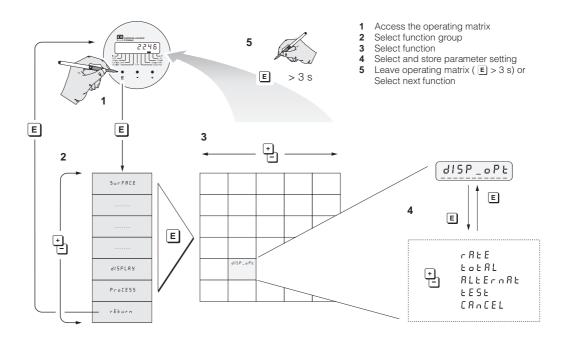
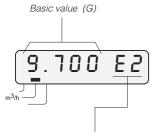

BA 039D/06/en/01.99 No. 50093119 CV 5.0

Valid as of software version V 4.00.XX (amplifier)

promag 30 (Model '99) Electromagnetic Flow Measuring System


Operating Manual



Operating overview / Operating matrix

Display of numerical values

Multiplication factor (M)

E 5 = 10^{+5} = 100000E 4 = 10^{+4} = 10000E 3 = 10^{+3} = 1000E 2 = 10^{+2} = 100E 1 = 10^{+1} = 10E 0 = 10^{0} = 1 E-1 = 10^{-1} = 0.1 E-2 = 10^{-2} = 0.01 E-3 = 10^{-3} = 0.001 $E-2 = 10^{-2}$ $E-3 = 10^{-3}$ $E-4 = 10^{-4}$ = 0.001 = 0.0001 $E-5 = 10^{-5}$

Actual value = $G \times M$

= 0.00001

Example:

9.700 E 2= $9.700 \times 10^{+2}$ = $970.0 [m^3/h]$ 9.700 E-2= $9.700 \times 10^{-2} = 0.097 [m^3/h]$

Function group " & r 0 0 / 5	urFRCE"	
FuOl / PAGECodE	Function code	RLPHR = Text code nbr = Number code
Fu02 / u_r8tE	Flow rate unit	unlt_1= I/s; unlt_2 = m3/h; unlt_3 = USgpm
Fu03 / u_totAL	Totalizer unit	unit_4 = USgal x 1000; unit_5 = USgal; unit_5 = m³; unit_7 = I (Litre)
Function group "Gr 10 / C	טרר_סטנ"	
Full / F_SCRLE	Full scale current value	Numeric entry: x.xxx E±x
Ful2 / t_ConSt	Time constant	Numeric entry: xx.x (in steps of 0.5 seconds)
Ful3 / I_rAnGE	Current range	0-20 (mA); 4-20 (mA)
Function group "Gr20 / P	u L S _ o u E"	
Fu21/P_FRCtor	Pulse value	Numeric entry: x.xxx E ± x
Function group " 6 - 30 / 9	ŁRŁ_ouŁ"	
Fu31/SERE_FCE	Status output function	Error = System and process error indication FLo_dIr = Flow direction indication
Function group " & r 40 / 1	nPut"	
Fu41 / InP_FCE	Auxiliary input function	SuPPrE55 = Positive zero return rE5_ŁoŁ = Totalizer reset to "zero"
Function group " & r 50 / d	ISPLRY "	
FuS1/rES_tot	Totalizer reset	CRnCEL rES_YES = Totalizer reset activated
FuS2 / dISP_oPt	Display mode	r R Ł E = Flow rate display; Ł o Ł R L = Totalizer display; R L Ł E r n R Ł = Alternating display of flow rate and totalizer Ł E S Ł = Display test function
FuS3 / dISP_dR	Display damping	Numeric entry: xx.x (in steps of 0.5 seconds)
Fu54 / tot_ofL	Totalizer overflows	Display of totalizer overflows
Function group " 6 - 60 / P	roCESS "	
Fu61 / LFC	Creep suppression	LFC_oFF = Suppression off LFC_on = Suppression on
Fu62 / EPD	Empty Pipe Detection (EPD)	EPD_oFF=off; EPD_on=on; EPD_Rd_E=Empty pipe adjustment EPD_Rd_F=Full pipe adjustment
Fu63 / ECC	Electrode cleaning (ECC), optional	ECC_oFF = ECC off ECC_on = ECC on

|--|

Contents

1	Safe	ety Instructions	5
	1.1 1.2 1.3	9	5 5
	1.4 1.5	operation	6 6 6
2	Inst	rument Identification	7
3	Moı	unting and Installation 9	9
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	Mounting location	2 3 3 4 5 6
4	Elec	ctrical Connection 21	1
	4.1 4.2 4.3 4.4 4.5 4.6	Degree of protection	2 6 8 9
5	Disj	play and Operation 33	3
	5.1 5.2 5.3	Display and operating elements 33 Operation (operating matrix)	4
6	Des	cription of Functions 37	7
7		uble-shooting, Maintenance Repairs 49	9
	7.1 7.2 7.3 7.4 7.5 7.6 7.7	Response of the measuring system on faults or alarm	0 2 4 5 5

8	Dim	ensi	ons								•	57
	8.1	Dime	ension	s Pi	om	ag	30	Α				57
	8.2	Dime	ension	s Pi	om	ag	30	Н				60
	8.3		ension			_						
			1530									62
	8.4		ension			_						
		(DN :	3502	200	U)							63
9	Tecl	hnic	al Da	ıta								65
Ind	lex											75

Registered Trademarks

KALREZ $^{\otimes}$, VITON $^{\otimes}$ and TEFLON $^{\otimes}$ Registered trademark of E.I. Du Pont de Nemours & Co., Wilmington, USA

TRI-CLAMP $^{\circledR},$ HASTELLOY $^{\circledR}$ Registered trademark of Ladish & Co., Inc., Kenosha, USA

1 Safety Instructions

1.1 Correct usage

- The Promag 30 is only to be used for measuring the flow of conductive fluids.
 Most liquids can be measured provided they have a minimum conductivity
 of ≥ 5 μS/cm, e.g.
 - acids, alkalis, pastes, pulps,
 - drinking water, waste water, sewage sludge,
 - milk, beer, wine, mineral water, yoghurt, molasses, etc.

A minimum conductivity of \geq 20 $\mu\text{S/cm}$ is required for measuring demineralised water.

- The manufacturer assumes no liability for damage caused by incorrect use of the instrument.
- Instruments which are used in the explosion hazardous area are supplied with a separate "Ex documentation", which is an integral part of this Operating Manual. The instructions and connected loads provided in this supplement must absolutely be observed. An appropriate icon is shown on the front of this document according to the approval given and the test center.

1.2 Dangers and notes

All instruments are designed to meet state-of-the-art safety requirements, have been tested, and have left the factory in an operational perfectly safe condition. The devices were developed according to EN 61010 "Protection Measures for Electronic Equipment for Measurement, Control, Regulation and Laboratory Procedures".

A hazardous situation may occur if the flowmeter is not used for the purpose it was designed for or is used incorrectly.

Please carefully note the information provided in this Operating Manual indicated by the following pictograms:

Warning!

Caution!

A "warning" indicates actions or procedures which, if not performed correctly, may lead to personal injury or a safety hazard.

A "caution" indicates actions or procedures which, if not performed correctly, may

Please strictly observe the instructions supplied and proceed carefully.

lead to faulty operations or the destruction of the instrument.

Please strictly observe the respective instructions.

/ • \ Warning!

Caution!

Note!

A "note" indicates actions or procedures which, if not performed correctly, may indirectly affect operations or lead to an unexpected instrument response.

1.3 Personnel for installation, start-up and operation

- Mounting, electrical installation, start-up and maintenance of the instrument may only be carried out by trained personnel authorized by the operator of the facility.
 Personnel must absolutely and without fail read and understand this Operating Manual before carrying out its instructions.
- The instrument may only be operated by personnel who are authorized and trained by the operator of the facility. All instructions in this manual are to be observed without fail.
- With special fluids, incl. those used for cleaning, E+H will be pleased to supply information concerning the chemical resistance properties of wetted parts.
- When welding the piping, the welding machinery must not be grounded through the Promag.
- The installer has to make sure that the measuring system is correctly wired up according to the wiring diagrams. The measuring system is to be grounded.
- Please observe all provisions valid for your country and pertaining to the opening and repairing of electrical devices.

Danger of electrical shock!

With the housing cover removed, protection against accidental contact is no longer present. Components with high voltages are exposed below the local display. When programming according to section 5.1–5.3, avoid any contact with the electronic components which lie below the local display, and do not use any electrically conductive object to depress the operating keys.

1.4 Repairs and dangerous substances

The following procedures must be carried out before a Promag 30 is sent to Endress+Hauser for repair:

- A note must always be enclosed with the instrument, containing a description of the fault, the application, and the chemical and physical properties of the product being measured.
- Remove all residue which may be present. Pay special attention to the gasket grooves and crevices where fluid may be present. This is especially important if the fluid is dangerous to health, e.g. corrosive, carcinogenic, radioactive, etc.
- No instrument should be returned without all dangerous material being removed first (e.g. in scratches or diffused through plastic).

Incomplete cleaning of the instrument may result in waste disposal or cause harm to personnel (burns, etc). Any costs arising from this will be charged to the owner of the instrument.

1.5 Technical improvements

The manufacturer reserves the right to modify technical data without prior notice. Your local E+H Sales Office will supply you with all current information and any updates to this Operating Manual.

2 Instrument Identification

An overview of the complete Promag 30 measuring system is shown below. The technical specifications are stamped on the nameplate and contain the following information:

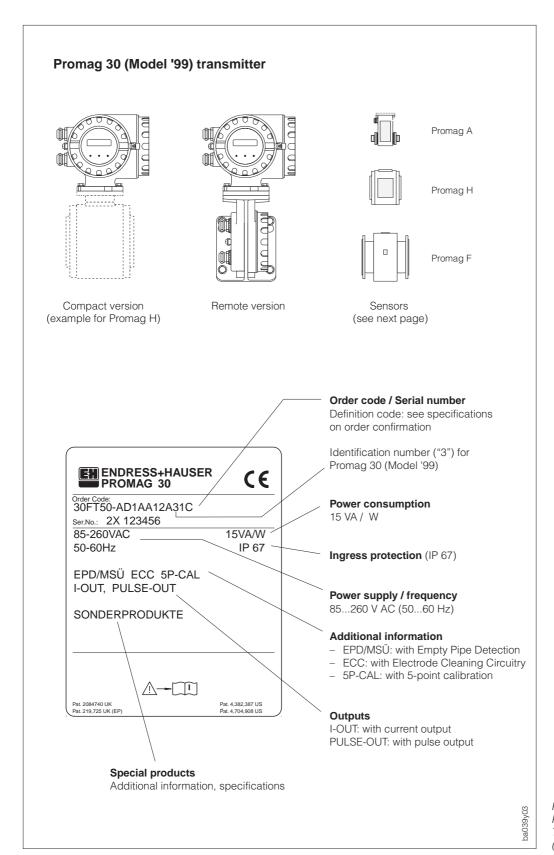


Fig. 1 Promag 30 transmitter. Typical nameplate specifications (example)

Promag 30 (Model '99)

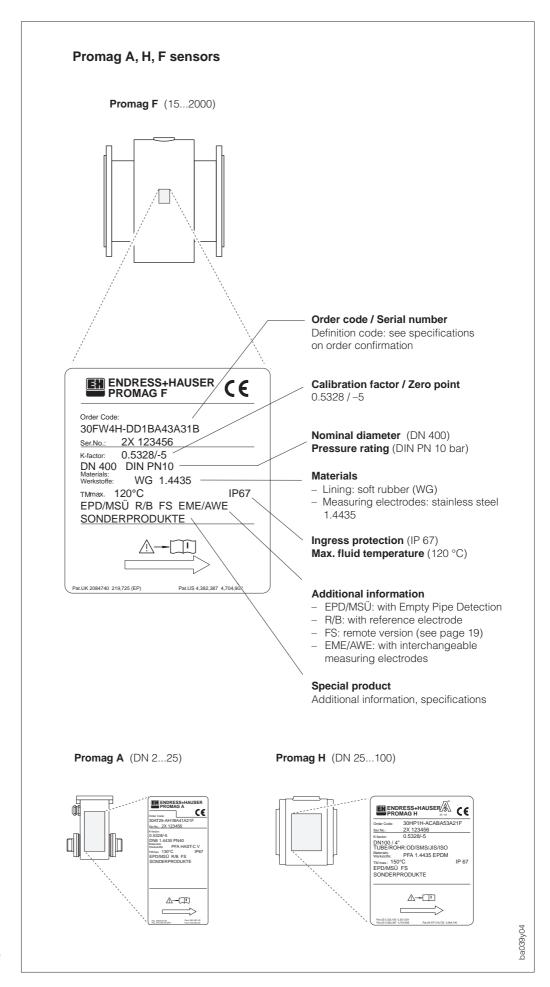


Fig. 2 Promag A, F, H sensors Typical nameplate specifications (example)

3 Mounting and Installation

Warning!

- The instructions given in this section are to be observed at all times in order to ensure safe and reliable operation of the measuring system.
- For explosion protected instruments the mounting regulations and the technical data may differ from those stated here. Please refer to the Ex supplement of this Operating Manual for additional information.

3.1 Transport instructions (DN \geq 350/14")

The pipe lining on the flanges is protected by disks to prevent damage when transporting to the measuring point. These are to be removed when installing. Instruments are to be transported in the containers they are delivered in.

Transporting to the measuring point

- The sensor must not be lifted by the transmitter housing!
- Use only the grips on the flange for lifting out and mounting the sensor in the piping (from DN 350 or 14").

Caution!

The sensor must not be lifted by the metal casing using a fork lift truck! This can buckle the casing and so damage the internal magnetic coils.

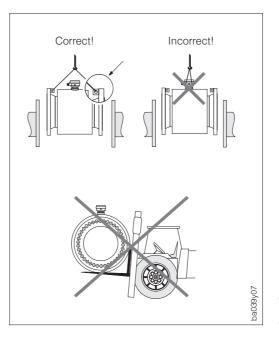


Fig. 3 Transport instructions for large diameter sensors ($DN \ge 350$)

Base and supports

The sensor is to be mounted on a base which is sufficiently strong enough to withstand its weight.

Caution!

Do not support the sensor by the sheet casing. The casing may be dented and so damage the magnetic coils inside the sensor.

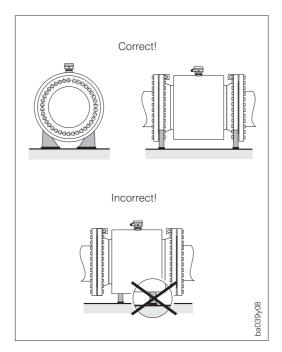
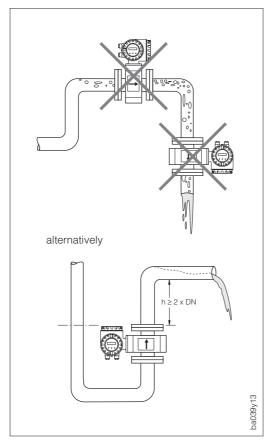



Fig. 4
The proper way to support large diameter sensors (DN ≥ 350)

3.2 Mounting location

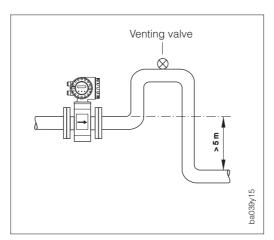
Correct measurement is only possible when the pipe is full. The following locations should therefore be avoided:

- No installation at the highest point (air accumulation).
- No installation immediately before an open pipe outlet in a downward line

The alternative installation, however, permits a correct measurement.

Fig. 5
Mounting location

Partly filled pipes


For inclines a mounting similar to a drain should be adopted.

Added security is offered by Empty Pipe Detection in order to detect empty or partly filled pipes (see page 46).

Note!

Danger of solids accumulation!
Do not mount the sensor at the lowest point of the drain. A cleaning valve should also be installed.

Downward pipe

With the installation suggested opposite, partial vacuum is avoided even with a downward pipe > 5 m long (siphon, vent valve downstream of the sensor).

Fig. 7
Installation downward pipe

Installation of pumps

Do not mount the sensors on the suction side of pumps. This prevents low pressure and therefore possible damage to the lining of the measuring tube. Information on the resistance to vacuum of the flowmeter lining can be found on page 74.

Pulse dampers should be installed when using reciprocal, diaphragm or peristaltic pumps.

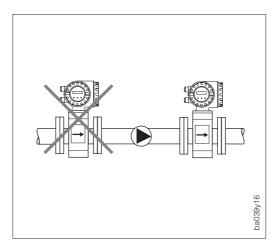


Fig. 8 Installation of pumps

Vibration

The piping before and after the sensor should be securely fastened if there is excessive vibration.

Information on shock and vibration

Information on shock and vibration resistance is found on page 67.

Caution!

Excessive vibration necessitates separate mounting of the sensor and transmitter (see pages 19, 67).

Mechanical support of the sensor is recommended for free runs of piping over 10 m long.

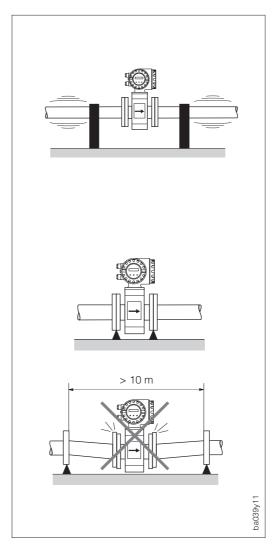
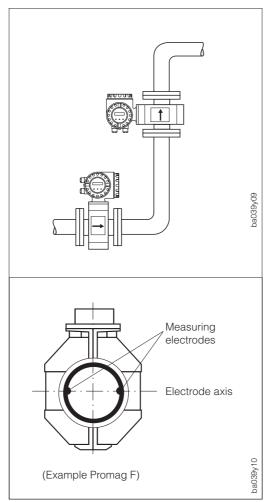
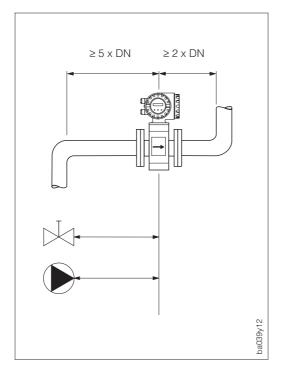



Fig. 9 Remedies to avoid vibrations

3.3 Mounting position

Vertical mounting:

This is the recommended position with the flow upwards. Entrained solid particles sink and fatty components in the stationary fluid rise away from the measuring electrodes. This is the optimal position in empty pipe system and when using Empty Pipe Detection (see page 46).


Horizontal mounting:

The axis of the electrodes must be horizontal, thus preventing brief insulation of the electrodes by entrained air bubbles.

Electrode axis:

The plane in which the electrode axis lies with regard to the transmitter is identical for the Promag A, H and F sensors.

Fig. 10 Mounting position (horizontal, vertical)

Inlet and outlet sections

The sensor should by mounted away from fittings such as valves, T-pieces, elbows, etc.

