

Technical Information

Active barrier RN221N with optional HART[®] diagnosis

Active barrier with power supply for safe separation of 4...20 mA current circuits

Application

- Galvanic isolation of 4...20 mA current circuits
- Removing large loop circuits
- Powering 2-wire transmitters
- Monitoring of SMART transmitters with earlywarning system
- Intrinsically safe sensor supply for Ex-area

Your benefits

- Wide range power supply, flexible power source
- Compact side by side housing
- International Ex approvals
- ATEX
- FM
- CSA
- TIIS
- Germanischer Lloyd / marine approval
- Bi-directional HART[®] transmission
- \blacksquare Communication sockets for ${\rm HART}^{\circledast}$ sensor setting up
- Evaluation of status information from connected transmitter with HART[®] protocol
- Primary or secondary master operating mode, automatic selection
- Sensor monitoring with early-warning system
- Manual or automatic reset of the relay contact

Function and system design

Measuring principle	Active barrier with power supply for safe separation of 420 mA current signal circuits. The unit has an optional intrinsically safe input. The current transmitted from the transmitter to the input circuit (420 mA) is linearly transmitted to the output. RN221N with HART[®] diagnosis: The operating mode of the RN221N with HART [®] diagnosis is selected at face via a DIP switch. Three different operating modes are distinguished:				
	 Current measurement: Monitoring the 4 – 20 mA signal for compliance with NAMUR NE43 specifications. 				
	2. Evaluation of the HART [®] status byte of the connected SMART transmitter				
	3. Evaluation of the E+H-specific diagnostic command $#231$ of connected new generation E+H transmitters				
	The user defines via DIP-switch, for which transmitter status an alarm signal is issued.				
	Automatic shut-off of the HART [®] master RN221N with HART [®] diagnosis. The HART [®] specification states that a maximum of two HART [®] masters may be present at any one time in a network. These two masters a distinguished into the so-called "Primary Master" and "Secondary Master" (can be selected via DIP switch). If a further HART [®] master is to be included in the network, one of the first two masters must be switched off. In this case, the HART [®] communication of the RN221N with HART [®] diagnosis automatically switches to idle state.				
Measuring system	The unit creates a safe galvanic isolation between input and output of the circuits. Separation between hazardous and non-hazardous areas is available as an option. A built-in loop power supply can supply connected sensors with the necessary energy. A current signal is available at the output (passive output) for connection to further instrumentation. Bi-directional HART [®] -communication with SMART transmitters is possible using the built-in communication sockets (with resistance R=250 Ω).				

Input

Standard	Number	1	U/I diagram
	Supply voltage	16.7 V \pm 0.2 V (for I = 20 mA)	$\hat{>}^{25,0}$
	Open circuit voltage	26 V ± 5%	22,5
	Short circuit current	≤ 40 mA	
	Internal resistance	328 Ω	And 16,7 00 15,0
	Overrange	10%	0 4 5 10 15 20 25 Loop current (mA)

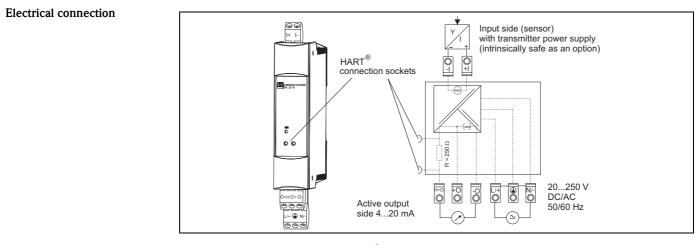
Intrinsically safe input option ¹	Open circuit voltage	27.3 V			
	Short circuit current	87.6 mA			
	Power consumption	597 mW			
	Capacitance	86 nF 86 nF	[EEx ia] IIC Group A, B	683 nF 681 nF 2278 nF	[EEx ia] IIB, IIA Group C Group D
	Inductance	5.2 mH 2.9 mH	[EEx ia] IIC Group A, B	18.9 mH 9.9 mH 19.9 mH	[EEx ia] IIB, IIA Group C Group D

¹⁾ Max. values in the event of an error

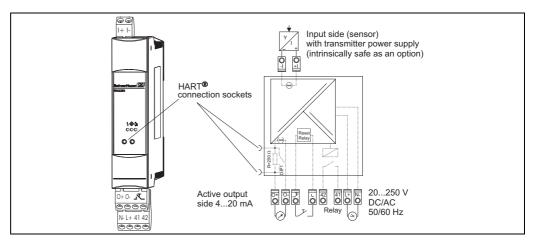
Reset relay

This input is used to connect a passive button or switch to reset the relay activation. Both terminals are galvanically connected to the 4-20 mA current output.

