 t/h	The full scale depends on the density of the gas. The full scale value can be determined with the following formula: $\dot{m}_{max(G)} = \frac{\dot{m}_{max(L)} \cdot \rho_{(G)}}{x \cdot 16}$ $\dot{m}_{max(G)} = Full scale value gas [t/h]$ $\dot{m}_{max(L)} = Full scale value liquid [t/h]$ $(value from table)$ $\rho_{(G)} = gas density [kg/m^3]$ $(at operating conditions)$ $x = constant [kg/m^3]$ $Promass A: x = 20$ $Promass I, M, F: x = 100$ $0 "FB" = Full bore version of Promass I$			
	Mass and closed pi Mass flov (see page Instrumer Transmitt Sensors: • Promation •	Mass and volumetric flow closed pipings. Mass flow measurement (see page 3) Instrument family "Promatransmitter: Promass A DN 1, 2, Single tul Promass A DN 1, 2, Single tul Promass I DN 8, 15 Straight s DN 15 "F Full bore full scale Promass F DN 8, 15 (complet Two slight s) SS (DN 8) Promass M DN 8, 15 (complet Two slight s) SS (DN 8) Promass M DN 8, 15 (complet Two slight s) Two versions are available Imput va • Mass flow rate (is propt wo sensors on the measuring tubes) • Fluid density (is propo of the measuring tubes) • Fluid temperature (is measuring tubes) • Time the the temperature (is measur			

	Input variables (continued)
Measuring range (continued)	Example for calculating a gas full scale value: Sensor: Promass F $\rightarrow x = 100$ Nominal diameter DN 50 $\rightarrow 70.0$ t/h (full scale value from table on page 26) Gas: Air with a density of 60.3 kg/m ³ (at 20°C and 50 bar) $\dot{m}_{max(G)} = \frac{\dot{m}_{max(L)} \cdot \rho_{(G)}}{x \cdot 16} = \frac{70.0 \cdot 60.3}{100 \cdot 16} = 26.4$ t/h
Operable flow range	up to 1000 : 1 This enables totalizer values to be accurately determined even in pulsating systems e.g. with reciprocating pumps.
Auxiliary input (with "RS 485" board only)	U = 330 V DC, R_i = 1.8 k Ω , pulsed or level mode Configurable for: totaliser reset, batching, zero point adjustment, zero point selection, positive zero return or full scale switching
	Output variables
Output signal	 <i>Relay output 1</i> max. 60 V AC / 0.5 A or max. 30 V DC / 0.1 A Either NC or NO via a jumper available (factory setting: NO) Configurable for error message (failure), empty pipe detection, full scale switching, batch precontact, flow direction, limit value <i>Relay output 2</i> max. 60 V AC / 0.5 A or max. 30 V DC / 0.1 A Either NC or NO via a jumper available (factory setting: NC) Configurable like relay 1 except error messages <i>Current output 1/2</i> 0/420 mA, also acc. to NAMUR recommendations; RL < 700 Ω; freely assignable to different measured values, time constant freely selectable (0.01100.00 s), full scale value selectable, temperature coefficient typ. 0.005% o.f.s./°C HART protocol via current output 1 only o.f.s. = of full scale <i>Pulse/Frequency output</i> freely assignable to one flow variable, active/passive selectable, active: 24 V DC, 25 mA (250 mA during 20 ms), RL > 100 Ω passive: 30 V DC, 25 mA (250 mA during 20 ms) <i>Frequency output:</i> f_{End} selectable up to 10 kHz On/off ratio 1:1, pulse width max. 10 s <i>Pulse output:</i> pulse weighting adjustable, pulse polarity adjustable, pulse width adjustable (50 ms10 s) Above a frequency of ¹/(2 x pulse width) the on/off ratio is 1:1
Signal on alarm	 The following applies until the fault has been cleared: Current output: failure mode selectable Pulse/Frequency output: failure mode selectable Relay 1: de-energised if configured to "FAILURE". Relay 1/2: de-energised on power supply failure.
Load	$R_L < 700 \Omega$ (current output)
Creep suppression	Switch points for low flow selectable. Hysteresis: -50 %