Inlet section: $\geq 5 \times DN$ Outlet section: $\geq 2 \times DN$

The inlet and outlet sections must be observed in order to maintain accuracy.

Fig. 11 Inlet and outlet sections

3.4 Nominal diameter and flow rate

The diameter of the pipe usually governs the nominal diameter of the sensor. The optimum flow velocity range is between v = 2...3 m/s. Furthermore, the flow velocity (v) has to be matched to the physical properties of the fluid:

- v < 2 m/s: with abrasive media (potter's clay, lime milk, ore slurry)
- v > 2 m/s: with media forming coating (wastewater sludge, etc.)

If it is necessary to increase the flow velocity, this can be done by reducing the nominal diameter of the sensor (see following chapter).

Full scale value and pulse value:

- Minimum / maximum adjustable full scale value \rightarrow see page 39
- Minimum / maximum adjustable pulse value \rightarrow see table on page 41
- Factory settings → see page 72

3.5 Adapters

The sensor can also be mounted in a pipe with a larger nominal diameter when suitable adapters (reducers and expanders) to DIN 28545 are fitted. The resultant increase in the rate of flow increases the accuracy of measurement with slowly moving fluids.

The adjacent nomogram can be used to determine the pressure loss caused.

Procedure:

- 1. Determine the ratio of the diameter d/D.
- 2. From the nomogram read off the pressure loss at the flow velocity and d/D ratio.

Note!

The nomogram applies to fluids with a viscosity similar to that of water.

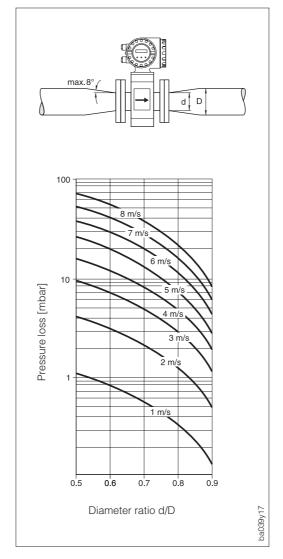


Fig. 12 Pressure loss when using adapters

3.6 Mounting Promag A

Various process connections are available for the Promag A sensor. The process connections (adapters) are mounted in two ways:

- A. Coupling nut on a 1" threaded stub (mounting set)
 - Internal thread
 - External thread
 - PVC adhesive coupling
 - Hose connection
 - Weld nipples
- **B.** Screw-in process connections (instead of threaded stub)

These process connections are mounted as standard in the factory before delivery.

- Flange joints
- Tri-Clamp

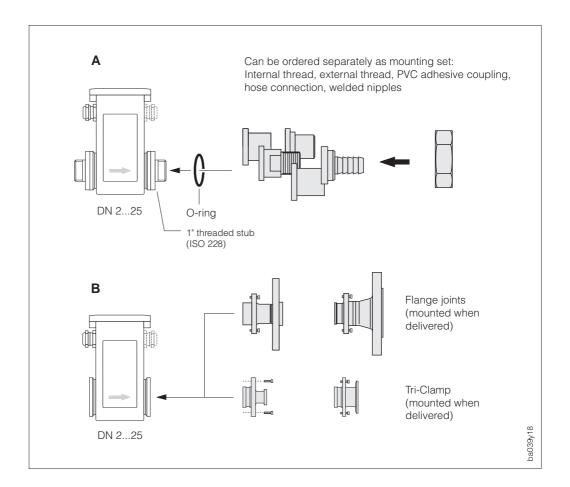


Fig. 13 Process connections Promag A

Gaskets / Screw tightening torques (Mounting set)

When fastening the process connections, the O-ring or the flat gasket is pressed fully into the seal groove in the threaded stub. The skirted nut thereby comes to a fixed stop.

Length, dimensions \rightarrow see pages 57 ff.

3.7 Mounting Promag H

The Promag H sensor is delivered with the process connection already mounted. The various process connections are fastened to the sensor with 4 or 6 screws.

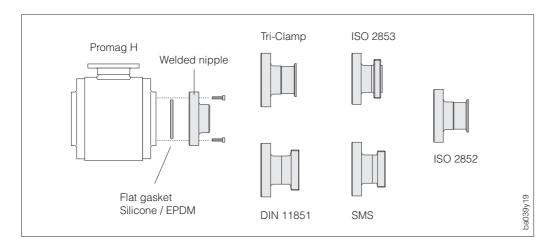


Fig. 14 Process connections Promag H

Gaskets / Screw tightening torques

When mounting the process connectors, make sure that the gasket is free of dirt and correctly centered. The screws have to be tightened.

The process connector forms a metal connection with the sensor, to guarantee a defined seal compression.

DIN ANSI [Nm] [mm] [inch] 25 1" 10 40 11½" 10	Dian	neter	Max. tightening torque
40 11/2" 10		_	[Nm]
50 2" 25 65 21/ ₂ " 25 80 3" 88 100 4" 88	40 50 65 80	1 ¹ / ₂ " 2" 2 ¹ / ₂ " 3"	10 25 25 28

Length and dimensions \rightarrow see pages 60 ff.

Welding the sensor into the pipework (welded nipple)

If the sensor is directly welded into the pipework, we recommend the following procedure:

Caution!

The electronics may be destroyed! Take care that the welding ground is not via the Promag 30 H sensor or housing.

- 1. Fasten the Promag H sensor with some spot welds into the pipe.
- 2. Loosen the screws at the process-connector flange and remove the sensor from the pipe; make sure that the gasket is also removed from the process connector.
- 3. Weld the process connector into the pipe.
- 4. Once again install the sensor into the pipe; make sure everything is clean and the gasket is correctly positioned.

Note!

- If the welding process is correctly executed in thin-walled food piping, the gasket will not be damaged by the heat, even when mounted. Nevertheless, we recommend removing the sensor and gasket first.
- For the disassembly, the pipe has to be spread by about 4 mm.

3.8 Mounting Promag F

The sensor is mounted between the flanges of the piping (Fig. 15). Since the lining of the measuring tube also covers the sensor flange, it also performs as a seal.

Caution!

The Teflon (PTFE) lined Promag F is fitted with protective discs to guard the lining which is turned over the flanges. These discs are to be removed just before mounting the sensor. Ensure that the lining on the flange is not damaged or removed. These discs must remain in position during storage.

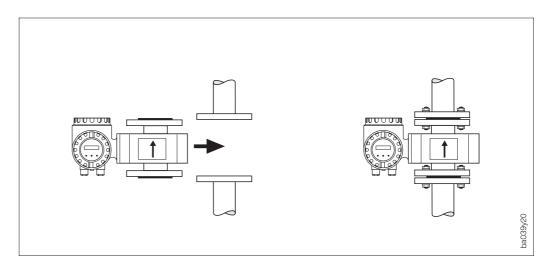


Fig. 15 Mounting Promag 30 F

Gaskets

- If the measuring tube liner is made of soft rubber or Teflon (PTFE), a flange seal is not required.
- With soft rubber lining the mating flange should have a thin film of non-conductive sealing grease applied.
- Use a gasket according to DIN 2690.
- Mounted gaskets must not protrude into the piping section.

Caution!

Danger of short-circuit! Do not use sealing materials that are electrically conductive, e.g. graphite. This could result in an electrically conductive layer forming on the inside of the measuring tube and therefore short-circuiting the measuring signal.

Screw tightening torques \rightarrow see following page!

Length and dimensions \rightarrow see pages 62, 63

Screw tightening torques (Promag F)

The tightening torques listed apply to greased threads.
Screws tightened up too tightly deform the sealing surface. Special attention should be paid to soft rubber linings.

Note!

The tightening torques given here apply only to those pipes which are not subject to mechanical stress.

Dian	neter	F	Pressur	e ratings	5	Screws	Max. tig	es [Nm]	
[mm]	[inch]	DIN [bar]	ANSI [lbs]	AWWA	JIS		Hard rubber	Soft rubber (EPDM)	PTFE (Teflon)
15 25 32 40 50	1/2" 1" - 1 ¹ / ₂ " 2"	PN 40	Class 150	_	20K 20K 20K 20K 10K	4 x M 12 4 x M 12 4 x M 12 4 x M 16 4 x M 16	_ 25 40 50 64	- 5 8 11 15	15 33 53 67 84
65 80 100 125 150	- 3" 4" - 6"	PN 16	Class 150	_	10K 10K 10K 10K 10K	4 x M 16 8 x M 16 8 x M 16 8 x M 16 8 x M 20	87 53 65 80 110	22 14 22 30 48	114 70 85 103 140
200 250 300	8" 10" 12"	PN 10	Class 150	-	10K 10K 10K	8 x M 20 12 x M 20 12 x M 20	108 104 119	53 29 39	137 139 159
350 400 - 500 600	14" 16" 18" 20" 24"	PN 10/16	Class 150	_		16 x M 20 16 x M 24 20 x M 24 20 x M 24 20 x M 27	141/193 191/245 170/251 197/347 261/529	39/79 59/111 58/111 70/152 107/236	188/258 255/326 227/335 262/463 348/706
700 800 900 1000	28" 30" 32" 36"	PN 10/16	I	Class D		24 x M 27 24 x M 30 28 x M 30 28 x M 33	312/355 417/471 399/451 513/644	122/235 173/330 183/349 245/470	- - - -
1200 - 1400 - 1600 - 1800 - 2000	48" 54" - 60" - 66" 72" 78"	PN 6	-	Class D		32 x M 36 36 x M 39 36 x M 39 40 x M 45 40 x M 45 44 x M 45 44 x M 45 48 x M 45	720 840 840 1217 1217 1238 1238 1347 1347	328 432 432 592 592 667 667 749 749	- - - - - -

Turning the transmitter housing and local display

The transmitter housing and local display can be rotated in steps of 90°. This enables the unit to be adapted to different mounting positions in the piping and so simplifying reading and operation.

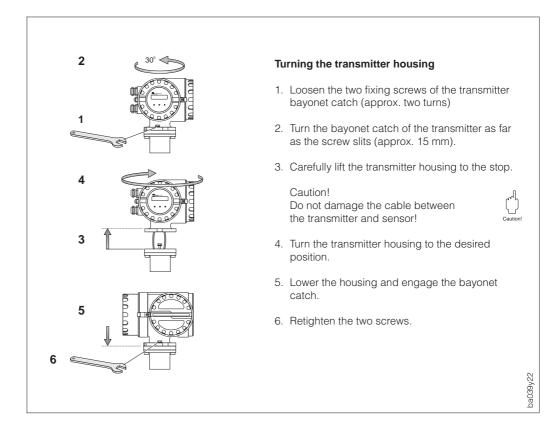


Fig. 16 Turning the transmitter housing

Turning the local display

3.10 Mounting the transmitter (remote version)

The transmitter has to be mounted remote from the sensor when:

- access is difficult.
- space is restricted,
- extreme process and ambient temperatures prevail (for temperature ranges see page 67),
- there is severe vibration (>2 g/2 h per day; 10...100 Hz).

Wall and post mounting

The remote mounted version is delivered with a wall bracket as standard. A special mounting set can be supplied for post mounting: Order No. 50076905.

Connecting cable

Two different versions are available for remote versions:

FS version:

- The permissible length of cable L_{max} of more than 10 m is governed by the conductivity of the fluid (see Fig. 19).
- The maximum possible cable length is limited to 10 meter for instruments with Empty Pipe Detection (EPD). This function is only available with the FS version.
- The FS cable is recommended only for distances smaller than 20 m.

FL version:

- All fluids with a minimum conductivity of ≥ 5 µS/cm (demineralised water ≥ 20 µS/cm) can be measured. This is not dependent on the distance between transmitter and sensor (see Fig. 19).
- Empty Pipe Detection (EPD) is *not* available with this version.

Please also note the following for obtaining correct readings:

- Fasten the cable gland or lay it in a conduit. When the fluid conductivity is low, cable movements can cause serious changes in capacitance and thereby falsify the measuring signal.
- Do not run the cable in the vicinity of electrical machines or switching elements.
- Ensure potential equalization between the transmitter and the sensor.

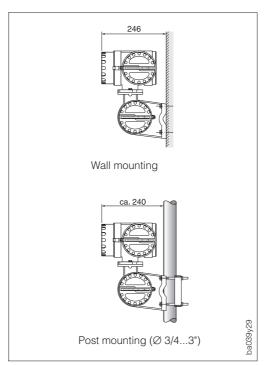


Fig. 18 Wall and post mounting

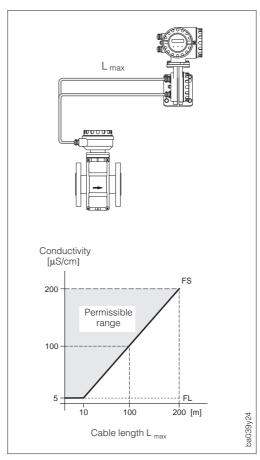


Fig. 19 Fluid conductivity and cable length with the remote version

4 Electrical Connection

Warning!

When connecting Ex-approved instruments, please observe all instructions and wiring diagrams given in the Ex supplement to this Operating Manual. Your E+H representative will be pleased to provide you with more information.

4.1 Degree of protection

The instruments fulfil all the requirements for IP 67. After successful installation in the field or after servicing, the following points must always be observed in order to ensure the degree of protection IP 67:

- Housing gaskets must be clean and undamaged when inserted in the gasket groove. The gaskets may need to be dried, cleaned or replaced.
- All housing screws and the housing cover must be tightened firmly.
- The cables used for connecting must have the correct outer diameter (see page 28).
- The cable gland must be tightened firmly (see Fig. 20).
- The cable must loop down before entering the cable gland to ensure that no moisture can enter it (see Fig. 20).
 Install the sensor so that the cable glands first hang down and do not first go upwards.
- Any cable gland not used must be replaced with a blind plug.
- The protective bushing should not be removed from the cable gland.

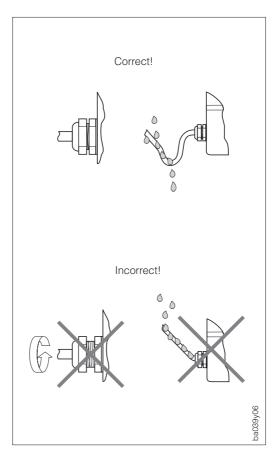
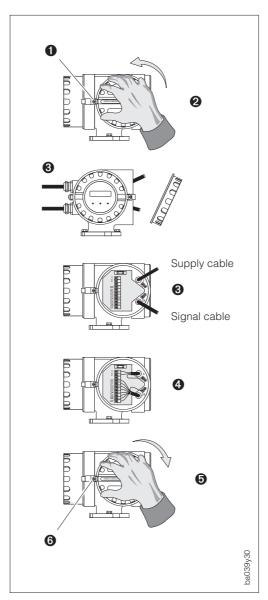


Fig. 20 Mounting cable entries

Caution!

The screws of the Promag sensor housing must not be loosened or the degree of protection guaranteed by E+H is no longer valid.

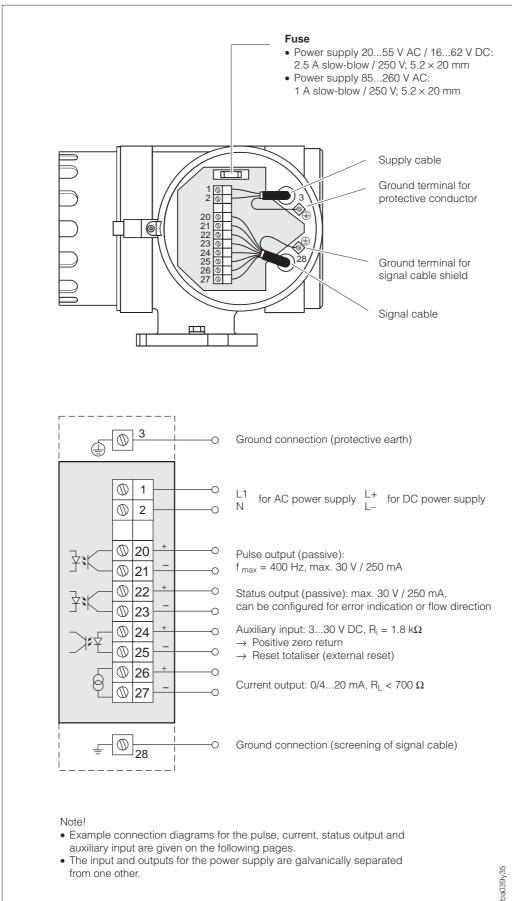
Note!


The Promag A and F sensors can optionally be supplied with the IP 68 degree of protection (permanently under water to a depth of 3 m). In this case the transmitter (IP 67) has to be mounted remote from the sensor.

4.2 Connecting the transmitter

Warning!

- Risk of electric shock! Switch off the power supply before opening the instrument.
 Do not install or wire the unit while connected to the power supply. Failure to comply may also result in damage of electronic components.
- Connect the protective conductor to the ground terminal on the housing before the power supply is switched on.
- Check that local power supply and frequency agree with the information on the nameplate. All relevant national regulations for mounting must also be observed.

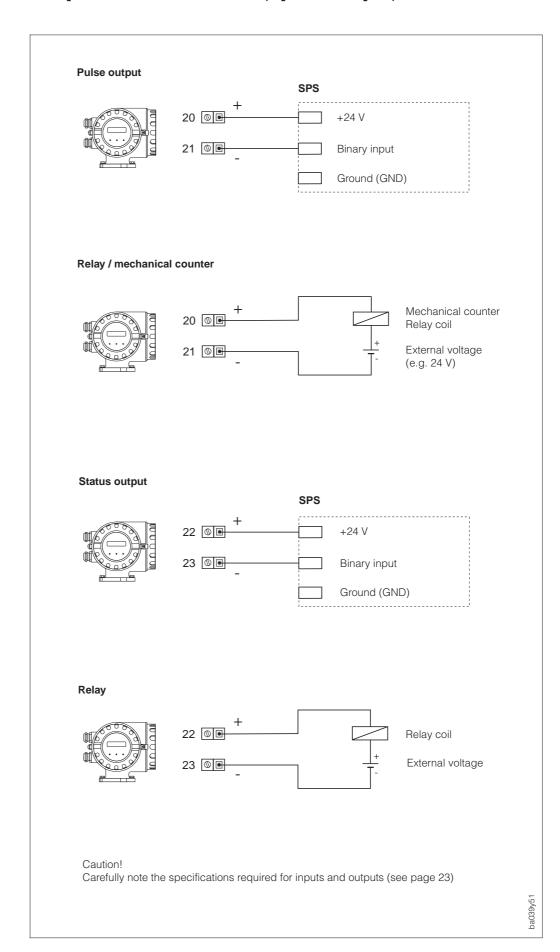


- 1. Loosen the Allen screw of the safety grip using an 3 mm Allen key.
- 2. Unscrew the wiring compartment cover.
- 3. Feed the power and signal cables into the appropriate cable glands.
- 4. Wire up according to the wiring diagrams:
 - → see Fig. 22
 - ightarrow Wiring diagram in the screw cover
 - Power supply is connected to terminal 1 (L1, L+), terminal 2 (N, L-) and the ground terminal (3).
 - Fine-wire leads: max. 4 mm²; put sleeve on the end of the cores. Single-core lead: max. 6 mm².
- 5. Having made the connection, screw the cover tightly again on the transmitter housing.
- 6. Tighten the Allen screw of the safety grip securely.

