

Functional safety manual

Liquiphant M/S with electronic insert FEL57 + Nivotester FTL325P

Level Limit Measuring System

Application

Overfill protection or operating maximum detection of all types of liquids in tanks to satisfy particular safety systems requirements as per IEC 61508.

The measuring device fulfills the requirements concerning

- Safety functions up to SIL 3
- Explosion protection by means of intrinsic safetyEMC to EN 61326 and
 - NAMUR Recommendation NE 21.

Content

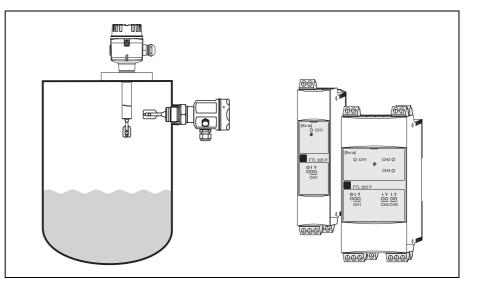
- Page 3 to 18
 - Functional safety manual
 Certified by TUEV Rheinland/Berlin Brandenburg TUEV Anlagentechnik GmbH Automation, software and IT to IEC 61508
- Page 19 to 40
 - Functional safety manual
 - Independently assessed (Functional Assessment) by exida as per IEC 61508

TÜV certificate

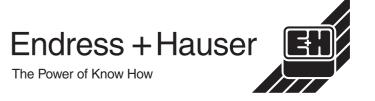
	TÜV Rheinland/ Berlin-Brandenbu		ÜV
	TÜV Anlagentechnik Automation, Software		onstechnologie
ZERTIFI	KAT		Nr./No. 968/EL 133.01/01
CERTIF	FICATE		
Prüfgegenstand Product tested	Level Limit Measuring System Nivotester FTL325P with Liquiphant M/S + FEL57	Hersteller Manufacturer	Endress + Hauser GmbH + Co. Hauptstraße 1 D-79689 Maulburg Germany
Typbezeichnung Type designation	Vibration limit switch Liquiphant M/S + FEL57 with Nivotester FTL325P. Instrument types and settings acc. to Safety Manual	Verwendungs- zweck Intended application	Maximum detection of liquids in applications of safety related shut-down systems up to SIL 2/ AK 4, SIL 3/AK 5 - 6 resp.
Prüfgrundlagen Codes and standa the basis of festing	rds forming DIN V 193 DIN V VD EN 61131 EN 50178	E 0801/1990 + A1/1 -2/1994	994
Prüfungsergebnis Test results	accordir dafed 20 Manual	ng to the results of t 001-04-30. Conside SD 111F/00//09.01	d applications up to SIL 3/AK 6 he test report no. 968/EL 133.00/01 ring the instructions of the Safety the requirements of the codes pasis of the testing are fulfilled.
Besondere Beding Specific requireme			on, operating and maintenance of 00//09.01 must be considered.
	133.01/01 von Dieses Zertifik übereinstimm	n 2001-11-28 sind Best at ist nur gültig für En	20/01 vom 2001-04-30 und Nr. 968/EL andteile dieses Zertifikates. zeugnisse, die mit dem Prüfgegenstand bei jeglicher Änderung der Prüfgrund- rendungszweck.
	133.01/01 dat This certificat	ed 2001-11-28 are inte e is valid only for p	0/01 dated 2001-04-30 and No. 968/EL egral parts of this certificate. oraducts which are identical with the lid at any change of the codes and ng for the intended application.

Limit Level Measuring System liquiphant M/S + nivotester FTL 325 P

Functional safety manual



Areas of application:


Overfill prevention device or operating maximum detection of all types of liquids in tanks or piping to satisfy particular safety systems requirements to IEC 61508 or DIN V 19250.