Accuracy							
Reference conditions	 Error limits based on ISO / DIS 11631: 2030 °C; 24 bar Calibration rig based on national standards Zero point calibrated under operating conditions Field density calibration carried out (or special density calibration) 						
Measured error	 Mass flowrate (liquids): Promass A, M, F ± 0.10% ± [(zero stability / flow rate) x 100]% of rate ± 0.15% ± [(zero stability / flow rate) x 100]% of rate 						
	 Mass flow Promass A I M F 	<i>rrate (gas):</i> + 0.50% + [(zero	stability / flow rate) x 100]% of rate			
	 Volume flowrate (liquids): Promass A, M ± 0.25% ± [(zero stability / flow rate) × 100]% of rate I ± 0.50% ± [(zero stability / flow rate) × 100]% of rate F ± 0.15% ± [(zero stability / flow rate) × 100]% of rate 						
	zero stabi	lity \rightarrow see table b	below				
	Note! • The value • Additiona	s above refer to th I measuring error (e pulse/frequency of the current outp	^ν output. ut: ± 5 μA (typical)			
	Diameter DN	Max. full scale [kg/h] or [l/h]	Zero stability Promass A, M, F [kg/h] or [l/h]	Zero stability Promass I [kg/h] or [l/h]			
	1 2 4 8 15 25 25 * 40 40 * 50 80 100 * *	20 100 450 2000 6500 18000 45000 45000 70000 70000 180000 350000 DN 15, 25, 40 "FB" =	0.0010 0.0050 0.0225 0.100 0.325 0.90 2.25 3.50 9.00 14.00 = Full bore versions F	 0.200 0.650 1.800 1.800 4.500 4.500 7.000 7.000 7.000 Promass I			
	Promass F ± 0.10% ± [(zero stability / flow rate) x 100]% of rate DN 25; Flowrate = 3.6 t/h = 3600 kg/h Measured error \rightarrow ± 0.10% ± $\frac{0.9 \text{ kg/h}}{0.9 \text{ kg/h}}$. 100% = ± 0.125%						
	Measured error → ± 0.10% ± $\frac{0.5 \text{ kg/H}}{3600 \text{ kg/h}}$ · 100% = ± 0.125% • Density (liquid): Standard calibration: Promass A, I, M ± 0.02 g/cc (1 g/cc = 1 kg/l) Promass F ± 0.01 g/cc Special density calibration (optional): (calibration range = 0.81.8 g/cc, 580°C) Promass A, M ± 0.002 gccl Promass I ± 0.004 g/cc Promass F ± 0.001 g/cc Density calibration in the field: Promass I ± 0.0020 g/cc Promass I ± 0.0020 g/cc Promass F ± 0.0005 g/cc						
	Promass	A, I, M, F ± 0.5 °	C ± 0.005 × T ((T = fluid temp. in °C)			

Accuracy (continued)							
Repeatability	• <i>Mas</i> Pror ± 0.0	<i>ss flowrate (lic</i> nass A, I, M, 05% ±[¹ /2>	q <i>uids):</i> F < (zero stabili	ty / flow rate)	x 100]% of ra	ate	
	• <i>Mas</i> Pror ± 0.2	<i>s flowrate (ga</i> nass A, I, M, 25% ±[¹ /2>	as): F < (zero stabili	ty / flow rate)	x 100]% of ra	ate	
	 Volu Pror A, N I F 	me flowrate (nass 1 ±0.10% : ±0.20% : ±0.05% :	<i>(liquids):</i> ± [¹ / ₂ x (zero ± [¹ / ₂ x (zero ± [¹ / ₂ x (zero	stability / flov stability / flov stability / flov	v rate) x 100] v rate) x 100] v rate) x 100]	% of rate % of rate % of rate	
	Zero stability \rightarrow see table on page 28						
	Example for calculating the repeatability: Promass F \pm 0.05% \pm [(zero stability / flow rate) x 100]% of rate DN 25; Flowrate = 3.6 t/h = 3600 kg/h						
	Repeatabilitity $\rightarrow \pm 0.05\% \pm \frac{1}{2} \cdot \frac{0.9 \text{ kg/h}}{3600 \text{ kg/h}} \cdot 100\% = \pm 0.0625\%$						
	• <i>Den</i> Pror Pror Pror	<i>sity measure</i> nass A, M nass I nass F	ment (liquids ± 0.0005 ± 0.0010 ± 0.0002): 0 g/cc (1 0 g/cc 5 g/cc	l g/cc = 1 kg	/l)	
	• <i>Tem</i> Pror	<i>perature mea</i> nass A, I, M,	asurement: F ±0.25 °C	C ± 0.0025 x ⁻	T (T = fluid t	emp. in °C)	
Process effects	 Process temperature effect: The below value represents the zero point error due to changing process temperature away from temperature at which a zero point adjustment was carried out: Promass A, I, M, F typical = ± 0,0002% of full scale / °C Process pressure effect: The below defined values represent the effect on accuracy of mass flow due to changing process pressure away from calibration pressure (values in % of rate / bar). 						
	DN [mm]	Promass A flow rate % o.r.** / bar	Promass I flow rate % o.r.** / bar	Promass M flow rate % o.r.** / bar	Promass MP flow rate % o.r.** / bar	Promass F flow rate % o.r.** / bar	
	1 2 4 8 15 55 25 40 40 * 50 80 100	none none DN 15, 25, 40	 0.006 0.006 0.006 none none 0.006 0.006 ** o	 0.009 0.008 0.009 none none none r. = of rate	 0.006 0.005 0.003 Nennweitenque	 none none -0.003 -0.008 -0.009 -0.012	