Fig. 21 Connecting the transmitter

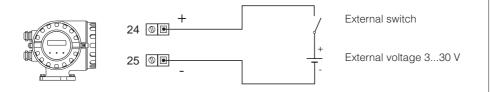
22

Connection diagram (Promag 30 transmitter)

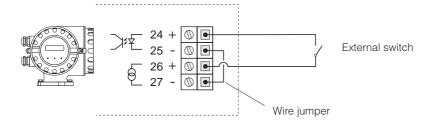


from one other.

Fig. 22 Terminal compartment Promag 30


Examples for electrical connections (inputs and outputs)

Caution!


Fig. 23 Examples of electrical connections (Promag 30)

Auxiliary input

Current output as a power supply source

If the current output is not required, then this can be used as a power supply. Set the current output to 4-20 mA (see page 40).

Caution!

Carefully note the specifications required for inputs and outputs (see page 23)

Fig. 24 Examples of electrical connections (Promag 30)

4.3 Connecting the cable of the remote version



Caution

Warning!

Danger from electric shock! Switch off the power supply before opening the instrument.

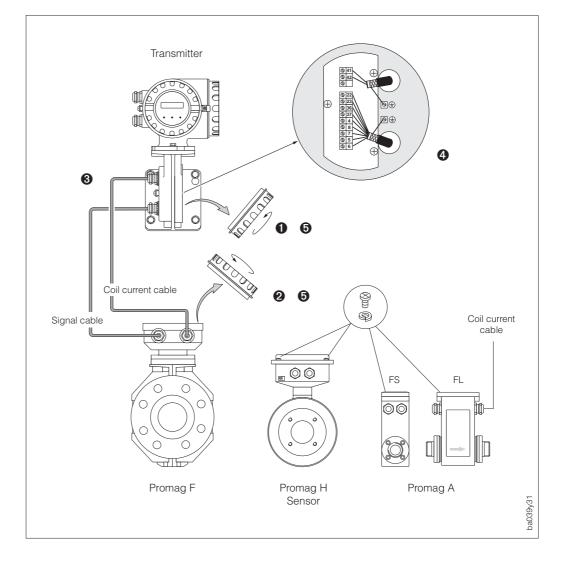
- 1. Loosen the safety grip and remove the cover of the *transmitter housing*.
- 2. Remove the cover from the *connection housing of the sensor*.
 - Promag A, H: Loosen all the Phillips screws
 - Promag F: Loosen the safety grip and unscrew the cover.

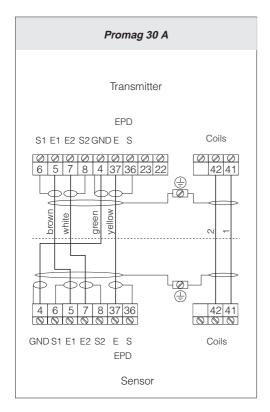
The terminals of Promag A are situated inside its housing.

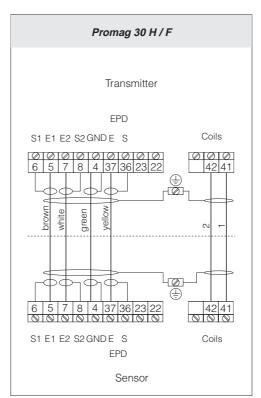
3. Feed both signal and coil-current cable into the appropriate cable entries of the connection housings.

Danger of destroying the coil current control! Only connect or disconnect the coil cable once the power supply to the instrument has been switched off.

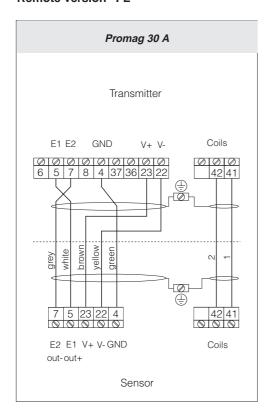
- 4. Connect the sensor / transmitter cable according to the wiring diagrams (see Fig. 26).
- 5. Retighten the connection housing cover securely.
 With Promag F, the Allen screw of the safety grip also has to be tightened.




Fig. 25 Connecting the transmitter / sensor cable



26


Wiring diagrams for the remote version (FS/FL)

Remote version "FS"

Remote version "FL"

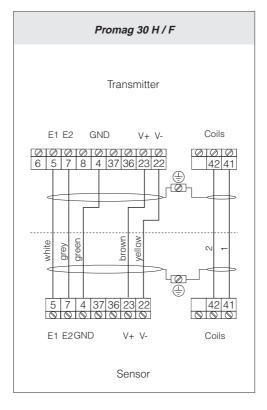


Fig. 26 Wiring diagrams for the remote versions "FS" and "FL"

4.4 Cable specifications

Remote version "FS"

Coil cable: 2 x 0.75 mm² PVC cable with common screen *

Conductor resistance $\leq 37 \ \Omega/km$ Capacitance: core/core, screen grounded $\leq 120 \ pF/m$

Signal cable: 3 x 0.38 mm² PVC cable with common screen *

and separately screened cores

With EPD (Empty Pipe Detection) 4 x 0.38 mm² PVC cable

Conductor resistance $\leq 50 \ \Omega/km$ Capacitance: core/screen $\leq 420 \ pF/m$

Permanent operation temperature: -20...+70 °C

Remote version "FL"

Coil cable: 2 x 0.75 mm² PVC cable with common screen *

Conductor resistance \leq 37 Ω /km Capacitance: core/core, screen grounded \leq 120 pF/m

Signal cable: 5 x 0.5 mm² PVC cable with common screen *

Conductor resistance \leq 37 Ω /km Capacitance: core/core, screen grounded \leq 120 pF/m

Permanent operation temperature: -20...+70 °C

Operation in areas with severe electrical interference

The Promag 30 measuring system fulfils all general safety requirements according to EN 61010 and electromagnetic compatibility (EMC) according to EN 50081 Part 1 and 2 / EN 50082 Part 1 and 2 when installed in accordance with the NAMUR recommendations.

Note!

- With the remote-mounted version the signal and coil cables between sensor and transmitter must always be screened and grounded at both ends.
- The cable must be resistant to an ambient temperature of max. +80 °C if the Promag H sensor is operated at a process temperature of +150 °C.

^{*} braided copper screening: $\varnothing \sim 7 \text{ mm}$

^{*} braided copper screening (coil cable $\emptyset \sim 7$ mm; signal cable $\emptyset \sim 9$ mm)

4.5 Potential equalisation

The sensor and the fluid must have roughly the same electrical potential to ensure that measurement is accurate and no galvanic corrosion takes place at the electrode. Normally the reference electrode in the sensor or the metal pipe ensures that the potentials are equalized.

Reference electrodes:

- Promag A: always with reference electrode
- Promag F: optional, depending on material
- Promag H:
 no reference electrode, as there is
 always a metallic connection to the
 fluid.

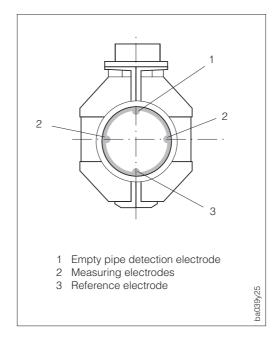


Fig. 27
Position of different electrodes in the measuring tube (Promag 30 F)

If the reference electrode is correctly grounded and the fluid flows through metallic, unlined and grounded piping, then it is sufficient to connect the grounding terminal of the Promag 30 transmitter housing to the potential equalisation line in order to prevent corrosion. The connection with the remote-mounted version is made at the ground terminal of the connection housing.

Caution!

Danger of permanent damage to the instrument! If the fluid cannot be grounded for operational reasons, ground disks are to be used.

Potential equalisation for some special cases is described below:

Potential equalisation for lined pipes with cathodic protection

When the fluid cannot be earthed for operational reasons, the measuring unit must be installed that it is potential-free (Fig. 28). Ensure that components of the piping are connected to one another (copper wire, 6 mm²).

All national regulations regarding potential free installation are to be observed (e.g. VDE 0100). Ensure that the mounting material used does not result in a conductive bond with the measuring unit and that the material can withstand the tightening torque used.

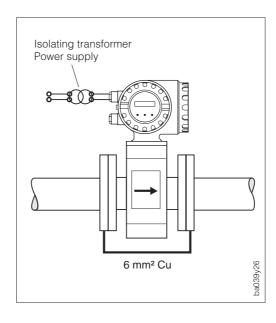
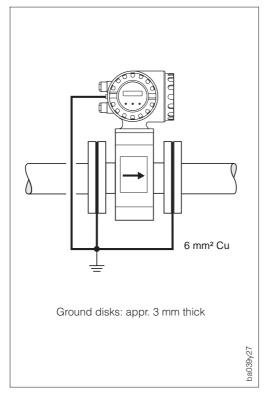



Fig. 28
Potential equalisation for lined pipes with cathodic protection

4 Electrical Connection Promag 30 (Model '99)

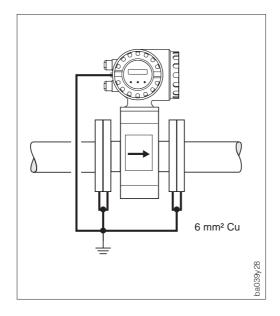
Plastic or lined piping

Ground disks must always be used with non-conductive piping materials if compensation currents flow through the fluid. They can irreparably damage the reference electrode within a short time due to electrochemical corrosion.

Such conditions occur especially if:

- the piping is insulated with electrically non-conductive materials and
- the piping is made of fibreglass or PVC through which flow highly concentrated acids and alkalis.

Fig. 29 Potential equalisation with plastic or lined pipings.



Caution!

Danger from damage due to electrochemical corrosion!

- Note the corrosion resistance of the ground disks!
- Note the electrochemical potential series in cases where the ground disks and the measuring electrodes are made of different material.

Equalising currents in unearthed metal pipes / Earthing in an area with severe interference

The fluid may be earthed. In order to make the most of the electromagnetic compatibility (EMC) of the Promag 30, it is advisable to provide two flange-to-flange links and to connect them jointly with the transmitter housing to earth potential.

Fig. 30 Potential equalisation with

equalising currents,in areas with severe interference

4.6 Commissioning

Before switching on the measuring system, the following checks should be carried out again:

- Check the electrical connections and terminal assignments.
- Compare the data on the nameplate with the local mains voltage and frequency.
- Does the direction of the arrow on the nameplate (sensor) agree with the actual direction of flow in the piping?

If the results of these checks are satisfactory, switch on the supply voltage. The unit is now ready for operation.

After switching on, the system performs various self-test routines. During this procedure the following sequence of messages appears on the display:

Pro-3_' Promag 30 (Model '99)

The actual set display mode is then shown (3 possibilities):

- rRtE Flow rate - totalizer

- RLEErnRE Alternating display of flow rate / totalizer (display changes approx. every 10 seconds)

After successful start-up, normal measurement mode is assumed. Depending on the display mode set, it now shows flow rate and/or totalizer value as well as the actual units ("HOME position").

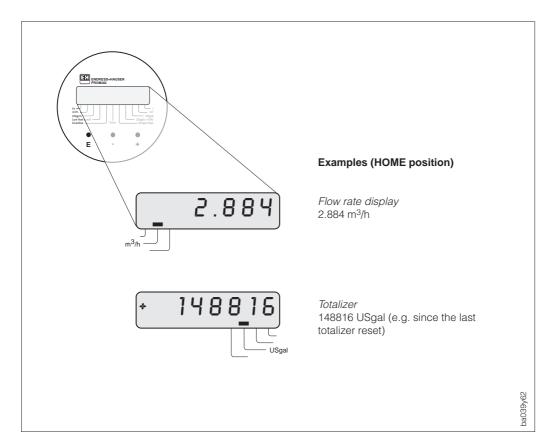
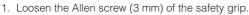


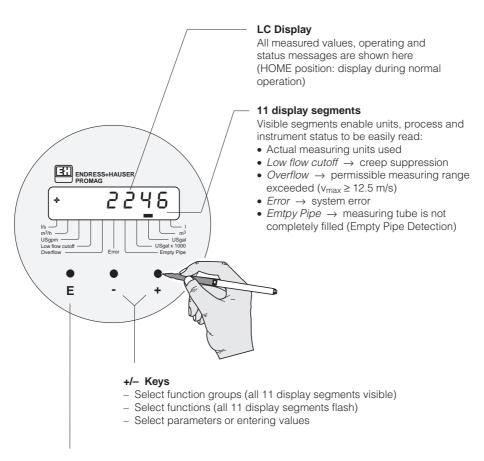
Fig. 31: Examples of the display (HOME position)

4 Electrical Connection Promag 30 (Model '99)


5 Display and Operation

5.1 Display and operating elements

With Promag 30 important variables can be directly read off at the measuring point. Various functions of the E+H matrix can also be selected and configured using the three operating keys.


Warning!

Danger of electrical shock! With the housing cover removed, protection against accidental contact is no longer present. Components with high voltages are exposed below the local display. When programming avoid any contact with the electronic components which lie below the local display, and do not use any electrically conductive object to depress the operating keys!

- 2. Unscrew the cover of the electronics compartment.
- The keys may now be operated by pressing with a thin (non-conductive) pin. A switching cycle takes about 0.5...0.8 seconds.
- 4. Firmly screw back the cover of the electronics compartment to the transmitter housing once the settings have been entered. Firmly tighten the Allen screw of the safety grip.

Enter key

- HOME position → access operating matrix
- ullet Leave the operating matrix ullet HOME position (key is pressed for more than 3 seconds)
- ullet Change operating level: Function group o Function o Input
- · Save data or settings

Fig. 32 Display and operating elements

5.2 Operation (operating matrix)

Warning

Danger of electrical shock! With the housing cover removed, protection against accidental contact is no longer present.

- 1. Access the operating matrix
- 2. Select function group
- 3. Select functions
- 4. Select and store parameters (operating example: see page 36)
- Leave operating matrix → HOME position (from any matrix position) or Select other functions

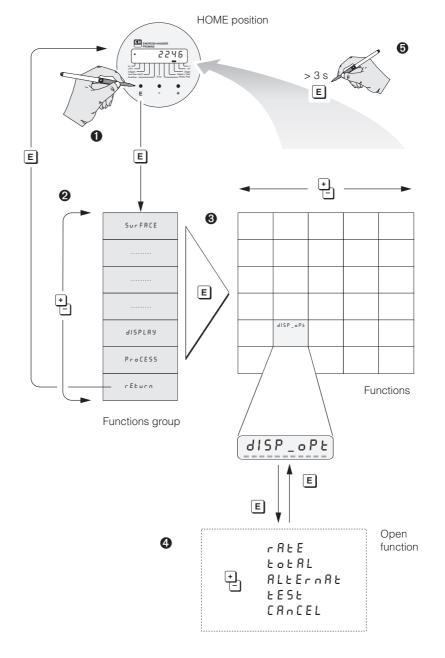
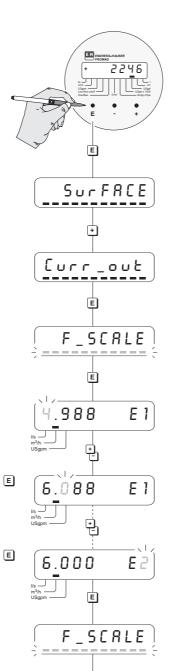


Fig. 33 Select functions in the E+H operating matrix

Note!

- An automatic return to the HOME position will be made if the operating keys are not actuated for 60 seconds (although not from an opened function).
- "r E E u r n" + Enter \rightarrow Return to the next higher operating level (function group, HOME)
- " [A n [E L" + Enter → Return to the function level without storing the changed parameter

	Oper	ating matrix / Su	mmary of function	ons	
SurFRCE Gr00 Interactive surface → page 37	PRSECodE / FuD1 Function code RLPHR text code * nbr number code CRnCEL	u_rRtE / Fu02 Flow rate units unit_1 [l/s]* unit_2 [m³/h] unit_3 [USgpm] [RnCEL	u_EoERL / FuB3 Totalizer units unlE_4 [USgal × 1000] unlE_5 [USgal] unlE_6 [m³] unlE_7 [1]* [RnCEL	rEturn	
Curr_out Gr10 Current output → page 38	F_5CRLE / Full Full scale value (current output) Numeric entry: x.xxx E±x Factory setting: page 72	E_Eon5E / Fu12 Time constant Numeric entry: xx.x (in steps of 0.5 s) Factory setting = 1.0 s	I_rRnGE / Full Current range 0-20 (mA) 4-20 (mA)* CRnCEL	rEturn	
PuL5_out Gr20 Pulse output → page 40	P_FREEor / Fu21 Pulse value Numeric entry: x.xxx E±x Factory setting: page 72	rEturn			
StRt_out Gr30 Status output → page 42	SERE_FEE / Fu 31 Status output function Error System/process error indication * Flo_dlr Flow direction indication CREEL	rEturn			
InPut Gr40 Auxiliary input → page 43	In P _ F C E / F u 4 1 Auxiliary input function Su P P r E S S Positive zero return r E S _ E u E Reset totalizer * CR n C E L	rEturn			
dISPLRY Gr50 Display → page 43	rES_tot / FuSi Totalizer reset CRnCEL rES_YES reset	dISP_oPt / FuS2 Display mode rRtE Flow rate * totalizer RLtErnRt Flow rate & Totalizer tESt Display test function CRnCEL	dISP_dR / Fu 53 Display damping Numeric entry: xx.x (in steps of 0.5 s) Factory setting = 1.0 s	Lot_oFL / Fu54 Number of totalizer overflows Display: xxxxxxxx (max. 8 characters)	rEturn
ProCESS Gr60 Process parameters → page 44	LFC / Fu61 Creep suppression LFC_oFF off LFC_on on*	EPB / Fu 62 Empty Pipe Detection EPd_oFF off * EPd_on on EPd_Ad_E Empty pipe adjustment EPd_Ad_F Full pipe adjustment CRocel	ECC / Fu 6 3 Electrode cleaning (optional) ECC_oFF off ECC_on on *	rEturn	
rEturn	* Fa	ctory setting (can be different	for instruments with customer s	specific parameterisation)	1


5.3 Operating example

Warning

Warning!

Danger of electrical shock! With the housing cover removed, protection against accidental contact is no longer present. Components with high voltages are exposed below the local display. When programming avoid any contact with the electronic components which lie below the local display, and do not use any electrically conductive object to depress the operating keys!

You would like to set the full scale value for the current output to 600.0 m³/h. Proceed as follows:

HOME position (display during normal operation)

Change flashing number with $\stackrel{\bullet}{\blacksquare}$ and store with $\stackrel{\bullet}{\blacksquare}$. The next number to be changed will then flash automatically.