The measuring system fulfils the requirements concerning

- Functional safety according to IEC 61508 and DIN V 19250
- Explosion protection by intrinsic safety
- EMC to NAMUR Recommendations

Benefits at a glance

- For overfill prevention up to SIL 2/AK 4, in redundant versions up to SIL 3/AK 5&6
 - Certified by TUEV Rheinland/ Berlin Brandenburg TUEV Anlagentechnik GmbH Automation, software and IT to IEC 61508
- Permanent self-monitoring
- No calibration
- Protected against outside vibration by optimised drive
- Space-saving switching unit
- Measuring system test by pressing a test-button
- Fail-safe by PFM technology

Contents

Introduction

Terms and standards General depiction of a safety system (protection function) Version tables for determining Safety Integrity Level (SIL) Sensors in the safety system with Liquiphant M/S coated or not and Liquiphant S with electronic insert FEL 57 and Nivotester FTL 325 P Measuring system Safety function Permitted combination of Nivotester with Liquiphant M/S for the safety function Safety function data Supplementary device documentation

Settings and installation instructions

Response in operation and failure

Recurrent functional tests of the measuring system

Appendix

Specific values and wiring options for the measuring system Liquiphant M/S (FEL 57) and Nivotester FTL 325 P

PFD	Probability of dangerous Failure on Demand	
PFD _{av}	Probability (average) of a dangerous Failure on Demand	
SIL	Safety Integrity Level	
	Discrete level (one out of possible four) for specifying the safety integrity requirements of the safety functions to be allocated to the E/E/PE safety related systems where safety integrity level 4 has the highest level of safety integrity and safety integrity level 1 has the lowest	
HFT	Hardware Fault Tolerance	
	Ability of a functional unit (hardware) to continue to perform a required function in the presence of faults or errors	
SFF	Safe Failure Fraction	
	Fraction of failure which do not have the potential to put the safety-related system in a hazardous or fail-to-function state	
CCF, CC	Common Cause Failure	
	Failure which is the result of one or more events causing coincident failures of two or more separate channels in a multiple channel system, leading to system failure	
E/E/PE	Electrical / Electronic / Programmable Electronic System	
ХооҮ	"x out of y" Voting (e.g. 2003)	
MTTR	Mean Time To Repair	
MTBF	Mean Time Between Failure	
TI	Test Interval between life testing of the protection function (in years)	

Introduction

Terms and standards

Tab. 1: Definitions from IEC 61508 Part 4

Relevant standards

IEC 61508 Part 1-7	Functional safety of programmable electronic safety-related systems (Target group: Manufacturers & Suppliers of Devices)	
IEC 61511 Part 1-3 Draft	Functional safety instrumented systems for the process industry sector. (Target group: Safety Instrumented Systems Designers, Integrators & Users)	
DIN V VDE 0801 A1	Principles for computers in safety-related systems (including Amendment A1)	
DIN V 19250	Fundamental safety aspects for measurement and control equipment	

Tab. 2: Relevant standards

Safety system	Complete safety-related measuring chain (protection function)
Safety function	Defined function performed by the system on demand

Tab. 3: Terms

General display of
a safety system
(protection function)Version tables for determining Safety Integrity Level (SIL)The following tables are used to define the reachable SIL or the

The following tables are used to define the reachable SIL or the requirements pertaining to the "Average Probability of a Dangerous Failure On Demand" (PFD_{av}), "Hardware Fault Tolerance" (HFT) and the "Safe Failure Fraction" (SFF) of the safety system. Refer to the tables in the Appendix for the specific values of the measuring system Liquiphant M/S (FEL 57) and Nivotester FTL 325 P.

The relationship between AK-classes according to DIN V 19250 and the Safety Integrity Level (SIL) according to IEC 61508:

AK-classes (DIN V 19250)		Safety Integrity Level SIL (IEC 61508)
1		_
2 & 3	⇒	1
4	\Rightarrow	2
5 & 6	\Rightarrow	3
7 & 8	\Rightarrow	4

Tab. 4: Relationship between AK and SIL

Permitted failure probability of the complete safety system as a function of SIL for systems which must react on demand (e.g. sensor signal when covered).

SIL	PFD _{av}
4	≥ 10 ⁻⁵ < 10 ⁻⁴
3	≥ 10 ⁻⁴ < 10 ⁻³
2	≥ 10 ⁻³ < 10 ⁻²
1	≥ 10 ⁻² < 10 ⁻¹

Tab. 5: Permitted failure probabilities (Source: IEC 61508, Part 1)

The ranges of PFD_{av} are generally distributed as follows for the whole safety system:

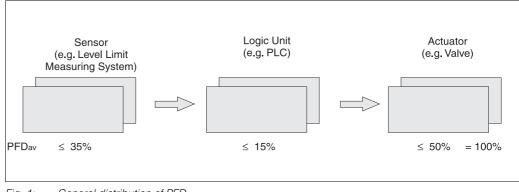


Fig. 1: General distribution of PFD_{av}

The following table shows the achievable Safety Integrity Level (SIL) as a function of the amount of safety-oriented errors and the hardware fault tolerance of the complete safety system for type B systems (complex components, for definition see IEC 61508, Part 2):