Operating	conditions
Operating	conditions

Installation conditions				
Installation instructions	Orientation: vertical or horizontal. Restrictions on installation and other recommendations: see page 5 – 7			
Inlet and outlet sections	Installation site is independent of inlet and outlet sections.			
Connection cable length	max. 20 m (remote version)			
Ambient conditions				
Ambient temperature	 Transmitter and Sensor: -25+60 °C (Version with enhanced climate resitance: -40+60 °C) Depending on the fluid temperature, certain installation positions are to be observed to ensure that the permitted ambient temperature range for the transmitter is not exceeded (see page 7) An all-weather cover should be used to protect the housing from direct sunlight when mounting in the open. This is especially important in warmer climates and with high ambient temperatures. If the ambient temperature is below -25 °C, it is not recommended to use a version with display. 			
Storage temp.	-40+80 °C			
Degree of protec- tion (EN 60529)	<i>Transmitter:</i> IP 67; NEMA 4X <i>Sensor:</i> IP 67; NEMA 4X			
Shock resistance	according to IEC 68-2-31			
Vibration resistance	up to 1 g, 10150 Hz according to IEC 68-2-6			
Electromagnetic compatibility (EMC)	Acc. to EN 50081 Part 1 and 2 / EN 50082 Part 1 and 2 as well as to NAMUR recommendations			

Process conditions

Fluid temperature	•	<i>Sensor</i> Promass A Promass I Promass M Promass F	-50+200 °C -50+150 °C -50+150 °C -50+200 °C	
	•	Gaskets Viton EPDM Silicone Kalrez FEP coated	-15+200 °C -40+160 °C -60+200 °C -30+210 °C -60+200 °C	

Operating conditions (continued)			
Pressure	 Promass A Fittings: max. 160 bar (standard version), max. 400 bar (high pressure version) 		
Material load diagrams: see page 13, 15 ff.	Flanges: DIN PN 40 / ANSI CI 150, CI 300 / JIS 10K Containment vessel: 25 bar resp. 375 psi		
	 Promass I Flanges: DIN PN 40100 / ANSI CI 150, CI 300, CI 600 / JIS 10K, 20K, 40K, 63K 		
	Containment vessel: 25 bar (optional 40 bar) resp. 375 psi (optional 600 psi)		
	 Promass M Flanges: DIN PN 40100 / ANSI CI 150, CI 300, CI 600 / JIS 10K, 20K, 40K, 63K 		
	Containment vessel: 40 bar (optional 100 bar) resp. 600 psi (optional 1500 psi)		
	 Promass M (High pressure version) Measuring tubes, connector, fittings: max. 350 bar 		
	Containment vessel: 100 bar resp. 1500 psi		
	 Promass F Flanges: DIN PN 16100 / ANSI CI 150, CI 300, CI 600 / JIS 10K, 20K, 40K, 63K 		
	Containment vessel: DN 880: 25 bar resp. 375 psi DN 100: 16 bar resp. 250 psi DN 850: optional 40 bar resp. 600 psi		
Pressure loss	Dependent on nominal diameter and sensor type (see page 8, 9)		

Mechanical construction				
Design, dimensions	see page 12 ff.			
Weights	see page 12, 14, 2	2		
Materials	Transmitter hous	ing: Powder-coated die-cast aluminium		
	 Sensor housing , Promass A, I, F 	<i>/ containment vessel:</i> Surfaces resistant to acids and alkalis, SS 1.4301 (304)		
	Promass M	Surfaces resistant to acids and alkalis, DN 850: chemically nickel-plated steel DN 80: SS 1.4313		
	• Sensor connecti SS 1.4301 (304)	on housing (remote version):		
	Process connects see page 13, 15	tions: - 21, 23		
	Measuring tubes Promass A	s: SS 1.4539 (904L), Alloy C-22 2.4602 (N 06022)		
	Promass I	titanium Grade 9		
	Promass M	DN 850: titanium Grade 9, DN 80: titanium Grade 2		
	Promass F	DN 8100: SS 1.4539 (904L), DN 880: Alloy C-22 2.4602 (N 06022)		
	• <i>Gaskets:</i> see pa	ge 13, 15 – 21, 23		
Process connections	• Promass A	Welded process connections: 4-VCO-4 fittings, ½" Tri-Clamp Screw-on process connections: Flanges (DIN, ANSI, JIS B2238), NPT-F and SWAGELOK fittings		
	Promass I	Welded process connections: 12-VCO-4 fittings, Flanges (DIN 2501, ANSI B16.5, JIS B2238) Sanitary connections: Tri-Clamp, Hygienic coupling DIN 11851 / SMS 1145		
	Promass M	Screw-on process connections: 8-VCO-4 fittings, 12-VCO-4 fittings, Flanges (DIN 2501, ANSI B16.5, JIS B2238) Sanitary connections: Tri-Clamp, Hygienic coupling DIN 11851 / SMS 1145		
	Promass M High pressure	Screw-on process connections: G 3%", 1⁄2" NPT, 3%" NPT fittings and 1⁄2" SWAGELOK coupling, connector with 7/8 14UNF internal thread		
	• Promass F	Welded process connections: 8-VCO-4 fittings, 12-VCO-4 fittings, Flanges (DIN 2501, ANSI B16.5, JIS B2238) Sanitary connections: Tri-Clamp, Hygienic coupling DIN 11851 / SMS 1145		