Remarks

- ullet Selecting units ightarrow see page 37
- Display of numerical values: → see page 2
- If the value entered is too high or too low, then the message "Łoo_HI" or "Łoo_Lo" is displayed for approx.
 2 seconds. The maximum or minimum full scale value (depending on nominal diameter) will then be shown → see page 39.

Fig. 34
Operating example
(E+H operating matrix)

ba039y7

Terminate entry

E > 3 sec. → HOME position

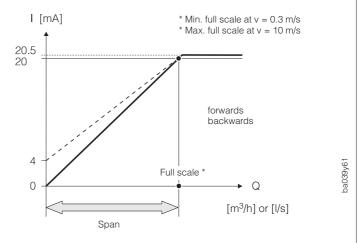
→ next function (Ł _ [o n 5 Ł)

6 Description of Functions

This section describes in detail, along with specifications, the individual functions of the Promag 30. The function designation in the following table shows the two versions available – as well as the text and number codes used (see function "PRGECodE / Fu01").

Function groups

```
(Surface / GrOO)
Interactive surface
                                      → page 37
               ([urr_out / Gr 10)
Current output
                                      → page 38
Pulse output
               (Puls_out / Gr20)
                                      → page 40
Status output
               (5tRt_out / Gr 30)
                                      → page 42
Auxiliary input
               (InPut / Gr40)
                                      → page 43
Display
               (dISPLAY / Gr50)
                                      → page 43
Process parameter (ProCESS / Gr60)
                                      → page 44
```


Function group INTERACTIVE SURFACE - Surface / Gr00					
PAGECodE Fu 01	All functions of the operating matrix can be shown on the display in two different ways – with a function number or a text code.				
Function code	+ RLPHR Type of display → text code e.g. F_5CRLE for function "full scale value current output"				
	nbr Type of display → number code e.g. Fu 11 for function "full scale value current output"				
	CAnCEL				
u_r8tE Fu 02	Select the units required for flow rate (volume/time). The units selected here also define those for:				
Flow rate	creepage full scale value (current output)				
	unlt_1 Display segment "I/s" unlt_2 Display segment "m³/h" unlt_3 Display segment "USgpm" ERnceL				
∪_tot8L Fu 03	Select the units required for flow volume (totalizer). The units selected here also define those for:				
Volume unit	pulse value (volume/pulse)totalizer (counter)				
	unit_ 4 Display segment "USgal × 1000" unit_ 5 Display segment "USgal" unit_ 6 Display segment "m³" unit_ 7 Display segment "I" ERncel				

Function group CURRENT OUPUT - [urr_out / Gr10]

F_SCALE Fu 11

Full scale value

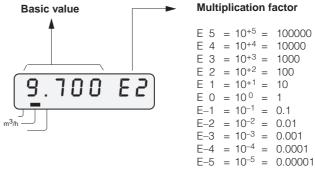
Enter the desired full scale value for the volume flow (in the appropriate units selected). When exceeding the max. possible full scale value, the current output is limited to a maximum of 20.5 mA.

+

Numeric entry:

Change the flashing number with and store with .

The next number to be changed will then flash automatically. After the last number has been changed and stored, the instrument returns to the function level (all display segments flash).


Note!

The minimum or maximum possible full scale value is given for every nominal diameter in the table on page 39. If the value entered is too high or too low then the display reacts as follows:

- 1. The value entered is *not* stored.
- 2. The message "Loo_HI" (value entered is too high) or "Loo_Lo" (value entered is too low) is shown on the display.
- 3. The minimum or maximum possible values are then shown on the display which may be entered for the full scale (see table).

Display of numerical values:

Due to the limited size of the display, values are shown in a special way.

Examples:

Note!

Display limits / Full scale values (current output)						
	l.	/s	m	³/h	US	gpm
DN	Min.	Max.	Min.	Max.	Min.	Max.
2	9.424 E-4	3.141 E-2	3.392 E-3	1.130 E-1	1.494 E-2	4.980 E-1
4	3.769 E-3	1.256 E-1	1.357 E-2	4.523 E-1	5.976 E-2	1.992 E O
8	1.507 E-2	5.026 E-1	5.428 E-2	1.809 E O	2.390 E-1	7.968 E O
15	5.301 E-2	1.767 E O	1.908 E-1	6.361 E O	8.403 E-1	2.801 E 1
25	1.472 E-1	4.908 E O	5.301 E-1	1.767 E 1	2.334 E O	7.781 E 1
32	2.412 E-1	8.042 E O	8.685 E-1	2.895 E 1	3.824 E O	1.274 E 2
40	3.769 E-1	1.256 E 1	1.357 E O	4.523 E 1	5.976 E O	1.992 E 2
50	5.890 E-1	1.963 E 1	2.120 E O	7.068 E 1	9.337 E O	3.112 E 2
65	9.954 E-1	3.318 E 1	3.583 E O	1.194 E 2	1.578 E 1	5.260 E 2
80	1.507 E O	5.026 E 1	5.428 E O	1.809 E 2	2.390 E 1	7.968 E 2
100	2.356 E O	7.853 E 1	8.482 E O	2.821 E 2	3.735 E 1	1.245 E 3
125	3.681 E O	1.227 E 2	1.325 E 1	4.417 E 2	5.836 E 1	1.945 E 3
150	5.301 E O	1.767 E 2	1.908 E 1	6.361 E 2	8.403 E 1	2.801 E 3
200	0 11211 5 0	2 141 5 2	2 202 5 1	1120 5 2	1 11011 5 2	U 000 F 3
200	9.424 E O 1.413 E 1	3.141 E 2 4.908 E 2	3.392 E 1 5.301 E 1	1.130 E 3 1.767 E 3	1.494 E 2 2.334 E 2	4.980 E 3 7.781 E 3
250	1.713 E 1	1.500 E E	3.301 E 1	1.101 6 3	6.337 6 6	1.101 2 3
300	2.120 E 1	7.068 E 2	7.634 E 1	2.544 E 3	3.361 E 2	1.120 E 4
350	2.886 E 1	9.621 E 2	1.039 E 2	3.463 E 3	4.575 E 2	1.525 E 4
400	3.769 E 1	1.256 E 3	1.357 E 2	4.523 E 3	5.976 E 2	1.992 E 4
450	4.771 E 1	1.590 E 3	1.717 E 2	5.725 E 3	7.563 E 2	2.521 E 4
430	1.777 2 7	1.330 2 3	7.777 2 2	3.723 2 3	7.303 2 2	2.327 2 7
500	5.890 E 1	1.963 E 3	2.120 E 2	7.068 E 3	9.337 E 2	3.112 E 4
600	8.482 E 1	2.827 E 3	3.053 E 2	1.017 E 4	1.344 E 3	4.482 E 4
700	1.154 E 2	3.848 E 3	4.156 E 2	1.385 E 4	1.830 E 3	6.100 E 4
750	1.325 E 2	4.417 E 3	4.771 E 2	1.590 E 4	2.101 E 3	7.003 E 4
800	1.507 E 2	5.027 E 3	5.428 E 2	1.809 E 4	2.390 E 3	7.968 E 4
900	1.908 E 2	6.361 E 3	6.870 E 2	2.290 E 4	3.025 E 3	1.008 E 5
1000	2.356 E 2	7.853 E 3	8.485 E 5	2.827 E 4	3.735 E 3	1.245 E 5
1050	2.597 E 2	8.659 E 3	9.351 E 2	3.117 E 4	4.117 E 3	1.372 E 5
1200	3.392 E 2	1.130 E 4	1.221 E 3	4.071 E 4	5.378 E 3	1.792 E 5
1350	4.294 E 2	1.434 E 4	1.545 E 3	5.153 E 4	6.807 E 3	2.269 E 5
1400	4.618 E 2	1.539 E 4	1.662 E 3	5.541 E 4	7.320 E 3	2.440 E 5
1500	5.301 E 2	1.767 E 4	1.908 E 3	6.361 E 4	8.403 E 3	2.801 E 5
1600	6.031 E 2	2.010 E 4	2.171 E 3	7.238 E 4	9.561 E 3	3.187 E 5
1700	6.809 E 2	2.269 E 4	2.451 E 3	8.171 E 4	1.079 E 4	3.598 E 5
1800	7.634 E 2	2.544 E 4	2.748 E 3	9.160 E 4	1.210 E 4	4.033 E 5
2000	9.424 E 2	3.141 E 4	3.392 E 3	1.130 E 5	1.494 E 4	4.980 E 5
		I	l			

The last figure of the above values can differ by ±1 from the value shown on the display (error in rounding off)!

Minimum full scale \rightarrow flow rate = 0.3 m/s Maximum full scale \rightarrow flow rate = 10 m/s

Factory settings \rightarrow see page 72

Function group CURRENT OUTPUT - [urr _ out / Gr 10

t_ConSt Fu 12 Selecting the time constant determines whether the current output signal reacts very quickly to rapidly changing flows (small time constant) or slowly (large time constant).

Time constant

Note!

The time constant does not affect the behaviour of the display!

+

Numeric entry: 0.5...95 [s] in steps of 0.5 s

I_rAnGE Fu 13 Set the current range. The current for the scaled full scale value is always 20 mA (see page 38).

Current range

0-20 (mA) 4-20 (mA)

Function group PULSE OUTPUT - Puls_out / Gr20

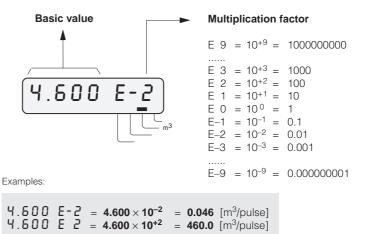
P_FRCtor Fu 21

Pulse value

Enter that flow quantity for which an output pulse is supplied (pulse width: max. 1s, pulse/pause ratio up to 0.5 Hz approx. 1:1; with pulse frequencies less than 0.5 Hz the pulse width is limited to 1 s; $f_{\text{max}} = 400 \text{ Hz}$). With external totalizers these pulses can be totalized and thus determine the total flow quantity since the start of measurement.

Numeric entry:

Change flashing number with and store with . The next number to be changed will then flash automatically. After the last number has been changed and stored, the instrument returns back to the function level (all display segments flash).


Note!

The minimum or maximum possible full scale value is given for every nominal diameter in the table on page 41. If the value entered is too high or too low then the display reacts as follows:

- 1. The value entered is *not* stored.
- 2. The message "Łoo_HI" (value entered is too high) or "Łoo_Lo" (value entered is too low) is shown on the display.
- 3. The minimum or maximum possible values are then shown on the display which can be entered for the pulse value (see table).

Display of numerical values:

Due to the limited size of the display, values are shown in a special way.

Noted

	Display limits / Pulse value							
	Lit	ter	n	m³		gal	USgal × 1000	
DN	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
2	7.853 E-5	9.999 E 9	7.853 E-8	9.999 E 6	2.075 E-5	2.641 E 9	2.015 E-8	2.641 E 6
4	3.141 E-4	9.999 E 9	3.141 E-7	9.999 E 6	8.300 E-5	2.641 E 9	8.300 E-8	2.641 E 6
8	1.256 E-3	9.999 E 9	1.256 E-6	9.999 E 6	3.320 E-4	2.641 E 9	3.320 E-7	2.641 E 6
15	4.417 E-3	9.999 E 9	4.417 E-6	9.999 E 6	1.167 E-3	2.641 E 9	1.167 E-6	2.641 E 6
25	1.227 E-2	9.999 E 9	1.227 E-5	9.999 E 6	3.242 E-3	2.641 E 9	3.242 E-6	2.641 E 6
32	2.010 E-2	9.999 E 9	2.010 E-5	9.999 E 6	5.312 E-3	2.641 E 9	5.312 E-6	2.641 E 6
40	3.141 E-2	9.999 E 9 9.999 E 9	3.141 E-5 4.908 E-5	9.999 E 6 9.999 E 6	8.300 E-3 1.296 E-2	2.641 E 9	8.300 E-6 1.296 E-5	2.641 E 6
50	4.908 E-2 8.295 E-2	9.999 E 9			1.296 E-2 2.191 E-2	2.641 E 9 2.641 E 9		2.641 E 6
65 80	1.256 E-1	9.999 E 9	8.295 E-5 1.256 E-4	9.999 E 6 9.999 E 6	3.320 E-2	2.641 E 9 2.641 E 9	2.191 E-5 3.320 E-5	2.641 E 6 2.641 E 6
00	1.630 6-1		1.630 6-1	3.333 6 0	5.500 6-6	[[[]]	5.500 6-5	2.011 2 0
100	1.963 E-1	9.999 E 9	1.963 E-4	9.999 E 6	5.187 E-2	2.641 E 9	5.187 E-5	2.641 E 6
125	3.067 E-1	9.999 E 9	3.067 E-4	9.999 E 6	8.105 E-2	2.641 E 9	8.105 E-5	2.641 E 6
150	4.417 E-1	9.999 E 9	4.417 E-4	9.999 E 6	1.167 E-1	2.641 E 9	1.167 E-4	2.641 E 6
200	7.853 E-1	9.999 E 9	7.853 E-4	9.999 E 6	2.075 E-1	2.641 E 9	2.075 E-4	2.641 E 6
250	1.227 E O	9.999 E 9	1.227 E-3	9.999 E 6	3.242 E-1	2.641 E 9	3.242 E-4	2.641 E 6
300	1.767 E O	9.999 E 9	1.767 E-3	9.999 E 6	4.668 E-1	2.641 E 9	4.668 E-4	2.641 E 6
350	2.405 E O	9.999 E 9	2.405 E-3	9.999 E 6	6.354 E-1	2.641 E 9	6.354 E-4	2.641 E 6
400								
400	3.141 E O	9.999 E 9	3.141 E-3	9.999 E 6	8.300 E-1	2.641 E 9	8.300 E-4	2.641 E 6
450	3.976 E O	9.999 E 9	3.976 E-3	9.999 E 6	1.050 E 0	2.641 E 9	1.050 E-3	2.641 E 6
500	4.908 E O	9.999 E 9	4.908 E-3	9.999 E 6	1.296 E O	2.641 E 9	1.296 E-3	2.641 E 6
600	7.068 E 0	9.999 E 9	7.068 E-3	9.999 E 6	1.867 E O	2.641 E 9	1.867 E-3	2.641 E 6
700	9.621 E O	9.999 E 9	9.621 E-3	9.999 E 6	2.541 E O	2.641 E 9	2.541 E-3	2.641 E 6
750	1.104 E 1	9.999 E 9	1.104 E-2	9.999 E 6	2.918 E O	2.641 E 9	2.918 E-3	2.641 E 6
800	1.256 E 1	9.999 E 9	1.256 E-2	9.999 E 6	3.320 E O	2.641 E 9	3.320 E-3	2.641 E 6
900	1.590 E 1	9.999 E 9	1.590 E-2	9.999 E 6	4.201 E O	2.641 E 9	4.201 E-3	2.641 E 6
1000	1.963 E 1	9.999 E 9	1.963 E-2	9.999 E 6	5.187 E O	2.641 E 9	5.187 E-3	2.641 E 6
1050	2.164 E 1	9.999 E 9	2.164 E-2	9.999 E 6	5.719 E O	2.641 E 9	5.719 E-3	2.641 E 6
1200	2.827 E 1	9.999 E 9	2.827 E-2	9.999 E 6	7.470 E O	2.641 E 9	7.470 E-3	2.641 E 6
1350	3.578 E 1	9.999 E 9	3.578 E-2	9.999 E 6	9.454 E 0	2.641 E 9	9.454 E-3	2.641 E 6
1400 1500	3.848 E 1 4.417 E 1	9.999 E 9 9.999 E 9	3.848 E-2 4.417 E-2	9.999 E 6 9.999 E 6	1.016 E 1 1.167 E 1	2.641 E 9 2.641 E 9	1.016 E-2 1.167 E-2	2.641 E 6 2.641 E 6
1600	5.026 E 1	9.999 E 9	5.026 E-2	9.999 E 6	1.161 E 1 1.328 E 1	2.641 E 9	1.167 E-2 1.328 E-2	2.641 E 6
1700	5.674 E 1	9.999 E 9	5.674 E-2	9.999 E 6	1.499 E 1	2.641 E 9	1.499 E-2	2.641 E 6
1800	6.361 E 1	9.999 E 9	6.361 E-2	9.999 E 6	1.680 E 1	2.641 E 9	1.680 E-2	2.641 E 6
1000								
2000	7.853 E 1	9.999 E 9	7.853 E-2	9.999 E 6	2.075 E 1	2.641 E 9	2.015 E-2	2.641 E 6
					l		l	l

The last figure of the above values can differ by ± 1 from the value shown on the display (error in rounding off)! Min. pulse values at v=10 m/s and f=400 Hz

Factory settings \rightarrow see page 72

Function group STATUS OUTPUT - 5 t A t _ o u t / G r 3 0

SERE_FCE Fu 31

Status output function

Select or assign the function of the status output.

Error | Indicates system/process errors (for definition: see page 49) Indicates direction of flow

FLo_dlr CRnCEL

Notes!

- The status output acts as a normally closed contact, i.e. in normal operation, free from fault, the output is closed (transistor conducting, see table).
- The behaviour of the outputs in the event of a fault is described on page 49.
- Process/system errors are always shown on the local display, independent
 of the status output configuration.

Configuration of status output	Status	Response Transistor	22 23
System / process error message (Error)	System OK	closed	
	Fault indication	open	
	Supply failure	open	
Flow direction indication	forward	open	
	reverse	closed	
	"closed" → Transistor c "open" → Transistor n	onductive on-conductive	

"Unidirectional" or "bidirectional" operating mode:

Promag 30 measuring system can operate either bidirectionally or in one direction only. Selecting the operating mode is, however, directly coupled with the configuration of the status output.

Status output	Operating mode	Current / pulse output
"FLo_dlr" (Flow direction)	bidirectional	always active (signal output in both flow directions)
"Error" (Fault indication)	unidirectional	active only with positive flow direction (no signal output with negative flow, reverse)

Negative flows are shown on the display by a negative sign.

Function group AUXILIARY INPUT - / ೧೯૫٤ / ઉત્ય0				
In P _ F C t F u 41	Select or assign the auxiliary input function. The appropriate function is actuated by applying an external voltage (330 V DC) at the auxiliary input.			
Auxiliary input function	Suppression (Positive Zero Return): By activating the Positive Zero Return, the measuring mode is interrupted and all output signals are reset to defined values (~zero flow). Examples: Interruption measurement to clean the piping.			
	Response of display with active suppression: "rЯŁЕ" → Display with 8 vertical bars. "ŁɒŁЯL" → Display segment "Low flow cutoff" is shown (if creep suppression is activated).			
	ר E5 _ ב פ ב Totalizer is reset to "0". (The totalizer can also be reset by using the function " ר E5 _ ב פ ב" resp. " F ש 5 1").			
	CAUCEL			
	Function group DISPLAY - d15PLAY / Gr50			
r ES_tot Fu 51	Reset the totalizer to '0'.			
Reset totalizer	Notes! The totalizer and its overruns are set to zero with this function. The totalizer can also be reset using the auxiliary input (see function In P_FCE / Fu Y1).			
	+ [An[EL Cancel r E5_YE5 Reset totalizer (press E)			
dISP_oPt Fu 52	Select the display mode (e.g. display of flow rate or display of totalizer, etc.).			
Display mode	+ rREE Display flow E o L R L Display totalizer (counter status) RLEErnRE Display flow and totalizer (alternating) EESE Display test function * CRnCEL			
	* An automatic test of all display elements is carried out with this function (Start with). The following displays are shown one after the other: 1. *8.8.8.8.8.8.8.8.8. (all display segments visible) 20 0 0 0 0 0 0 0 (no display segments visible) 3. No display elements visible at all.			
dISP_dR Fu 53 Display damping	Selecting the time constant determines whether the current output signal reacts very quickly to rapidly changing flows or is dampened: • small time constant → display with quick reaction • large time constant → display with dampened reaction			
(Flow rate)	Note! The display damping does not affect the response of the current output.			
	Numeric entry: 0.520 [s] in steps of 0.5 s			

Function group DISPLAY - 315PLRY / 5-50

t o t _ o F L F ∪ 54

Totalizer overflows

Display of totalizer overflows.