SFF		HFT	
	0	1	2
none: < 60 %	not allowed	SIL 1	SIL 2
low: 60 %< 90 %	SIL 1	SIL 2	SIL 3
medium: 90 %< 99 %	SIL 2	SIL 3	SIL 4
high: ≥ 99 %	SIL 3	SIL 4	SIL 4

Tab. 6: Attainable SIL (Source: IEC 61508, Part 2)

Limit level measuring system

Fig. 2 shows the instruments in the measuring system.

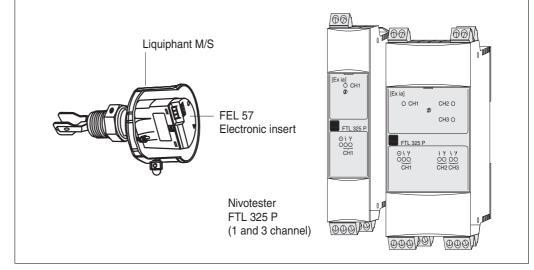


Fig. 2: Measuring system instruments (example)

Safety function

The safety function applies to all settings in MAX safety (monitoring of the covered state) and use of the NO contacts of the level relays.

The following settings are permitted for the safety function:

Instrument	Setting	As-delivered state
Liquiphant	Density switch setting: 0.5 Density switch setting: 0.7	Density switch setting: 0.7
	Test mode "STD" Test mode "EXT"	Test mode "STD"
Nivotester FTL325P-#3#3	MAX safety	MAX safety
	All settings except " Settings" and installation instructions")	Three-channel operation
Nivotester	MAX safety	MAX safety
FTL325P-#1#1		One-channel operation

Tab. 7: Settings

Sensors in the measuring system with Liquiphant M/S (FEL 57) and Nivotester FTL 325 P The MAX safety setting has the effect that the level relay always works in quiescent current safety, i.e. the relay releases when:

- the switch point is exceeded (level exceeds response height)
- a fault occurs
- mains voltage fails

In addition to the level relay, the alarm relay works in quiescent current safety and releases when

- one of the following faults occurs:
 - the sensor connection is interrupted
 - the sensor connection short circuits
 - the sensor identifies corrosion at the vibration system
- mains voltage fails

Note!

• When the alarm relay releases, the level relay also releases.

Permitted combination of Nivotester with Liquiphant M/S for the safety function

The following combinations are permitted for the measuring system:

Nivotester		Liquiphant M +	Liquiphant S +	
Three-channel instrument	Three-channel instrument	(FEL 57)	(FEL 57)	
FTL 325 P-H### FTL 325 P-P### FTL 325 P-T###	FTL 325 P-H### FTL 325 P-P### FTL 325 P-T###	FTL 50-######7###* FTL 51-######7###* FTL 50 H-######7###* FTL 51 H-######7###* FTL 51 C-######7####*	FTL 70-######7####* FTL 71-######7####*	

Tab. 8: Permitted instrument types (# = all instrument versions permitted); *7 = FEL 57 insert

Safety function data

The **mandatory settings** and data for the safety function can be found in the **Appendix**. The measuring system reacts in \leq 0.9 seconds.

Note!

• MTTR is set at eight hours.

Safety systems without a self-locking function must be monitored or set to an otherwise safe state after carrying out the safety function within MTTR.

Supplementary device documentation

The following must be available for the measuring system:

	Technical Information	Operating Instructions
Nivotester FTL 325 P	For all instrument types: TI 350F	One channel instrument FTL 325 P-#1#1: KA 167F
		Three channel instrument FTL 325 P-#3#3: KA 168F
Liquiphant M	Types: FTL 50, FTL 51, FTL 50 H, FTL 51 H : TI 328F	Types: FTL 50, FTL 51: KA 143F
		Types: FTL 50, FTL 51: KA 163F (with aluminium housing/separate terminal compartment)
		Types: FTL 50 H, FTL 51 H: KA 144F
		Types: FTL 50 H, FTL 51 H: KA 164F (with aluminium housing/separate terminal compartment)
	Туре: FTL 51 C TI 354F	Type: FTL 51 C: KA 162F
		Type: FTL 51 C: KA 165F (with aluminium housing/separate terminal compartment)
Liquiphant S	For all instrument types:	Types FTL 70, FTL 71: KA 172F
	TI 354F	Types: FTL 70, FTL 71: KA 173F (with aluminium housing/separate terminal compartment)
Relevant contend	Connection data Installation instructions	Setting, configuration, remarks, function tests

Tab. 9: Supplementary documentation

Settings and installation instructions

The ambient conditions for the Nivotester FTL 325 P must correspond to IP54 (as per EN 60529).