Mechanical construction (continued)			
Electrical connection	Wiring diagram: see page 10, 11		
	Cable glands (In-/outputs; remote version): PG 13.5 cable glands (515 mm) or $^{1}/_{2}$ " NPT, M 20 x 1.5 (815 mm), G $^{1}/_{2}$ " threads for cable glands		
	 Galvanic isolation: All circuits for inputs, outputs, power supply, and sensor are galvanically isolated from each other. Is the instrument equipped with identical outputs (e.g. 2 current outputs), then these outputs are not galvanically isolated from each other. 		
	• DoS version: The connecting cable between the Promass sensor and the "Procom DZL 363" transmitter is galvanically connected to its power supply.		
	Cable specifications (remote version): see page 11		
	User interface		
Operation	On-site operation with 3 operating elements for setting all instrument functions in the E+H operating matrix (see page 4)		
Display	LC-display, illuminated, double-spaced with 16 characters each		
Communication	Rackbus 485 interface (Rackbus protocol)		
	SMART protocol (HART protocol via current output 1)		
	PROFIBUS-PA, direct or via Commuwin II		
	 DoS and Dx interface for connecting to the "Procom DZL 363" (see page 10, 11) 		
	Power supply		
Supply voltage, Frequency	<i>Transmitter:</i> 85260 V AC (5060 Hz) 20 55 V AC, 1662 V DC		
	 Sensor: is supplied by the transmitter or power supplied by the multifunctional "Procom DZL 363" transmitter (DoS version), 4055 V DC, galvanically connected to the power supply of Procom DZL 363 		
Power consumption	AC: < 15 VA (incl. sensor) DC: < 15 W (incl. sensor)		
Power supply failure	 Bridges min. 1 power cycle (22 ms). EEPROM saves measuring system data on power failure (no batteries required). DAT = exchangeable data storage module which stores all sensor data such as calibration data, nominal diameter, sensor version, etc. When replacing the transmitter or its electronics, the old DAT module is simply inserted into the new transmitter. When the system is restarted, the measuring point then operates using the variables stored in the DAT. 		

		Certificates and approvals		
Ex approvals		Information on presently available Ex versions (e.g. CENELEC, SEV, FM, CSA) can be supplied by your E+H Sales Centre on request. All explosion protection data are given in separate documentation available on request.		
CE mark		By attaching the CE-mark, Endress+Hauser confirms that the Promass 63 measurement system has been successfully tested and fulfils all legal requirements of the relevant EC directives.		
		Order information		
Accessories		 Post mounting set for Promass A: DN 1, 2: Order No. 50077972 DN 4: Order No. 50079218 Post mounting set for remote transmitter housing: Order No. 50076905 		
Supplementary documentation		System Information PromassSI014D/06/enTechnical Information Promass 60TI029D/06/enOperating Manual Promass 60BA 013D/06/enOperating Manual Promass 63BA 014D/06/en		
		Other standards and guidelines		
EN 60529 EN 61010 EN 50081 EN 50082 NAMUR	Degree of Protectio Regulation Part 1 and Part 1 un Association	of protection (IP-Code) n Measures for Electronic Equipment for Measurement, Control, on and Laboratory Procedures d 2 (interference emission) d 2 (interference immunity) ion of Standards for Control and Regulation in the Chemical Industry		

Registered Trademarks

KALREZ[®] Registered Trademark of E.I. Du Pont de Nemours & Co., Wilmington, USA

SWAGELOK[®] Registered Trademark of Swagelok & Co., Solon, USA

TRI-CLAMP[®] Registered Trademark of Ladish & Co., Inc., Kenosha, USA

VITON [®] Registered Trademark of E.I. Du Pont de Nemours & Co., Wilmington, USA

Subject to modification

Endress+Hauser GmbH+Co. Instruments International P.O. Box 2222 D-79574 Weil am Rhein Germany

Tel. (07621) 975-02 Tx 773926 Fax (07621) 975 345 http://www.endress.com info@ii.endress.com

07.99