Example:

Display of 2 overflows: 2

Actual displayed value for totalized sum: 00004321 [m³]

Total amount: 200004321 [m³]

Function group PROCESS PARAMETERS - Profess / Gr60

LFC Fu 61

Creep suppression

Switching on or off the creep suppression (Low flow cutoff).

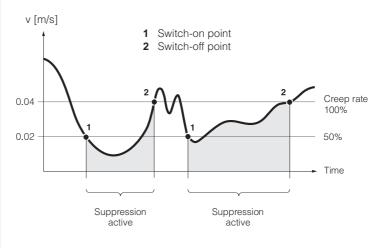
The creep suppression prevents the flow in the lowest measuring range from being detected e.g. with varying liquid head at standstill.

With variations in flow in the lower part of the measuring range, the hysteresis (50% of creepage) prevents continual switching on and off of the creep suppression function.

Switch-on point (1)

When the velocity of the fluid is less than 0.02 m/s creep suppression is then *activated* and all output signals such as pulse and analogue signals, are set to the fall back value (0/4 mA, logical '0').

The segment for "Low flow cutoff" is then immediately visible on the LC display.


Switch-off point (2)

When the velocity of the fluid again exceeds v = 0.04 m/s, then creep suppression is *deactivated*.

造

LFC_oFF LFC_on CAnCEL

Switch-off creep suppression Switch-on creep suppression

0,0004

Diameter	On	Off	On	Off	On	Off
DIN	[1/:	s]	[m ³	/h]	[USg	gpm]
2	0.00006	0.0001	0.0002	0.0005	0.001	0.002
4	0.0003	0.0005	0.0009	0.0018	0.004	0.008
8	0.001	0.002	0.004	0.007	0.016	0.032
15	0.003	0.007	0.013	0.025	0.056	0.112
25	0.010	0.020	0.035	0.071	0.156	0.31
32	0.016	0.032	0.058	0.116	0.255	0.510
40	0.025	0.050	0.090	0.181	0.398	0.797
50	0.039	0.079	0.141	0.283	0.622	1.245
65	0.066	0.132	0.239	0.478	1.052	2.104
80	0.101	0.201	0.362	0.724	1.593	3.187
00	0.101	0.201	0.502	0.724	1.080	3.101
100	0.157	0.314	0.565	1.131	2.490	4.980
125	0.245	0.491	0.884	1.767	3.890	7.78
150	0.353	0.707	1.272	2.545	5.602	11.204
200	0.628	1.257	2.262	4.524	9.960	19.918
250	0.982	1.963	3.534	7.069	15.561	31.122
300	1.413	2.827	5.089	10.179	22.408	44.816
350	1.924	3.848	6.927	13.854	30.500	61.000
400	2.513	5.026	9.048	18.096	39.836	79.672
450	3.180	6.362	11.451	22.902	50.418	100.835
500		= 05.		00.074		
500	3.926	7.854	14.137	28.274	62.244	124.488
600	5.654	11.310	20.358	40.715	89.631	179.263
700	7.696	15.394	27.709	55.418	122.000	243.997
750	8.836	17.671	31.809	63.617	140.049	280.098
800	10.053	20.106	36.191	72.382	159.345	318.690
900	12.723	25.447	45.804	91.609	201.671	403.342
1000	15.708	01.410	56.549	110.007	040.070	407.05
1000		31.416		113.097	248.976	497.950
1050	17.318	34.636	62.345	124.690	274.496	548.993
1200	22.619	45.239	81.443	162.860	358.526	717.052
1350	28.628	57.255	103.060	206.120	453.759	907.519
1400	30.788	61.575	110.836	221.672	487.994	975.987
1500	35.343	70.686	127.234	254.469	560.197	1120.393
1600	40.212	80.425	144.764	289.528	637.379	1274.759
1700	45.396	90.792	163.425	326.851	719.541	1439.083
1800	50.894	101.788	183.218	366.436	806.683	1613.366
2000	60 000	105 664	226 104	4E0 200	995.905	1991.810
2000	62.832	125.664	226.194	452.388	333.305	1991.810

On and off switch points are fixed values:

Switch-on point \rightarrow at v = 0.02 m/s

Switch-off point \rightarrow at v = 0.04 m/s

Function group PROCESS PARAMETERS - Profess / Grad

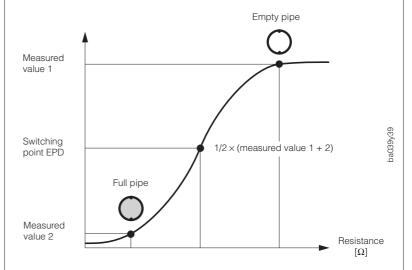
EPD Fu 62

Empty Pipe Detection With this function (EPD = Empty Pipe Detection), two procedures can always be activated:

- Carrying out the empty and full pipe adjustment for Emty Pipe Detection
- Switching on/off Empty Pipe Detection (EPD).

Note!

- This function is available only if the sensor is fitted with an extra EPD electrode (see "Technical Data", page 69).
- The EPD function is not available with the remote "FL" version.
- The connection cable with the remote "FS" version may only be a maximum of 10 m long. Only then can correct functioning of the EPD be guaranteed!
- The EPD function is switched off when the flowmeter is delivered and must be switched on manually when required.


EPd_or EPD switched off EPD switched on (This selection is a

(This selection is only displayed if the EPD adjustment has already been carried out successfully. If the adjustment is incorrect then the message "AdJ_Err" is shown instead)

 $\textit{EPd}_\textit{Rd}_\textit{E}$ Start empty pipe adjustment (confirm with E) $\textit{EPd}_\textit{Rd}_\textit{F}$ Start full pipe adjustment (confirm with E) CRnCEL

Remarks on Empty Pipe Detection (EPD)

Only a completely full measuring tube enables correct readings to be obtained. This can be continuously checked by Empty Pipe Detection. EPD is based on measuring the conductivity of the fluid (see Figure).

Response when partially full

If the EPD is active and responds due to a partially filled or empty pipe, the display segment "Empty Pipe" is shown on the display. The outputs respond in such cases as described on page 49.

When the pipe is partially filled and the EPD is not active, then the response may be different for identical plants:

- varying flow display
- zero flow
- excess flow values

(Continued next page)

46

Function group PROCESS PARAMETERS - Pro CESS / Gr 60

EPD Fu 62

Procedure (Empty pipe / full pipe adjustment)

Notes!

- If Promag 30 is fitted with an EPD electrode, then the unit is already calibrated in the factory with drinking water (500 µS/cm). A new empty pipe or full pipe adjustment is to be carried out on site when liquids having different conductivities are used.
- Every (new) adjustment automatically switches off the EPD function.
- The EPD function can only be switched on (again) if empty or full pipe adjustment has been successfully carried out.
- 1. Empty the piping. For the emtpy pipe adjustment to be carried out now, the walls of the measuring tube should be wetted with fluid.
- 2. Start the empty pipe adjustment:

Select EPd_Rd_E and confirm with E.

- Display during adjustment: Яปป_6บ59
- Display after adjustment: RDJ_donE
- 3. Fill the piping with fluid.
- 4. Start the full pipe adjustment with the fluid stationary: Select EPd_Rd_F and confirm with E.
 - Display during adjustment: RdJ_bu59
 - Display after adjustment: ADJ_donE
- 5. Switch on the Empty Pipe Detection after the adjustment

 → Select EPd_on and confirm with ■.

Note!

The EPD function can only be switched on (again) if empty or full pipe adjustment has been successfully carried out. If the adjustment is not successful then the message RDJ_Err is shown instead of " EPd_or ". In such cases the empty or full pipe adjustment must again be carried out.

Possible sources of error:

- Empty pipe adjustment has been carried out when the pipe was full.
- Full pipe adjustment was carried out when the pipe was empty or partially filled.

Function group PROCESS PARAMETERS - Pro CESS / Gr 80

ECC Fu 63

Electrode

cleaning

Switching on and off the electrode cleaning circuit (ECC).

Note!

 This function is only available if the Promag 30 is fitted with an electrode cleaning function (optional).

- The ECC function is not available with the remote "FL" version.
- The ECC is always switched on when first delivered from the factory.

ECC_off ECC switched off ECC_on ECC switched on

Remarks on ECC:

Conductive build-up on the electrodes and the measuring tube walls (e.g. magnetite) can cause measurement errors. The Electrode Cleaning Circuit (ECC) has been developed in order to prevent build-up occurring. The cleaning cycle repeats itself every 30 minutes for approx. 3 seconds. The ECC works in the way described for all electrode materials available except tantalum. If the electrode material is tantalum then the ECC only protects the electrode surface from oxidation.

Note!

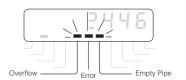
After the electrode cleaning procedure is completed, the signal outputs may be unsteady for a little while. This is due to electrochemical potentials caused by electrostatic charging of the fluid during the cleaning cycle. The set recovery time of approx. 2 seconds is generally sufficient to stabilise the signal output after the cleaning phase. During the recovery time the last value registered before cleaning is given.

Caution!

If the ECC is switched off for a long period of time in an application where there is a conductive build-up in the measuring tube, then this can lead to errors. If there is a large concentration of build-up at one point, then, under certain circumstances, switching on the ECC may not remove it. In such cases the flowmeter is to be cleaned and the build-up removed.

Caution!

7 Trouble-shooting, Maintenance and Repairs


7.1 Response of the measuring system on faults or alarm

The Promag 30 distinguishes between two kinds of error:

- System error: instrument failure, power failure (Error)
- Process error: partially filled pipe (Empty Pipe), measuring range exceeded (Overflow)

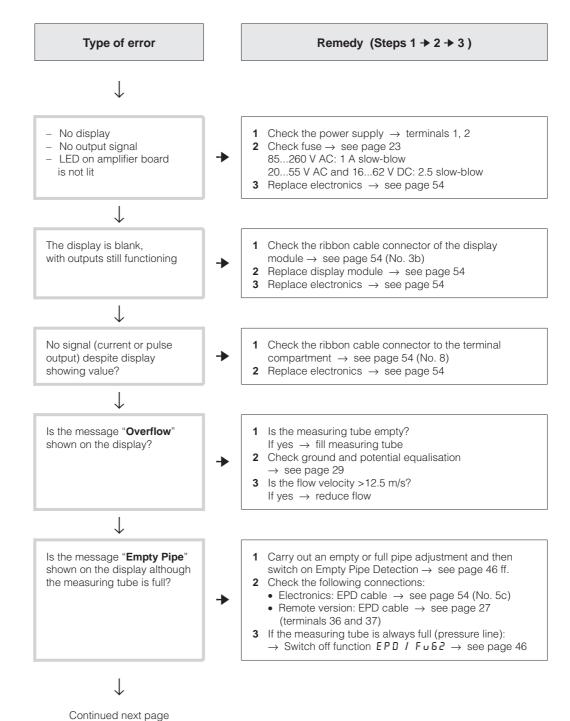
Errors which occur during normal operation are indicated on the display by appropriate *segment bars* ("Error, Empty Pipe, Overflow").

The error response of the outputs is described in the following table.

Positive Zero Return <i>not</i> activated					
	Curren	t output	Pulse output	Status out	out (transistor)
	" O - 2 O"	" 4 - 2 0"		"Error"	"FLo_dlr"
No System / process error present	measurement OK (signal for flow)	measurement OK (signal for flow)	measurement OK (signal for flow)	conductive (closed)	forward: non-conductive (open) reverse: conductive (closed)
System or process error present	0 mA	2 mA	no signal output (0 Hz) non-conductive (open)	non-conductive (open)	status kept before error occurred: forward: non-conductive (open) reverse: conductive (closed)

Positive Zero Return activated						
	Current output		Pulse output	Status output (transistor)		
	" 0 - 2 0"	" 4 - 2 0"		"Error"	"FLo_dlr"	
No System and process errors present	0 mA	4 mA		conductive (closed)		
System error only present	0 mA	2 mA	no signal output (0 Hz) non-conductive (open)		non-conductive (open)	conductive
Process error only present	0 mA	4 mA		conductive (closed)	(closed)	
System and process error present	0 mA	2 mA		non-conductive (open)		

7.2 Trouble-shooting and remedy


All instruments undergo various stages of quality control during production. The last of these stages is the wet calibration carried out on state-of-the-art calibration rigs.

The following summary helps to identify possible causes of error during normal measurement. An LED on the amplifier board is lit as long as the measuring system is operating normally.

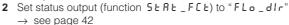
Warning!

This error diagnosis cannot be carried out with Ex instruments as they must be opened and thus the ignition protection type is no longer present.

Type of error

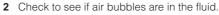
Remedy (Steps $1 \rightarrow 2 \rightarrow 3$)

Is the message "Error" shown on the display?


- Electrode signal cable → No. 5a
- ullet DAT module ightarrow No. 5b
- Coil current cable → No. 7
- 2 Replace electronics → see page 54

Does the instrument show negative flow values although the fluid in the piping is flowing forwards?

Remote version → switch off power supply and change round terminals 41 and 42.



Is the display unsettled despite continuous flow?

1 Check ground and potential equalisation → see page 29

Increase the time constant for the current output → see page 40

Increase the display damping for flow \rightarrow see page 43

Is a low flow indicated despite standstill of the fluid and filled measuring tube?

Check ground and potential equalisation

→ see page 29

2 Check to see if air bubbles are in the fluid.

3 Activate creep suppression (function LFC / Fu61)

→ see page 44

The error cannot be remedied or else there is another error display.

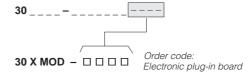
In such cases please contact your local E+H Service organisation.

The following solutions are possible:

Request an E+H service technician

The following information is required when contacting a customer service technician:

- brief description of the error
- order code given on the nameplate → see page 7, 8


Repair

Note the procedures on page 55 "Repairs" before returning the instrument for repair. Please state a brief description of the error on the delivery note.

Replacing the electronics

If a new electronic plug-in board is ordered, we require the full order code which can be taken form the instrument order structure:

Order structure (Promag 30)

The last four places correspond to the order code on the nameplate of the transmitter \rightarrow see page 7.

7.3 Replacing the measuring electrodes

The Promag F (DN 350...2000) is available with replacement electrodes as an option. This version enables the measuring electrodes to be cleaned or replaced under process conditions.

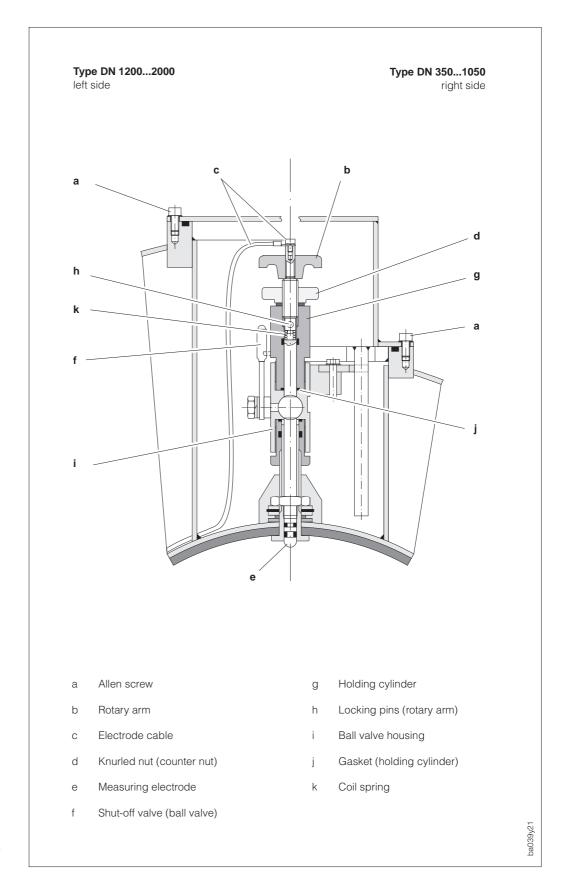


Fig. 35 Replacement unit for changing electrodes

52

Dismantling the electrode

- 1. Loosen the Allen screw (a) and remove the cover.
- 2. Unscrew the electrode cable (c) attached to the rotary arm (b).
- 3. Undo the knurled nut (d) by hand. This nut is used as a counter nut.
- 4. Remove the electrode (e) using the rotary arm (b). This can now be taken out from the holder (g) as far as the stop allows.

Warning! Danger of injury! Under process condition (piping under pressure) the electrode can spring back to the stop. Keep pressing against while loosening.

5. Close the shut-off valve (f) after the electrode has been taken out as far as the stop.

Warning! Do not attempt to open the shut-off valve. Keeping it shut prevents fluid from escaping.

- 6. Unscrew the entire electrode along with the holding cylinder (g).
- 7. Remove the rotary arm (b) from the electrode (e), while pressing to remove the locking pin (h). Take care not to lose the coil spring (k).
- 8. Replace the old electrode with a new electrode.

A set of replacement electrodes can be ordered from Endress+Hauser.

Assembling the electrode

- 1. Slide the new electrode (e) into the holding cylinder (g) from below. Ensure that gaskets at the tip of the electrode are clean.
- 2. Put the rotary arm (b) on the electrode and secure with the locking pin (h).

Caution!

Ensure that the coil spring (k) is in place. This ensures close electrical contact and thus reliable measuring signals.

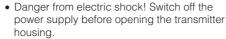
- 3. Pull back the electrode as far as possible so that the tip does not protrude out from the holding cylinder (g).
- 4. Screw the holding cylinder onto the shut-off unit (i) and thighten by hand. Gasket (j) on the holding cylinder must be in place and clean.

Note!

Ensure that the rubber tubes on the holding cylinder (g) and shut-off valve (f) have the same colour (red or blue)

- 5. Open the shut-off valve (f) and screw in the electrode using the rotary arm (b) until the stop.
- 6. Screw the knurled nut (d) onto the holding cylinder. This clamps the electrode tight.
- 7. Screw the electrode cable (c) to the rotary arm (b) using the Allen screw.

Caution!


Ensure that the Allen screw of the electrode cable is tight. This ensures close electrical contact and thus reliable measuring signals.