Refer to the following documentation	for instructions on setting the instruments:

Instrument	Setting description in documentation:
Liquiphant M/S (FEL 57)	KA 143F, KA 163F, KA 144F, KA 164F, KA 162F, KA 165F, KA 172F, KA 173F, *
Nivotester FTL 325 P-#1#1	KA 167F
Nivotester FTL 325 P-#3#3	KA 168F

 Tab. 10:
 Instrument documentation
 (* type-dependent, see Tab. 9)

Settings for Liquiphant M/S (FEL 57):

- The **density switch setting** has an influence on probability of failure and function test type (refer to the Appendix for details).
- The test mode setting has influence on the function test (refer to the Tab. 13 for details).

Settings for Nivotester FTL 325 P-#3#3 (three-channel version):

Setting	Description	Caution!
	Channels 2+3 in Delta-S function	THIS SETTING IS NOT PERMITTED FOR THE SAFETY FUNCTION
	Channel 1 independent	Channel 1 is permitted for the safety function
СН1 Бран СН2 Бран СН3 Бран	Channels 2+3 in Delta-S function	CHANNELS 2 AND 3 IN THIS SETTING ARE NOT PERMITTED FOR THE SAFETY FUNCTION

Tab. 11: Settings of the Nivotester

Caution!

Observe the following for the Nivotester FTL 325 P-####:

The operator must use suitable measures (e.g. current limiter, fuses) to ensure the relay contact characteristics are not exceeded:

- U \leq 253 V AC 50/60 Hz, I \leq 2 A, P \leq 500 VA at cos $\phi \geq$ 0.7 or
- U \leq 40 V DC, I \leq 2 A, P \leq 80 W

Caution!

Changes to the measuring system and settings after start-up can impair the protection function!

Response in operation and failure

Response in operation and failure is described in the following documentation:

Instrument	Description in documentation:
Liquiphant M/S (FEL 57)	KA 143F, KA 163F, KA 144F, KA 164F, KA 162F, KA 165F, KA 172F, KA 173F, *
Nivotester FTL 325 P-#1#1	KA 167F
Nivotester FTL 325 P-#3#3	KA 168F
Tab 12 [,] Instrument documentation	(* type-dependent see Tab 9)

 Tab. 12:
 Instrument documentation
 (* type-dependent, see Tab. 9)

Recurrent function tests of the measuring system

The measuring system should be checked as follows:

Liquipha	ant M/S	Nivotester	Test	
Setting density switch	Test mode setting	Setting	Test interval	Description of test procedure
Setting 0.7	STD or EXT	Any permitted setting and Alarm signal CH1 -> ON, if channel 1 connected to a sensor	Annual function test	KA 167F KA 168F
Setting 0.5	STD or EXT	Any permitted setting and Alarm signal CH1 -> ON, if channel 1 connected to a sensor	Annual function test and complete test: Covered signal monitoring, e.g. by approaching the level, at least every 5 years	

Tab. 13: Recurrent functional test

Caution!

Note the following points for the function test:

- Test each channel individually by pressing the associated test key.
- Check the electrical switching of relay contacts, e.g. using a hand multimeter connected to the terminals.
- In multi-channel instruments, all channels which do not carry out a safety function must be included in the recurrent function tests if faulty functioning cannot be detected by any other means - e.g. by means of independent protective measures or changing the response of the measuring point.
- A positive test result is obtained when the system reaction corresponds to the description.
- If the system reaction does not correspond to the described procedure, the monitored process must be kept in a safe state by additional or different measures until the safety system is repaired.

Appendix

Specific values and wiring options for the measuring system Liquiphant M/S (FEL 57) and Nivotester FTL 325 P The tables show the specific values and wiring options for the measuring system.

Note!