Output


Output 4...20 mA

Number	1
Open circuit voltage	24 V ± 10%
Overrange	10%
Load (impedance)	0700 Ω (without communication resistance)
Galv. isolation	To all other current circuits


Relay output (option)

Switching voltage for 250 V AC/ 30 V DC Max. switching current up to 3 A AC/DC Number of switching cycles 10^5 Configurable as normally closed (NC) or normally open (NO)

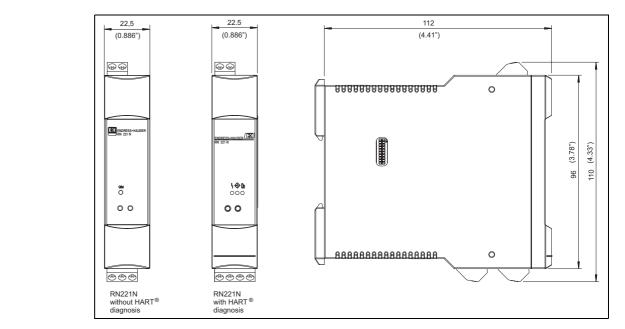
Power supply

Electrical connection RN221N without HART® diagnosis

Electrical connection RN221N with HART® diagnosis

Supply voltage	20250 V DC/AC, 50/60 Hz
Power consumption	RN221N without HART [®] diagnosis: max. 2.5 W RN221N with HART [®] diagnosis: max. 5.0 W
Current consumption	$I_{max}/I_n < 15$
Electrical safety	To IEC 61 010-1, protection class I, overvoltage category II, pollution degree 2, overload protection \leq 10 A, fuse RN221N without HART [®] diagnosis: 315 mA T, with HART [®] diagnosis: 500 mA T

Performance characteristics


Reference conditions	Calibration temperature at 25 °C (77 °F)
Linearity	≤ 0.15%
Load influence	≤ 0.1%
Ambient temperature influence	\leq 0.1% in range 0 °C to 50 °C (32 to 122 °F) \leq 0.2%/10K (18 °F) in range -20 °C to 0 °C (-4 to 32 °F)

Installation

Installation angle	No restrictions
Installation hints	Vibration free installation point, protect from external heating

Environment

Ambient temperature limits	-20 to +50 °C (-4 to 122 °F)
Storage temperature	-20 to +70 °C (-4 to 158 °F)
Operating height	To IEC 61010-1: < 2000 m (6561 ft) height above sea level
Climate class	To IEC 60654-1 Class B2
Degree of protection	IP 20
Electromagnetic compatibility (EMC)	Immunity to IEC 61326, Class A (industrial environment)

Mechanical construction

Design, dimensions Housing for top

Housing for top hat DIN rail to IEC 60715 TH35:

Dimensions of RN221N (data in mm, data in inches in brackets)

Weight	approx. 150 g (1.1 lb)
Materials	Housing: Plastic PC/ABS, UL 940
Terminals	 Keyed plug-on screw terminals, core size 2.5mm² solid, or strands with ferrules Front mounted communication socket for 2 mm jack plugs

Display and operating elements		RN221N	RN221N with HART [®] diagnosis
	Display elements	LED, yellow, in series to current output: Illuminates, when output current circuit and output current circuit are closed. LED current > 2 mA	 3 LED's are available: Yellow LED: "ON" - Input and output current circuit are closed "OFF" - Input or output current circuit (or both) are not closed -> line break Yellow LED: lights for every HART[®] data transmission Red LED: lights if a sensor warning is present
	Operating elements	-	10 DIP switches for bit mask and error evaluation setting

Human interface

Remote operation

HART[®] communication:

Please take note of voltage drop!

Communication signals are transmitted in both directions. Communication resistance: Resistance for HART[®] communication 250 Ω built in. Communication sockets: Access for HART[®] communicator, e.g. DXR-275 Note!

Certificates and approvals

CE mark	Guidelines 89/336/EWG and 73/23/EWG		
Hazardous area approvals	 ATEX: II (1) GD [EEx ia] IIC FM: 		
	AIS Class I, II, III, Div. 1+2, Groups A, B, C, D, E, F, G ANI Class I, II, III, Div. 1, Groups A, B, C, D, E, F, G		
	CSA: Class I, Zone 0: [Ex ia] IIC		
	Class I, Groups A, B, C, D Class II, Groups E, F, G Class III		
	 TIIS: [Ex ia] IIC 		

Functional safety according toFMEDA including SFF determination and PFDAVG calculation according to IEC 61508. See also FunctionalIEC 61508/ IEC 61511Safety manual ('Further documentation').

Ordering information

Product structure

	tive barrier RN221N Insmitter power supply, 4-20mA,				
bi-directional	HÁR	Γ communication, SIL2. op hat DIN rail 35mm, IP20.			
	,	proval			
	Α	Non-Ex area			
	В	ATEX II (1)GD (EEx ia) IIC			
	С	M AIS, Cl. I, II, III, Div. 1, Gr. ABCDEFG			
	D	SA (EEx ia), Cl. I, II, III, Div. 1, Gr. A-G			
	Е	IIS (EEx ia) IIC			
		Power supply; diagnosis			
		20-250 VDC/AC; none			
		20-250 VDC/AC; HART signal, error behavior NAMUR NE43			
RN221N-		← Order code			

Accessories

Accessories

The following accessories are available:

Order code	Accessory
51002468	Protective housing IP66 for field mounting
51004148	Adhesive label, printed (max. 2x16 chars)
51002393	Metal tag for tag number

Documentation

- Operating Instructions RN221N (KA124R/09/a3)
- Operating Instructions RN221N with HART® diagnosis (KA202R/09/a3)
- ATEX Safety Notes (XA005R/09/a3)
- Functional safety manual RN221N (SD008R/09/en)
- Brochure "System Components" (FA016R/09/en)

International Head Quarter

Endress+Hauser GmbH+Co. KG Instruments International Colmarer Str. 6 79576 Weil am Rhein Deutschland

Tel. +49 76 21 9 75 02 Fax +49 76 21 9 75 34 5 www.endress.com info@ii.endress.com

TI073R/09/en/04.05 51001410 FM+SGML 6.0 ProMoDo