8. Replace the cover and tighten the Allen screw (a).

7.4 Replacing the transmitter electronics

Warning!

- When using Ex instruments, they must first cool down for at least 10 minutes before opening.
- The local power supply voltage and frequency must be the same as the technical specifications of the power supply boards.
- Ensure that the new electronics board is the same as the old one before replacing it (power supply, version of amplifier and software).
- Loosen the Allen screws of the safety grip (3-mm Allen key).
- 2. Unscrew the cover of the electronics area of the transmitter housing.
- 3. Remove the local display as follows:
 - Loosen the mounting screws of the display module.
 - b. Unplug the ribbon cable of the display from the amplifier board.
- Unplug the 2-pole plug of the power supply cable (by pressing down the catch) from the power supply board.
- 5. Remove the electrode signal cable from the amplifier board:
 - a. Remove the cable board.
 - b. Remove the blue DAT module.
 - c. Loosen the EPD cable from the screw terminals.

- Loosen the two Phillips screws of the board support plate. Carefully remove the support plate approx. 4...5 cm out of the transmitter housing.
- 7. Remove the coil current cable plug from the power supply board.
- Remove the ribbon cable plug (connection cable to the terminal area) from the amplifier board.
- The entire transmitter electronics, together with the board support plate, can now be completely removed from the housing.
- 10. Replace the old transmitter electronics with new transmitter electronics.
- 11. Reassemble in reverse sequence.

Replacing the DAT module (see 5b):

- Procedure for replacing the transmitter electronics → plug the old DAT onto the new amplifier board.

DAT = Replaceable data module in which the basic data of the sensor are stored (see page 70).

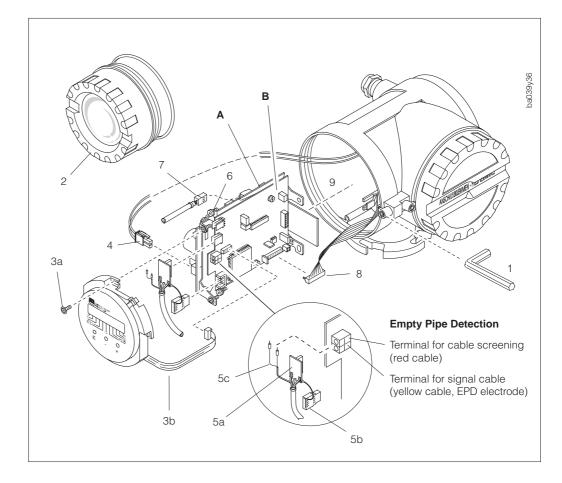


Fig. 36
Replacing the transmitter electronics:

- A Power supply board
- **B** Amplifier board

7.5 Replacing the fuse

Warning!

• Danger from electric shock! Switch off the power supply before unscrewing the cover of the terminal compartment from the transmitter housing.

The instrument fuse can be found in the terminal compartment \rightarrow see page 23

Exclusively use the following types of fuses:

- Power supply 20...55 V AC / 16...62 V DC \rightarrow 2.5 A slow-blow / 250 V; 5.2 × 20 mm
- \bullet Power supply 85...260 V AC \rightarrow 1 A slow-blow / 250 V; 5.2 × 20 mm

7.6 Repairs

Please carry out the following procedure before returning the Promag 30 for repair to Endress+Hauser:

- A note must always be enclosed with the instrument, giving the following information:
 - Brief description of the error
 - Description of the application
 - Chemical and physical properties of the fluid
- Remove all residue which may be present. Pay special attention to the gasket grooves and crevices where fluid may be present. This is especially important if the fluid is dangerous to health, e.g. corrosive, carcinogenic, radioactive, etc.

Warning!

We must request you not to return a unit if it is not completely certain that harmful substances can be removed e.g. cracks have been penetrated or substances have diffused through plastics.

Incomplete cleaning of the instrument may result in waste disposal or cause harm to personnel (burns, etc.). Any costs arising from this will be charged to the owner of the instrument.

7.7 Spare parts

The electronics plug-in module of the Promag 30 can be ordered separately as a spare part:

- Replacement → see page 54
- Order code → see page 51

7.8 Maintenance

No special maintenance is necessary for the Promag 30 measuring system.

8 Dimensions

8.1 Dimensions Promag 30 A

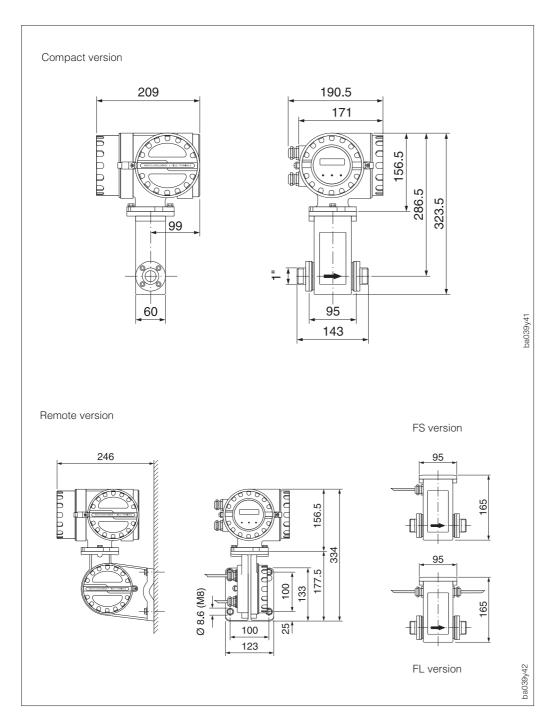


Fig. 37 Dimensions Promag 30 A

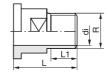
Weights:

Compact version 5 kg (without process connections)
Promag 30 transmitter 3 kg (5 kg for wall mounted version)

Promag A sensor 2 kg

Dimensions of the process connections for Promag A

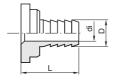
Internal thread


standard thread: ISO 228/DIN 2999

DN	L	L1	Thread
215	20	18	1/ ₂ "
215	20	18	1/ ₂ " NPT
25	45	22	1"
25	45	22	1" NPT

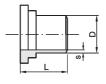
External thread

standard thread: ISO 228/DIN 2999


DN	L	L1	di	Thread
215	35	13.2	16.1	1/2"
215	42	20.0	16.1	1/2" NPT
25	50	16.8	22.0	1"
25	60	25.0	22.0	1" NPT

PVC adhesive coupling

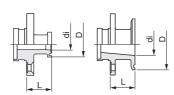
DN	L	D	Pipe connection
215	19	20.0	20 · 2
215	20	21.5	1/2"
25	66	25.0	25 · 2
25	69	32.0	32 · 2.5
25	69	33.5	1"


Hose connection

DN	L	D	di	LW
215 215	30 30	14.5 17.5	8.9 12.6	13 16
215	30	21.0	16.1	19

LW = Internal diameter hose

Welded nipple DN 2...15


DN	L	D	S	Pipe connection
215	20	21.3	2.6	1/ ₂ "
215	20	21.3	2.6	18 · 1

Welded nipple DN 25

DN	L	D	di	Pipe connection
25	30	33.7	26.0	1"
25	30	33.7	26.0	28 · 1
25	20	25.4	22.1	25.4 · 1.6 / 1"

Tri-Clamp Stainless steel 1.4404/316L

DN	L	D	di	Pipe connection
28	24	25.0	9.5	1/2"
15	24	25.0	16.0	3/4"
28	24	50.4	22.1	1"
15	24	50.4	22.1	1"
25	24	50.4	22.1	1"

All dimensions in [mm]

Flange

Stainless steel 1.4404/316L with joint dimensions to DIN 2501/ANSI B16.5/JIS B2210

DN 2...15: with DN 15 or ¹/₂" flanges

DN 25: with DN 25 or 1" flanges

Flange to DIN 2501, PN 40

DN	L	D	di	LK
28 15	51.8 51.8	95 95	17.3 17.3	65 65
25	51.8	115	28.5	85

Flange to ANSI B16.5

		Class 15	0		C	Class 30	0
DN	L	D	LK	di	L	D	LK
28 15 25	61.6 61.6 67.4	88.9 88.9 108.0	60.5 60.5 79.2	15.8 15.8 26.6	61.6 61.6 73.8	95.2 95.2 123.9	66.5 66.5 88.9

Flange to JIS B2210

DN	L	D	di	LK
28	62.5	95	15	70
15	62.5	95	16	70
25	62.5	115	25	90

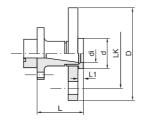
Face-to-face length to DVGW (200 mm)

Flange

PVDF with joint dimensions to DIN 2501/ANSI B16.5/JIS B2210

DN 2...15: with DN 15 or ¹/₂" flanges

DN 25:


with DN 25 or 1" flanges

Length:

 $2 \times L + 143 \text{ mm}$

 $2 \times L + 95 \text{ mm}$ (for flanged or

Tri-Clamp version)

Flange as per DIN 2501/ANSI B16.5/JIS B2210 PN 16/Class 150/10K

DN	L	L1	D	d	di		ANSI LK	JIS LK
	52.7	6	95				60.5	
15	52.7	6	95	34	16.2	65	60.5	70
25	52.7	7	115	50	27.2	85	79.2	90

Face-to-face length as per DVGW (200 mm)

All dimensions in [mm]

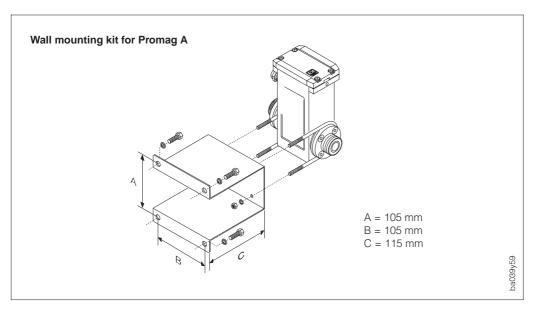


Fig. 38 Dimensions Wall mounting kit for Promag A

8.2 Dimensions Promag 30 H

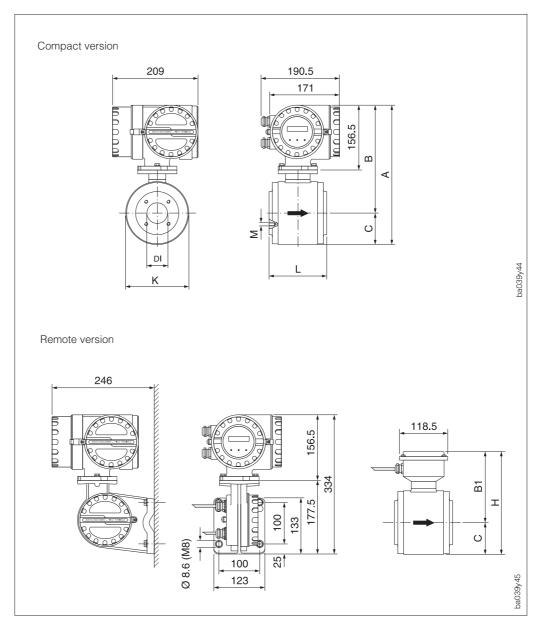
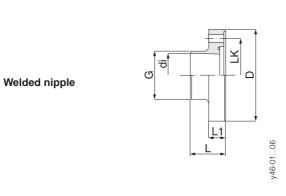


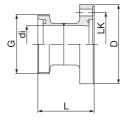
Fig. 39 Dimensions Promag 30 H

D	N	DI **	PN	L	А	В	B1	С	K	Н	М	Weight*
[mm]	[inch]	[mm]	DIN [bar]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
25 DIN	_	26.0	16	140	318	254.0	158.5	64.0	128	222.5	M 6x4	6.0
25	1"	22.6	16	140	318	254.0	158.5	64.0	128	222.5	M 6x4	6.0
40	1 ¹ / ₂ "	35.3	16	140	318	254.0	158.5	64.0	128	222.5	M 6x4	6.5
50	2"	48.1	16	140	343	266.5	171.0	76.5	153	247.5	M 8x4	9.0
65	21/2"	59.9	16	140	343	266.5	171.0	76.5	153	247.5	M 8x4	9.0
80	3"	72.6	16	200	393	291.5	196.0	101.5	203	297.5	M 12x4	19.0
100	4"	97.5	16	200	393	291.5	196.0	101.5	203	297.5	M 12x4	18.5
* Wei	* Weight of compact version ** Internal diameter of tube											


Weight:

Compact version * see table above

Promag 30 transmitter 3 kg (5 kg for wall mounted version)


Sensor connection housing approx. 1 kg

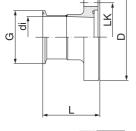
Dimensions for the process connections for Promag H sensor


DN	D	G	di ¹⁾	L	L1	LK
25	75	27	22.6	42	19	56.0
25 DIN	79	31	26.0	42	19	60.0
40	92	40	35.3	42	19	71.0
40 DIN	92	43	38.0	42	19	71.0
50	105	55	48.1	42	19	83.5
50 DIN	105	55	50.0	42	21	83.5
65	121	66	59.9	42	21	100.0
65 DIN	121	72	66.0	42	21	100.0
80	147	79	72.6	42	24	121.0
80 DIN	147	87	81.0	42	24	121.0
100	168	104	97.5	42	24	141.5
100 DIN	168	106	100.0	42	24	141.5

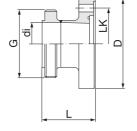
DIN 11851

DN	di ¹⁾	G	D	L	LK
25	26.0	52 x ¹ / ₆ "	79	68	60.0
40	38.0	65 x ¹ / ₆ "	92	72	71.0
50	50.0	78 x ¹ / ₆ "	105	74	83.5
65	66.0	95 x ¹ / ₆ "	121	78	100.0
80	81.0	110 x ¹ / ₄ "	147	83	121.0
100	100.0	130 x ¹ / ₄ "	168	92	141.5

Tri-Clamp


DN	ANSI	di ¹⁾	G	D	L	LK
25	1"	22.1	50.4	75	68.6	56.0
40	1 ¹ / ₂ "	34.8	50.4	92	68.6	71.0
50	2"	47.5	63.9	105	68.6	83.5
65	-	60.2	77.4	121	68.6	100.0
80	3"	72.9	90.9	147	68.6	121.0
100	4"	97.4	118.9	168	68.6	141.5

SMS 1145


DN	di ¹⁾	G	D	L	LK
25	22.5	40 x ¹ / ₆ "	75	60	56.0
40	35.5	60 x ¹ / ₆ "	92	63	71.0
50	48.5	$70 \times \frac{1}{6}$ "	105	65	83.5
65	60.5	85 x ¹ / ₆ "	121	70	100.0
80	72.0	98 x ¹ / ₆ "	147	75	121.0
100	97.6	132 x ¹ / ₆ "	168	70	141.5

ISO 2852

DN	di ¹⁾	G	D	L	LK
25	22.6	50.5	75	68.5	56.0
40	35.6	50.5	92	68.5	71.0
50	48.6	64.0	105	68.5	83.5
65	60.3	77.5	121	68.5	100.0
80	72.9	91.0	147	68.5	121.0
100	97.6	119.0	168	68.5	141.5

ISO 2853

DN	di ¹⁾	G	D	L	LK
25	22.6	37.1	75	61.5	56.0
40	35.6	50.6	92	61.5	71.0
50	48.6	64.1	105	61.5	83.5
65	60.3	77.6	121	61.5	100.0
80	72.9	91.1	147	61.5	121.0
100	97.6	118.1	168	61.5	141.5

Length: DN 25... 65 = 2 x L + 136 mm DN 80...100 = 2 x L + 196 mm

¹⁾ Please note the internal diameter (di, DI) when cleaning the piping with a scraper!

8.3 Dimensions Promag 30 F (DN 15...300)

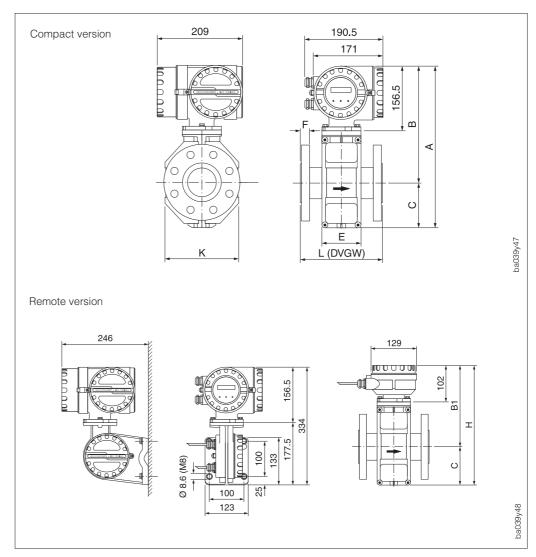


Fig. 40 Dimensions Promag 30 F (DN 15...300)

С	N		PN		∟1)	А	В	С	K	Е	F	=	Н	B1	Weight ²⁾
[mm]	[inch]	DIN	ANSI Class	JIS	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	DIN [mm]	ANSI [mm]	[mm]	[mm]	[kg]
15 25 32 40 50 65 80 100 125 150 200	1/2" 1" - 11/2" 2" - 3" 4" - 6" 8"	40 40 40 40 40 16 16 16 16 16	150 150 - 150 150 - 150 150 - 150	20K 20K 20K 20K 10K 10K 10K 10K 10K	200 200 200 200 200 200 200 250 250 350	340.5 340.5 340.5 340.5 340.5 390.5 390.5 390.5 471.5 471.5 526.5	256.5 256.5 256.5 256.5 256.5 281.5 281.5 281.5 321.5 321.5 346.5	84 84 84 84 109 109 150 150 180	120 120 120 120 120 180 180 180 260 260 324	94 94 94 94 94 94 94 140 140	14 16 18 18 20 18 20 22 24 24 24	11.2 14.2 - 17.5 19.1 - 23.9 23.9 - 25.4 28.4	286 286 286 286 286 336 336 336 417 417 472	202 202 202 202 202 227 227 227 267 267 292	6.5 7.3 8.0 9.4 10.6 12.0 14.0 16.0 21.5 25.5 35.3
250 300	10" 12"	10 10	150 150	10K 10K	450 500	576.5 626.5	371.5 396.5	205 230	400 460	156 166	28 28	30.2 31.8	522 572	317 342	48.5 57.5

The length is always identical independently of the chosen pressure rating.
 Weights for compact version only.