- Note the following points on the tables below:
- The PFD_{av} values for multichannel systems already contain common cause errors for the associated wiring scheme.
- The PFD_{av} values are only valid for associated wiring scheme. They are not suitable for deriving calculations for other wiring schemes. Using NC contacts instead of NO contacts requires further consideration of the installation means.
- The wiring scheme shows the number of instruments (Liquiphant and Nivotester) and the limit relay contact circuits (open, when the sensor signals covering).
- With several instruments in a wiring scheme, they all indicated the same displayed settings.

	1001 architecture	
Liquiphant setting	Density 0.7	Density 0.5
Nivotester FTL 325 P-#1#1- Setting (one-channel instrument)	MAX MAX	MAX
SIL / AK	SIL 2 / AK 4	SIL 2 / AK 4
HFT	0	0
SFF	> 90 %	> 90 %
PFDav	< 0.15 x 10 ⁻²	< 0.20 x 10 ⁻²
Wiring scheme		
	СН1: "Х.	СН1: "Х.
Function test with test key	Annual	Annual
Complete function test, e.g. by approaching level	Not required within normal life	at least every 5 years

	1oo1 architecture	
Liquiphant setting	Density 0.7	Density 0.5
Nivotester FTL 325 P-#3#3 - Setting (three-channel instrument)	MAX	MAX
SIL / AK	SIL 2 / AK 4	SIL 2 / AK 4
HFT	0	0
SFF	> 90 %	> 90 %
PFDav	< 0.15 x 10 ⁻²	< 0.20 × 10 ⁻²
Wiring scheme		
	CH2 or CH3:	CH2 or CH3:
Function test with test key	Annual	Annual
Complete function test, e.g. by approaching level	Not required within normal life	at least every 5 years

	1001 architecture	
Liquiphant setting	Density 0.7	Density 0.5
Nivotester FTL 325 P-#3#3- Setting (three-channel instrument)	CH1 CH2 CH2 CH3	CH1 17 MAX CH2 17 AS CH3 17 AS
SIL / AK	SIL 2 / AK 4	SIL 2 / AK 4
HFT	0	0
SFF	> 90 %	> 90 %
PFDav	< 0.15 x 10 ⁻²	< 0.20 x 10 ⁻²
Wiring scheme		
	СН1: "Х.	СН1:
Function test with test key	Annual	Annual
Complete function test, e.g. by approaching level	Not required within normal life	at least every 5 years

	1002 architecture	
Liquiphant setting	Density 0.7	Density 0.5
Nivotester FTL 325 P-#1#1 - Setting (one-channel instrument)	MAX	MAX
SIL / AK	SIL 3 / AK 5&6	SIL 3 / AK 5&6
HFT	1	1
SFF	> 90 %	> 90 %
PFDav	< 0.10 × 10 ⁻³	< 0.15 x 10 ⁻³
Wiring scheme		
	CH1 + CH1: , , , , , , , ,	CH1 + CH1:
Function test with test key	Annual	Annual
Complete function test, e.g. by approaching level	Not required within normal life	at least every 5 years

1002 architecture		
Liquiphant setting	Density 0.7	Density 0.5
Nivotester FTL 325 P-#3#3 - Setting (three-channel instrument)	MAX	MAX
SIL / AK	SIL 3 / AK 5&6	SIL 3 / AK 5&6
HFT	1	1
SFF	> 90 %	> 90 %
PFDav	< 0.10 × 10 ⁻³	< 0.15 x 10 ⁻³
Wiring scheme		
	CH2 + CH2 or CH3 + CH3:	CH2 + CH2 or CH3 + CH3:
	.N.N.	.N.N.
Function test with test key	Annual	Annual
Complete function test, e.g. by approaching level	Not required within normal life	at least every 5 years

1002 architecture		
Liquiphant setting	Density 0.7	Density 0.5
Nivotester FTL 325 P-#3#3 - Setting (three-channel instrument)	MAX	MAX
SIL / AK	SIL 3 / AK 5&6	SIL 3 / AK 5&6
HFT	1	1
SFF	> 90 %	> 90 %
PFDav	< 0.10 x 10 ⁻³	< 0.15 x 10 ⁻³
Selection circuit		
	CH1 + CH2 or CH1 + CH3:	CH1 + CH2 or CH1 + CH3:
Function test with test key	Annual	Annual
Complete function test, e.g. by approaching level	Not required within normal life	at least every 5 years