Weight:

Compact version ²⁾ see table above

3 kg (5 kg for wall mounted version) Promag 30 transmitter

Sensor connection housing approx. 1 kg

62

8.4 Dimensions Promag 30 F (DN 350...2000)

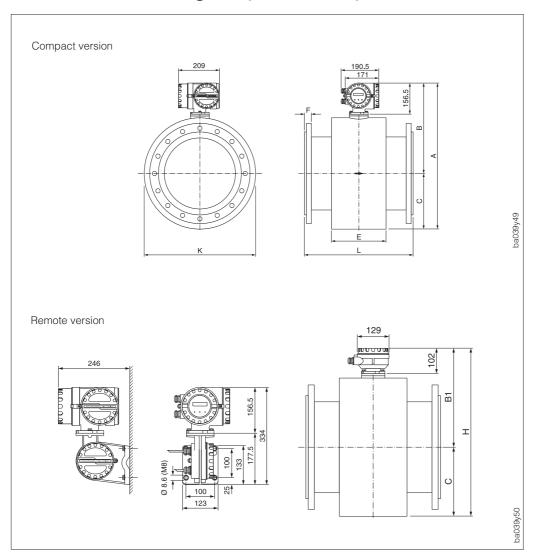


Fig. 41 Dimensions Promag 30 F (DN 350...2000)

D	N		PN		∟ 1)	А	В	С	K	Е		F		Н	B1	Weight ²⁾
[mm]	[inch]	DIN [bar]	ANSI [Class]	AWWA [Class]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	DIN [mm]	ANSI [mm]	AWWA [mm]	[mm]	[mm]	[kg]
350	14"	10	150	_	550	738	456.0	282.0	564	276	26	34.9	_	683.5	401.5	110
400	16"	10	150	_	600	790	482.0	308.0	616	276	26	36.5	_	735.5	427.5	130
450	18"	_	150	_	650	840	507.0	333.0	666	292	_	39.7	-	785.5	452.5	240
500	20"	10	150	_	650	891	532.5	358.5	717	292	28	42.9	-	836.5	478.0	170
600	24"	10	150	_	780	995	584.5	410.5	821	402	28	47.6	-	940.5	530.0	230
700	28"	10	_	D	910	1198	686.0	512.0	1024	589	30	_	33.3	1143.5	631.5	350
750	30"	_	_	D	975	1198	686.0	512.0	1024	626	_	_	34.9	1143.5	631.5	450
800	32"	10	_	D	1040	1241	707.5	533.5	1067	647	32	_	38.1	1186.5	653.0	450
900	36"	10	_	D	1170	1394	784.0	610.0	1220	785	34	_	41.3	1339.5	729.5	600
1000	40"	10	_	D	1300	1546	860.0	686.0	1372	862	34	_	41.3	1491.5	805.5	720
1050	42"	_	_	D	1365	1598	886.0	712.0	1424	912	_	_	44.5	1543.5	831.5	1050
1200	48"	6	_	D	1560	1796	985.0	811.0	1622	992	28	_	44.5	1741.5	930.5	1200
1350	54"	_	_	D	1755	1998	1086.0	912.0	1824	1252	_	_	54.0	1943.5	1031.5	2150
1400	-	6	-	_	1820	2148	1161.0	987.0	1974	1252	32	_	-	2093.5	1106.5	1800
1500	60"	_	-	D	1950	2196	1185.0	1011.0	2022	1392	_	_	57.2	2141.5	1130.5	2600
1600	-	6	_	_	2080	2286	1230.0	1056.0	2112	1482	34	_	_	2231.5	1175.5	2500
1650	66"	_	_	D	2145	2360	1267.0	1093.0	2186	1482	_	_	63.5	2305.5	1212.5	3700
1800	72"	6	_	D	2340	2550	1362.0	1188.0	2376	1632	36	_	66.7	2495.5	1307.5	3300
2000	78"	6	_	D	2600	2650	1412.0	1238.0	2476	1732	38	-	69.9	2595.5	1357.5	4100

 ¹⁾ Thickness of the flange face includes sealing strip. The length is always identical independently of the chosen pressure rating.
 2) Weights of compact DIN PN 10 version. Weights for transmitter: see previous page

8 Dimensions Promag 30 (Model '99)

9 Technical Data

	Application
Instrument name	Flow measuring system "Promag 30 (Model '99)"
Instrument function	Flow measurement of liquids in closed piping. Applications in measurement, control and regulation processes, for e.g. batching and dosing (> 10 s), etc.
	Function and system design
Measuring principle	Electromagnetic flow measurement according to Faraday's law (Generation of a voltage by induction in a magnetic field).
Measuring system	Instrument family "Promag 30 (Model '99)" consisting of: • Transmitter: Promag 30 • Sensor: Promag A (DN 2, 4, 8, 15, 25) Promag H (DN 25, 40, 50, 65, 80, 100) Promag F (DN 152000) Two versions are available:
	Compact versionRemote version (FS or FL version)
	Input variables
Measuring variable	Flow velocity (proportional to induced voltage. Measured by two electrodes in the measuring tube)
Measuring range	Measuring range of electronics within v = 012.5 m/s
	The full scale values for the current output can be selected within the following limits (see also page 39): - Minimum full scale value at v = 0.3 m/s - Maximum full scale value at v = 10 m/s
Operable flow range	Over 1000: 1 When the flow is pulsating, the amplifier is not overloaded above its set full scale value even with peak velocities of 12.5 m/s. Flow is measured between 0.01>10 m/s at the stated accuracy.
Auxiliary input	$U=330 \ V \ DC, \ R_i=1.8 \ k\Omega, \ galvanically \ isolated$ Configurable for positive zero return or totalizer reset.
	Output variables
Output signal	 Current output: 0/420 mA, galvanically isolated, R_L < 700 Ω, time constant selectable (0.595 s), full scale value freely selectable, temperature coefficient: typical 0.01% o.r./°C; resolution: 10 μA Pulse output (transistor output): passive, f_{max} = 400 Hz, U_{max} = 30 V, I_{max} = 250 mA, galvanically isolated, pulse value selectable, pulse/pause ratio up to 0.5 Hz approx. 1:1 (the pulse width is limited to 1 s for pulse frequencies < 0.5 Hz) Status output (transistor output): passive, U_{max} = 30 V, I_{max} = 250 mA Can be configured for: — indicating system errors (error), process errors (overflow, Empty Pipe) — flow direction indication

	Output variables (continued)
Signal on alarm	 Current output: Pulse output: Status output: Status output: The current is set to a defined value (see page 49) no signal supplied on "Error" → not conducting (open) on "Flow direction" → last status held (forward → not conducting; backward → conducting)
	Error response of outputs (detailed description) → see page 49
Load	$R_L < 700 \Omega$ (current output)
Creep suppression	Switch-on point at $v = 0.02$ m/s Switch-off point at $v = 0.04$ m/s Further information \rightarrow see page 44
	Accuracy
Reference conditions	According to DIN 19200 and VDI/VDE 2641: Fluid temperature +28 °C ± 2 K Ambient temperature +22 °C ± 2 K Warm up period 30 minutes Mounting Inlet section > 10 x DN Outlet section > 5 x DN Transmitter and sensor are grounded. The sensor is build-in centered into the piping.
Measured error	Pulse output: $\pm 0.5\%$ o.r. $\pm 0.01\%$ o.f.s. (full scale value = 10 m/s) additionally $\pm 10~\mu A$ (typical) Measured error [% o.r.] $\frac{0.5~\%}{0.2\%}$ (Option) 2,5 $\frac{0.5~\%}{0.4\%}$ (Option: Promag 30 A and F: $\pm 0.2\%$ o.r. $\pm 0.05\%$ of Q_k Q_k = desired reference flow quantity for calibration (v = 210 m/s). Q_k has to be noted for ordering.
Repeatability	± 0.1% o.r. ± 0.005% o.f.s. o.r. = of reading o.f.s. = of max. full scale value (see table on page 39)

	Operating conditions
Installation conditions	
Installation instructions	Orientation: vertical or horizontal Restrictions and other recommendations → see page 10 ff.
Inlet and outlet sections	Inlet section: ≥ 5 x DN Outlet section: ≥ 2 x DN
Connection cable length for remote version	FS version: 0 10 m \rightarrow min. conductivity \geq 5 μ S/cm 10200 m \rightarrow min. conductivity = f (L _{max})
	FL version: 0200 m \rightarrow min. conductivity \geq 5 μ S/cm
	Instrument equiped with empty pipe detection (EPD): max. cable length = 10 m
	Minimum conductivity for demineralised water: generally ≥ 20 μS/cm
	Conductivity [µS/cm] 200 Permissible range 100 5 100 Cable length L _{max}
Ambient conditions	
Ambient temperature	An all-weather cover should be used to protect the housing from direct sunlight when mounting in the open. This is especially important in warmer climates and with high ambient temperatures. Due to the danger of the transmitter electronics overheating, the transmitter and sensor are to be mounted separately with high ambient and fluid temperatures (see Figure). Temperature range only for the remote version available. PTFE (Teflon) Soft rubber (EPDM) Hard rubber **Pocount of the control of the protect the housing from direct sunling from the open. This is especially important in warmer climates and with high ambient ambient and sensor are to be mounted separately with high ambient and fluid temperatures (see Figure). Temperature range only for the remote version available.
Storage temperature	-10+50 °C (preferably at +20 °C)
Degree of protection (EN 60529)	IP 67 (NEMA 4X) Option: IP 68 (NEMA 6P) for sensor A and F
Shock and vibration resistance	Accelleration up to 2 g / 2 h per day; 10100 Hz
Electromagnetic compatibility (EMC)	According to EN 50081 Part 1 and 2 (interference emission) / EN 50082 Part 1 and 2 (interference immunity) as well as to NAMUR recommendations

	Operating conditions (continued)							
Process conditions								
Fluid temperature	The fluid temperature range depends on the sensor lining:							
Traid temperature	Promag A -20+130 °C PFA							
	Promag H —20+130 °C PFA with EPDM gasket							
	-20+150 °C PFA with Silicone gasket							
	Promag F -40+130 °C PTFE (Teflon), DN 15600 -20+120 °C Soft rubber (EPDM), DN 252000 0+ 80 °C Hard rubber, DN 652000 (see also Figure on page 67)							
Nominal pressure	Promag A PN 40							
	Promag H PN 16							
	Promag F DIN PN 6 (DN 12002000) PN 10 (DN 2001000) PN 16 (DN 65150) PN 40 (DN 1550) PN 16/25 (DN 200300) PN 40 (DN 65100, optional)							
	ANSI Class 150 (1/224") Class 300 (1/26", optional)							
	AWWA Class D (2848")							
	JIS 10K (DN 50300) 20K (DN 1540) 20K (DN 50300, optional)							
	The material load curves (p-T-load diagrams) for all process connections can be found in the Technical Information TI 043D/06/en "Promag 30 (Model '99)"							
Conductivity	Minimum conductivity: ≥ 5 μS/cm (for liquids in general) ≥ 20 μS/cm (for demineralised water)							
	With the remote version "FS" the conductivity required also depends on the length of the cable → see page 67 "Connection cable length"							
Pressure loss	 No pressure loss if sensor and piping have the same nominal diameter. Pressure loss specifications when using adapters e.g. reducers or expanders → see page 13. Vacuum resistance of measuring tube lining → see page 74 							
	Mechanical construction							
Design / Dimensions	Dimensions → see pages 57–63 Internal diameter of measuring tube → see page 73							
Weight	See pages 57–63							
Materials	Transmitter housing: Powder-coated die-cast aluminium							
	Sensor housing: Promag A 1.4435 incl. threaded stub Promag H 1.4301 Promag F DN 15300: Powder-coated die-cast aluminium DN 3502000: Coated steel							
	(continued on next page)							

	Mechanica	I construction (continued)
Matariala		·
Materials (continued)	Process coni Promag A Promag H Promag F	DIN → Stainless steel 1.4404, PVDF ANSI → 316L, PVDF JIS → 316L, PVDF Threaded stub: 1.4435, PVC 1.4404 / 316L DIN → Stainless steel 1.4571, St. 37-2 ANSI → A 105, 316L AWWA → A 105, A 36 JIS → S20C, SUS 316L
	Electrodes: Promag A Promag H Promag F	1.4435; Platinum/Rhodium 80/20; Titan; Hastelloy C-22; Tantalum 1.4435 1.4435; Platinum/Rhodium 80/20; Hastelloy C-22; Tantalum
	Gasket mate. Promag A Promag H Promag F	rial: Viton, Kalrez (optional), Silicone (aseptic version) EPDM, Silicone no gaskets (Lining = 'gasket')
Electrodes fitted	Promag A Promag H Promag F	Measuring, reference and empty pipe detection electrodes. As standard with 1.4435, Hastelloy C-22, Tantalum Optional with Platinum/Rhodium Measuring and empty pipe detection electrodes Measuring, reference and empty pipe detection electrodes. As standard with 1.4435, Hastelloy C-22, Tantalum
CIP cleanable	Promag A Promag H Promag F	Yes (observe maximum temperature) Yes (observe maximum temperature) Yes (observe maximum temperature)
SIP cleanable	Promag A Promag H Promag F	No Yes (observe maximum temperature) No
Process connections	welded nippl DIN 11850, T Promag H: Welded nipp	external thread, PVC adhesive coupling, hose connection, e, aseptic welded nipples for pipelines according to ri-Clamp, flange connection (DIN, ANSI, JIS). les for OD tube, SMS, JIS, ISO and DIN 11850 tubes, aread, SMS thread, ISO 2853 thread, Tri-Clamp, ISO 2852
	Promag F: Flange conne	ection (DIN, ANSI, JIS)
Electrical connection	Cable speGalvanic is All circuits	grams: see page 23 ff. cifications: see page 28 solation: for inputs, outputs, power supply and sensors are ly isolated from one another.
Cable entries	Cable glands M20 x 1.5 (8. Coil current of Promag A: 0 1 Promag H: 0 1 Promag F: 0	y and signal cable (output): a PG 13.5 (515 mm) or threads for cable glands $^{1}/_{2}$ " NPT,15 mm), G $^{1}/_{2}$ " NPT,15 mm), G $^{1}/_{2}$ " cable and signal cable (remote version) cable glands PG 11 (512 mm) or threads for cable glands $^{1}/_{2}$ " NPT, M20 x 1.5 (815 mm), G $^{1}/_{2}$ " Cable glands PG 13.5 (515 mm) or threads for cable glands $^{1}/_{2}$ " NPT, M20 x 1.5 (815 mm), G $^{1}/_{2}$ " Cable glands PG 13.5 (515 mm) or threads for cable glands $^{1}/_{2}$ " NPT, M20 x 1.5 (815 mm), G $^{1}/_{2}$ "

	User interface
	T
Operation	On-site operation: All functions of the E+H operating matrix can be selected and changed using three keys (E, -, +).
Display	 Eight character LC display 11 display segments for indicating units and instrument status. Damping of flow display can be adjusted: 0.520 s
Communication	none
	Power supply
Supply voltage / Frequency	85260 V AC, 4565 Hz 20 55 V AC, 4565 Hz 16 62 V DC
Power consumption	AC: <15 VA (incl. sensor) DC: <15 W (incl. sensor)
	Current at make (Promag 30 X / 24 V DC): – max. 13.5 A (< 100 μs) – max. 6 A (< 5 ms)
Power supply failure	Bridges minimum 1 power cycle (22 ms) EEPROM saves measuring system data on power failure (no batteries required). DAT = replaceable data memory in which basic data of the sensor are stored: nominal diameter, SAPS (actual values), serial number, calibration factor, zero point, status EPD (yes/no), EPD calibration values.
	Certificates and approvals
Ex approvals	Information on Ex versions (e.g. CENELEC, SEV, FM, CSA) can be supplied by your E+H sales center on request. All explosion protection data are given in separate documentation available on request.
Sanitary version	Sensor Promag A: 3A approval Sensor Promag H (hygienic version): 3A approval and EHEDG tested
Custody transfer	Promag 31 F PTB approval for custody transfer with cold water and wastewater (either for approval or approved for custody transfer) Heat measurement approval, Swiss certification to OIML R72/R75 Promag 31 H PTB approval to DIN 19217 (OIML 117) for custody transfer with beer, original wort, milk.
CE mark	By attaching the CE mark, Endress+Hauser confirms that the Promag 30 measurement system has been successfully tested and fulfils all legal requirements of the relevant CE directives.

Order No. 50076905 • Wall mounting kit for Promag A sensor: Order No. 50064550 • Spare parts: see page 55 Supplementary System Information Promag (SI 010D/06/en)			Order information
Technical Information Promag 30 (TI 043D/06/en) * Operating Manual Promag 31 F – Cold water (BA 041D/06/en) * Supplementary Ex documentation: CENELEC, SEV, FM, CSA * Model '99 Other standards and guidelines EN 60529 Degree of protection by housing (IP code) EN 61010 Protection Measures for Electronic Equipment for Measurement, Control, Regulation ar Laboratory Procedures EN 50081 Part 1 and 2 (interference emission) EN 50082 Part 1 and 2 (interference immunity)	Accessories Supplementary documentation		Order No. 50076905 • Wall mounting kit for Promag A sensor: Order No. 50064550
Other standards and guidelines EN 60529 Degree of protection by housing (IP code) EN 61010 Protection Measures for Electronic Equipment for Measurement, Control, Regulation ar Laboratory Procedures EN 50081 Part 1 and 2 (interference emission) EN 50082 Part 1 and 2 (interference immunity)			Technical Information Promag 30 (TI 043D/06/en) * Operating Manual Promag 31 F – Cold water (BA 041D/06/en) * Supplementary Ex documentation: CENELEC, SEV, FM, CSA
EN 60529 Degree of protection by housing (IP code) EN 61010 Protection Measures for Electronic Equipment for Measurement, Control, Regulation ar Laboratory Procedures EN 50081 Part 1 and 2 (interference emission) EN 50082 Part 1 and 2 (interference immunity)			* Model '99
EN 61010 Protection Measures for Electronic Equipment for Measurement, Control, Regulation ar Laboratory Procedures EN 50081 Part 1 and 2 (interference emission) EN 50082 Part 1 and 2 (interference immunity)			Other standards and guidelines
	EN 61010 EN 50081 EN 50082	Protection Mea Laboratory Pro Part 1 and 2 (ir Part 1 and 2 (ir	asures for Electronic Equipment for Measurement, Control, Regulation and accedures Interference emission) Interference immunity)

9 Technical Data Promag 30 (Model '99)

Factory settings (full scale value, pulse values)

DN		Factory settings						
		Full sca (current	ile value output)	Pulse value				
		(I = 20 mA; at v ~ 2.5 m/s)		(Imp _{out} = 1 Hz;	at v ~ 2.5 m/s)			
[mm]	[inch]	[l/s]	[USgpm]	[l/pulse]	[USgal/pulse]			
2 4 8 15 25 32 40 50 65 80	1/ ₁₂ " 5/ ₃₂ " 5/ ₁₆ " 1/ ₂ " 1" 11/ ₄ " 11/ ₂ " 2" 21/ ₂ "	0.008 0.03 0.10 0.45 1.0 2.0 3.0 5.0 8.0	0.1 0.5 2.0 7.0 20.0 30.0 50.0 80.0 150.0 200.0	0.008 0.03 0.10 0.45 1.0 2.0 3.0 5.0 8.0	0.0020 0.0085 0.035 0.10 0.30 0.55 0.85 1.0 2.0			
100 125 150	4" 5" 6"	20.0 30.0 45.0	300.0 500.0 700.0	20.0 30.0 45.0	5.0 8.0 10.0			
200 250	8" 10"	80.0 100.0	1000.0 2000.0	80.0 100.0	20.0 30.0			
300 350	12" 14"	150.0 250.0	3000.0 4000.0	150.0 250.0	50.0 65.0			
400 450	16" 18"	300.0 400.0	5000.0 6500.0	300.0 400.0	85.0 100.0			
500 600 700 750 800 900	20" 24" 28" 30" 32" 36"	500.0 700.0 950.0 1000.0 1000.0 1500.0	8000.0 10000.0 15000.0 15000.0 20000.0 25000.0	500.0 700.0 950.0 1000.0 1000.0 1500.0	150.0 200.0 250.0 300.0 350.0 400.0			
1000 1050 1200 1350 1400 1500 1600 1700 1800	40" 42" 48" 54" 56" 60" 64" 66" 72"	2000.0 2000.0 3000.0 3500.0 4000.0 4500.0 5000.0 5500.0	30000.0 35000.0 50000.0 55000.0 60000.0 70000.0 80000.0 90000.0	2000.0 2000.0 3000.0 3500.0 4000.0 4500.0 5000.0 6500.0	500.0 600.0 750.0 950.0 1000.0 1500.0 1500.0			
2000	78"	8000.0	100000.0	8000.0	2000.0			

Internal diameter of the measuring tube

Sensor	D	N	PN AWWA Internal diameter			ameter			
	[mm]	[inch]	DIN [bar]	ANSI [lbs]	JIS		PFA	PTFE (Teflon)	Hard rubber Soft rubber (EPDM)
Promag A	2 4 8 15 25	1/ ₁₂ " 5/ ₃₂ " 5/ ₁₆ " 1/ ₂ " 1"	40	- - - -	- - - -	- - - -	2.2 4.6 8.6 16.1 22.0	- - - -	- - - -
Promag H	25 DIN 25 40 50 65 80 100	- 1" 11/2" 2" 21/2" 3" 4"	16	- - - - -	- - - - -	-	* * * * * * *	- - - - - - - details see	- - - - - - - - page 61
Promag F	15 25 32 40 50 65 80 100 125 150 200 250 300 350 400 - 500 600 700 - 800 900 1000 - 1200 - 1400 - 1800 1800	1/2" 1" - 11/2" 2" - 3" 4" - 6" 8" 10" 12" 14" 16" 18" 20" 24" 28" 30" 32" 36" 40" 42" 48" 54" - 60" - 66" 72" 78" -	40 40 40 40 40 16 16 16 10 10 10 10 10 10 10 10 6 - 6 - 6	Class 150	20K 20K 20K 20K 10K 10K 10K 10K 10K 10K 10K	Class D Class D Class D Class D Class D Class D - Class D - Class D - Class D - Class D		15 26 35 41 52 68 80 105 130 156 207 259 309 337 387 - - - - - - - - - - - - - - - - - -	- - - - 65 78 100 126 154 205 259 310 341 391 436 491 593 692 741 794 893 995 1042 1195 1338 1401 1491 1599 1637 1799 1981 1995

Promag 30 (Model '99)

Resistance of the lining to vacuum (standard version)

Sensor	DN		Measuring tube lining	Limits for vacuum [mbar] at different fluid temperatures					
	[mm]	[inch]		25 °C	80 °C	100 °C	120 °C	130 °C	150 °C
Promag A	225	¹ / ₁₂ 1"	PFA	0	0	0	0		
Promag H	25100	14"	PFA	0	0	0	0	0	0
Promag F	652000 252000	378" 178"	Hard rubber Soft rubber (EPDM)	0 0	0	0	0		
	1550 6580 100 125150 200 250 300 350 400	1/22" 3" 4" 6" 8" 10" 12" 14" 16"	PTFE (Teflon)	0 0 0 135 200 330 400 470 540	0 * * * * * * * * *	0 40 135 240 290 400 500 600 670	* * * * * * * * *	100 130 170 385 410 530 630 730 800	
	450600	1824"			V	acuum no	t permitte	d!	

^{*} No values available

Index

Electrical connection 23 E Example for electrical connections 25 Functions 43 General technical data 65 Electrode cleaning circuitry 46 Electrode axis Electrodeaxis Electr	A Accuracy Measured error	Function code
Bidirectional measurement (flow direction) 42	Electrical connection	ECC (Electrode cleaning circuitry)
Cable glands 21, 69 Electrode cleaning clicking (ECC) 46 Cable specifications 28 Electrode cleaning clicking (ECC) 46 Calibration factor (name plate) 8 Empty pipe adjustment 43 Cathodic protection 29 Empty pipe adjustment 44 CIP (cleaning in place) 69 See Unit selection 5 Connection (electrical) 8 See Unit selection 6 Connection celectrical connections 19, 67 Forcer crection (remedies) 5 Cornect usage 5 See Trouble-shooting Error limits See Accuracy Current range 40 Electrical connection 23 See Accuracy Error limits See Accuracy Error limits See Accuracy Error limits See Accuracy Error leading system outputs) 48 Expulse a value function 23 Ferminate (documentation) 5 Full scale value function 38, 39 Fermor response (measuring system outputs) 48 Full process value value value 70 Flow direction indication (status output)	Build-up (measuring tube, electrodes) See ECC	Potential equalisation
Commissioning 31 Conductivity (minimum) of the fluid 68 Connection (electrical) See Electrical connections Connection cable length 19, 67 Correct usage 5 Creep suppression 44 Current output 23 Current range 40 Electrical connection 23 Factory settings (full scale) 72 Full scale value function 38, 39 Technical data 65 Time constant 40 Dangerous substances 6 DAT (data storage module) 54, 70 Degree of protection 21, 67 Dimensions 1 Internal diameter 73 Process connections Promag A 58 Process connections Promag A 58 Promag 30 F (DN 15300) 62 Promag 30 F (DN 3502000) 63 Promag 30 F (DN 3502000)	Cable glands21, 69Cable specifications28Calibration factor (name plate)8Cathodic protection29CE mark70CIP (cleaning in place)69	Electrodes fitted
Correct usage .5 See Accuracy Creep suppression .44 Error response (measuring system outputs) .48 Current output .6 Ex approvals .70 Current range .40 Ex instruments (documentation) .5 Ex instruments (documentation) .5 .5 Full scale value function .38, 39 .65 Time constant .65 .6 .6 .6 DAT (data storage module) .54, 70 .70 .6 .6 .6 .70 .6 .6 .70 <td>Conductivity (minimum) of the fluid 68 Connection (electrical) See Electrical connections</td> <td>EPD (Empty pipe detection)</td>	Conductivity (minimum) of the fluid 68 Connection (electrical) See Electrical connections	EPD (Empty pipe detection)
Flow direction indication (status output) Proverse of protection Process connections Promag A Promag 30 A Promag 30 F (DN 15300) Promag 30 F (DN 3502000) Display Dangerous substances 6 Flow direction indication (status output) Flow range, operable Flow rate / Nominal diameter Fluid conductivity Fluid temperature Full pipe adjustment Full scale value (current output) Function description Functions at a glance Fuse replacing Galvanic isolation Gaskets See Seals	Correct usage5Creep suppression44Current output40Current range40Electrical connection23Factory settings (full scale)72Full scale value function38, 39	See Accuracy Error response (measuring system outputs)
Dimensions Internal diameter	D Dangerous substances 6 DAT (data storage module) 54, 70	Flow direction indication (status output)
Display Galvanic isolation	Dimensions Internal diameter	Full pipe adjustment47Full scale value (current output)38, 39Function description37Functions at a glance35Fuse replacing55
Display of numerical values	Display Display and operating elements	Galvanic isolation

I	0
Inlet section	Operating and display elements
Input variables	Operating conditions 67
Installation	Operating example
See Mounting	Operating matrix
Instrument functions (description)	Operation (E+H operating matrix)
	Order code
L	Outlet section
Length	Output signals
See Dimensions	Output variables
Load (current output)	P
Local display	-
See Display	Positive zero return (via auxiliary input)
, ,	Potential equalisation
	Power consumption
M	Power supply
Maintenance	Pressure loss
Material load curves	Adapters (reducers, expanders)
Materials	General information
Matrix (operating matrix)	Vacuum resistance (lining) 74
Measured error (error limits)	Process connections
Measuring electrodes	Promag A
Positioning	Promag H
Measuring principle	Process error (empty pipe, meas. range
Measuring range	exceeded)
Measuring system Promag 30	Pulse output
Measuring tube	Electrical connection
Internal diameter	Examples for electrical connection
Lining	Pulse value function
Measuring variable 65	Technical data
Mounting in the pipe	Pulse value
Adapters	Pumps (mounting location)
Base and supports (from DN 350/14") 9	,
Downward pipe	R
Inlet and outlet section	Reference electrode
Installation of pumps	Remote versions
Mounting position	FL version
Partly filled pipes	FS version
Vibration	Repairs 6, 55
Mounting of the sensor	Repeatability (accuracy) 66
Base and supports (DN 350) 9	Replacement of
Promag 30 A	DAT module
Promag 30 F	Instrument fuse
Promag 30 H	Measuring electrodes
Promag 30 H with welded nipples 15	Transmitter electronics
Mounting of the transmitter (remote version)	a
Connection cable length	S
Wall and post mounting 19	Safety instructions
	Sanitary versions
N	Screw tightening torque
Name plates	See Mounting (sensor) Seals (sensor)
Sensors (Promag A, H, F) 8	Materials
Transmitter (Promag 30)	Promag A
NAMUR recommendations	Promag F
Nominal diameter / Flow rate	Promag H
Nominal pressure (material load)	Temperature ranges 68

76

Sensor mounting See Mounting Serial number	
See Error response SIP cleanable	. 69
Electrical connection	. 24. 42. 65
See Power supply System error (instrument fault, supply failure) .	. 49
T Technical data	. 65
Ambient temperature	. 68 . 67
Connection of external totalizers Display example	. 44. 44. 43
Connection cable length (remote version) Electrical connection	. 22 . 54 . 18 . 19 . 9
U Unidirectional measurement (flow direction) Unit selection	
V Vacuum resistance (lining)	. 67
Wall mounting (transmitter)	. 19 . 59 . 67 . 68
Welding Grounding	. 6 . 15

Europe

Austria

☐ Endress+Hauser Ges.m.b.H. Tel. (01) 88056-0, Fax (01) 88056-35

Belarus

U Belorgsintez
Minsk
Tel. (0172) 508473, Fax (0172) 508583

Belgium / Luxembourg

☐ Endress+Hauser N.V. Brussels Tel. (02) 2480600, Fax (02) 2480553

Bulgaria

INTERTECH-AUTOMATION Tel. (02) 664869, Fax (02) 9631389

Croatia

☐ Endress+Hauser GmbH+Co. Zagreb Tel. (01) 6637785, Fax (01) 6637823

Cyprus

+G Electrical Services Co. Ltd. Tel. (02) 484788, Fax (02) 484690

Czech Republic

Endress+Hauser GmbH+Co.
Praha Tel. (026) 6784200, Fax (026) 6784179

☐ Endress+Hauser A/S Søborg

Søborg Tel. (70) 131132, Fax (70) 132133

Estonia

ELVI-Aqua Tartu

Tel. (7) 441638, Fax (7) 441582

Finland

☐ Endress+Hauser Ov Tel. (0204) 83160, Fax (0204) 83161

France

☐ Endress+Hauser S.A. Huningue Tel. (389) 696768, Fax (389) 694802

Germany

☐ Endress+Hauser Messtechnik GmbH+0 Weil am Rhein Tel. (07621) 975-01, Fax (07621) 975-555 ss+Hauser Messtechnik GmbH+Co.

Great Britain

☐ Endress+Hauser Ltd. Manchester Tel. (0161) 2865000, Fax (0161) 9981841

I & G Building Services Automation S.A. Athens Tel. (01) 9241500, Fax (01) 9221714

Hungary Mile Ipari-Elektro

Budapest Tel. (01) 4319800, Fax (01) 4319817

Iceland

BII ehf Reykjavik Tel. (05) 619616, Fax (05) 619617

Ireland

Flomeaco Company Ltd. Kildare Tel. (045) 868615, Fax (045) 868182

Italy

□ Endress+Hauser S.p.A. Cernusco s/N Milano Tel. (02) 921921, Fax (02) 92107153

Latvia Rino TK

Tel. (07) 315087, Fax (07) 315084

Lithuania

UAB "Agava"

Kaunas Tel. (07) 202410, Fax (07) 207414

Netherland

☐ Endress+Hauser B.V.

Tel. (035) 6958611, Fax (035) 6958825

Norway

☐ Endress+Hauser A/S Tranby Tel. (032) 859850, Fax (032) 859851

☐ Endress+Hauser Polska Sp. z o.o. Warszawy Tel. (022) 7201090, Fax (022) 7201085

Portugal

Tecnisis, Lda Cacém Tel. (21) 4267290, Fax (21) 4267299

Romania

Romconseng S.R.L. Tel. (01) 4101634, Fax (01) 4112501

☐ Endress+Hauser Moscow Office Moscow Tel. (095) 1587564, Fax (095) 1589871

Slovakia

Transcom Technik s.r.o. Bratislava Tel. (7) 44888684, Fax (7) 44887112

Slovenia

☐ Endress+Hauser D.O.O. Tel. (061) 5192217, Fax (061) 5192298

D Endress+Hauser S.A. Sant Just Desvern Tel. (93) 4803366, Fax (93) 4733839

Sweden © Endress+Hauser AB Sollentuna Tel. (08) 55511600, Fax (08) 55511655

Switzerland

□ Endress+Hauser AG Reinach/BL 1 Tel. (061) 7157575, Fax (061) 7111650

Turkey Intek Endüstriyel Ölcü ve Kontrol Sistemleri Istanbul Tel. (0212) 2751355, Fax (0212) 2662775

Ukraine

Photonika GmbH Tel. (44) 26881, Fax (44) 26908

Yugoslavia Rep.

Meris d.o.o

Beograd Tel. (11) 4441966, Fax (11) 4441966

Africa

Egypt

Anasia Heliopolis/Cairo Tel. (02) 4179007, Fax (02) 4179008

Morocco Oussama S.A.

Casablanca Tel. (02) 241338, Fax (02) 402657

South Africa

☐ Endress+Hauser Pty. Ltd. Sandton Tel. (011) 4441386, Fax (011) 4441977

Controle, Maintenance et Regulation Tel. (01) 793077, Fax (01) 788595

America

☐ Endress+Hauser Argentina S.A. Buenos Aires Tel. (01) 145227970, Fax (01) 145227909

Bolivia Tritec S.R.L Cochabamba Tel. (042) 56993, Fax (042) 50981

□ Samson Endress+Hauser Ltda. Sao Paulo Tel. (011) 50313455, Fax (011) 50313067

☐ Endress+Hauser Ltd. Burlington, Ontario Burlington, Ontario Tel. (905) 6819292, Fax (905) 6819444

☐ Endress+Hauser Chile Ltd. Santiago Santiago Tel. (02) 3213009, Fax (02) 3213025

Colombia

Colsein Ltda.
Bogota D.C.
Tel. (01) 2367659, Fax (01) 6104186

Costa Rica EURO-TEC S.A. San Jose Tel. (02) 961542, Fax (02) 961542

Ecuador Insetec Cia. Ltda.

Quito Tel. (02) 269148, Fax (02) 461833 Guatemala

ACISA Automatizacion Y Control Industrial S.A. Ciudad de Guatemala, C.A. Tel. (03) 345985, Fax (03) 327431

Mexico

☐ Endress+Hauser S.A. de C.V. Mexico City Tel. (5) 5682405, Fax (5) 5687459

Paraguay Incoel S.R.L Asuncion Tel. (021) 213989, Fax (021) 226583

Uruguay Circular S.A. Montevideo Tel. (02) 925785, Fax (02) 929151

USA

☐ Endress+Hauser Inc. Greenwood, Indiana Tel. (317) 535-7138, Fax (317) 535-8498

Venezuela

Controval C.A. Caracas Tel. (02) 9440966, Fax (02) 9444554

Asia

China

☐ Endress+Hauser Shanghai Instrumentation Co. Ltd.

Shanghai Tel. (021) 54902300, Fax (021) 54902303

☐ Endress+Hauser Beijing Office Beijing Tel. (010) 68344058, Fax (010) 68344068

Hong Kong
☐ Endress+Hauser HK Ltd. Hong Kong Tel. 25283120, Fax 28654171

India
☐ Endress+Hauser (India) Pvt Ltd.
Mumbai Tel. (022) 8521458, Fax (022) 8521927

Indonesia

PT Grama Bazita Jakarta Tel. (21) 7975083, Fax (21) 7975089

Japan

☐ Sakura Endress Co. Ltd. Tokyo Tel. (0422) 540613, Fax (0422) 550275

☐ Endress+Hauser (M) Sdn. Bhd. Petaling Jaya, Selangor Darul Ehsan Tel. (03) 7334848, Fax (03) 7338800

Pakistan

Speedy Automation Tel. (021) 7722953, Fax (021) 7736884

Papua-Neuguinea

SBS Electrical Pty Limited Port Moresby Tel. 3251188, Fax 3259556

Philippines

☐ Endress+Hauser Philippines Inc. Metro Manila Tel. (2) 3723601-05, Fax (2) 4121944

Singapore
☐ Endress+Hauser (S.E.A.) Pte., Ltd.
Singapore
Tel. 5668222, Fax 5666848

South Korea

Endress+Hauser (Korea) Co., Ltd. Seoul Tel. (02) 6587200, Fax (02) 6592838

Taiwan

Kingjarl Corporation Taipei R.O.C. Tel. (02) 27183938, Fax (02) 27134190

Thailand

□ Endress+Hauser Ltd. Bangkok Tel. (2) 9967811-20, Fax (2) 9967810

Vietnam Tan Viet Bao Co. Ltd. Ho Chi Minh City Tel. (08) 8335225, Fax (08) 8335227

Iran PATSA Co. Tehran Tel. (021) 8754748, Fax (021) 8747761

Instrumetrics Industrial Control Ltd. Netanya Tel. (09) 8357090, Fax (09) 8350619

Lebanon

Jordan A.P. Parpas Engineering S.A. Amman Tel. (06) 4643246, Fax (06) 4645707

Kingdom of Saudi Arabia

Anasia Ind. Agencies Jeddah Tel. (02) 6710014, Fax (02) 6725929

Network Engineering Tel. (3) 944080, Fax (9) 548038

Sultanate of Oman Mustafa Sultan Science & Industry Co. LLC.

Ruwi Tel. 602009, Fax 607066

United Arab Emirates Descon Trading EST Dubai

Tel. (04) 2653651, Fax (04) 2653264

Yemen Yemen Company for Ghee and Soap Industry Tel. (04) 230664, Fax (04) 212338

Australia + New Zealand

Australia

ALSTOM Australia Limited Tel. (02) 97747444, Fax (02) 97744667

New Zealand

EMC Industrial Group Limited Auckland Tel. (09) 4155110, Fax (09) 4155115

All other countries

■ Endress+Hauser GmbH+Co. Instruments International D-Weil am Rhein Germany Tel. (07621) 975-02, Fax (07621) 975345

http://www.endress.com