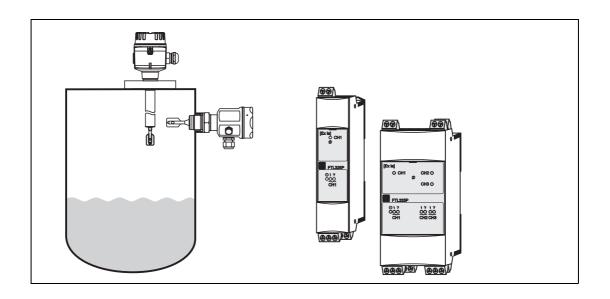
2003 architecture		
Liquiphant setting	Density 0.7	Density 0.5
Nivotester FTL 325 P-#3#3- Setting (three-channel instrument)	MAX	MAX
SIL / AK	SIL 3 / AK 5&6	SIL 3 / AK 5&6
HFT	1	1
SFF	> 90 %	> 90 %
PFDav	< 0.10 x 10 ⁻³	< 0.15 x 10 ⁻³
Wiring scheme		CH1 Г/1 CH2 Г/1 CH3 Г/1 CH3 Г/1 A CH1 Г/1 CH3 Γ/1 B CH1 Γ/1 CH2 Γ/1 CH3 Γ/1 B CH1 Γ/1 CH2 Γ/1 CH3 Γ/1
	$ \begin{array}{c} $	
Function test with test key	Annual	Annual
Complete function test, e.g. by approaching level	Not required within normal life	at least every 5 years

Notes

Subject to modification

Endress+Hauser Gmbh+Co. Instruments International P.O. Box 2222 D-79574 Weil am Rhein Germany

Tel. (07621) 975-02 Tx 773926 Fax (07621) 975 345 http://www.endress.com info@ii.endress.com



Functional safety manual

Liquiphant M/S with electronic insert FEL57 + Nivotester FTL325P

Level Limit Measuring System

Application

Overfill protection or operating maximum detection of all types of liquids in tanks to satisfy particular safety systems requirements as per IEC 61508.

The measuring device fulfills the requirements concerning

- Safety functions up to SIL 3
- Explosion protection by means of intrinsic safety
- EMC to EN 61326 and NAMUR Recommendation NE 21.

Your benefits

- For overfill protections up to SIL 2, in redundant version up to SIL 3
 - Independently assessed (Functional Assessment) by exida as per IEC 61508
- Permanent automatic monitoring
- No calibration
- Insensitive to external vibration
- Easy commissioning
- Space-saving switching unit
- Testing of the measuring system at the push of a button
- Fail-safety by means of PFM technology

Table of contents

SIL declaration of conformity
Introduction
Structure of the measuring system with Liquiphant M/Swith FEL57 + Nivotester FTL325P.Level limit measuring system22Safety function22Supplementary device documentation24
Settings and installation instructions24Installation instructions24Settings for Liquiphant M/S with FEL5725Settings for Nivotester FTL325P-#3#3 (3-channel)25
Response in operation and failure26Repair26
Recurrent function tests of the measuring system 26 Failure rates of electrical components
Appendix27Specific values and wiring options for the measuring systemLiquiphant M/S with FEL57 and Nivotester FTL325P27
FMEDA Report

SIL declaration of conformity

SIL-06002a/00/a2

SIL-Konformitätserklärung

Funktionale Sicherheit nach IEC 61508

SIL Declaration of Conformity

Functional safety according to IEC 61508

Endress+Hauser GmbH+Co. KG, Hauptstraße 1, 79689 Maulburg

erklärt als Hersteller, dass der Füllstandgrenzschalter für Flüssigkeiten declares as manufacturer, that the level limit switch for liquids

Liquiphant M FTL5x or Liquiphant S FTL7x + Electronic insert FEL57 and Nivotester FTL325P

für den Einsatz in Schutzeinrichtungen entsprechend der IEC 61508 geeignet ist, wenn das Handbuch zur Funktionalen Sicherheit SD111F/00 und nachfolgende Kenngrößen beachtet werden: is suitable for the use in safety-instrumented systems according to IEC 61508, if the functional safety manual SD111F/00 and following characteristics are observed:

Gerät/Product	Liquiphant M or Liquiphant S +FEL57	Liquiphant M or Liquiphant S +FEL57 and FTL325P ³⁾	
Schutzfunktion/Safety Function	Überfüllsicherung⁄overfill protection	Überfüllsicherung/overfill protection	
SIL	2	2	
Prüfintervall/Proof test interval	≤ 1 Jahr∕year	≤ 1 Jahr∕year	
Gerätetyp/Device type	В	В	
HFT	0	0 (einkanalige Verwendung/single channel use)	
SFF	94 %	95%	
PFD _{avg} ¹⁾	0,01x10-2	0,02x10-2	
λ_{du}	30 FIT	45 FIT	
λ_{dd}	1,3 FIT	1,3 FIT	
λ_{su}	426 FIT	822 FIT	
λ_{sd}	138 FIT	153 FIT	
MTBF _{tot} ²⁾	190 Jahre/years	106 Jahre/years	
¹⁾ Die Werte entsprechen SII. 2 nach ISA S84.01./ The values comply with SII. 2 according to ISA S84.01.			

¹⁾ Die Werte entsprechen SIL 2 nach ISA S84.01 / The values comply with SIL 2 according to ISA S84.01
²⁾ gemäß Siemens SN29500, einschließlich Fehlern, die außerhalb der Sicherheitsfunktion liegen/

according to Siemens SN29500, including faults outside the safety function

³¹ Die Kenngrößen beziehen sich auf alle im Anhang der SD111F/00 dargestellten Konfigurationen und zeigen je Kenngröße den ungünstigsten Wert.

This characteristics are referring to all configurations shown in the appendix of SD111F/00 and are showing the worst value of each characteristic.

Maulburg, 03.03.2006

Endress+Hauser GmbH+Co. KG

i.V

Leitung Zertifizierungsstelle Management Certification Department

i V

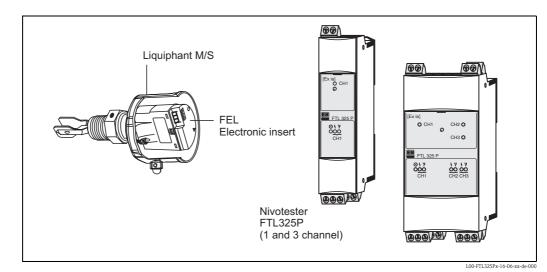
Leitung Entwicklungsprojekt Management R&D Project

People for Process Automation

Pressure Pressure Flow Temperature Liquid Analysis Analysis Registration Systems Components

Introduction

Note!



General information about Functional Safety (SIL) can be obtained at: www.de.endress.com/SIL

and in the competence brochure CP002Z "Functional safety in the Process Industry – risk reduction with Safety Instrumented Systems"

Structure of the measuring system with Liquiphant M/S with FEL57 + Nivotester FTL325P

Level limit measuring system The following diagram displays the measuring system (example).

The safety-related signal of the measuring system is the level relay of the Nivotester. All safety functions refer

exclusively to this signal. The safety function applies to settings in MAX safety (monitoring of the covered state) and use of the NO contacts of the level relays.

The MAX safety setting causes the level relay to always work in quiescent current safety; i.e. the relay opens if:

- The switch point is exceeded (level exceeds response height)
- A fault occurs
- The power supply voltage fails

In addition to the level relay, the alarm relay works in operating current safety and closes the contact if:

- One of the following faults occurs:
 - the sensor connection is interrupted
 - $-\ensuremath{\,\text{the sensor}}$ connection short circuits
 - the corrosion alarm of the sensor is triggered
- Detection of internal errors
- The power supply voltage fails

The measuring range of the Liquiphant M/S is dependent on the installation site and fork length.

The detection range is located within the fork length and is dependent on the density of the medium.

Alternative measures must be taken during device configuration and maintenance work on the Liquiphant M/S + Nivotester FTL325P to guarantee process safety.

Safety function

The following settings are permitted for the safety function:

Instrument	Setting for the safety function	As-delivered state
Liquiphant	Density switch setting: 0.5Density switch setting: 0.7	 Density switch setting: 0.7
	Test mode "STD"Test mode "EXT"	– Test mode "STD"
Nivotester	– MAX safety	 MAX safety
FTL325P-#3#3	 All settings except for "∆S function" (see "Settings and installation instructions" Section) 	– 3-channel operation
Nivotester	– MAX safety	 MAX safety
FTL325P-#1#1	 1-channel operation 	 1-channel operation

Note!

- When the alarm relay releases, the level relay also releases.
- The alarm relay is not part of the safety function!

Permitted versions of the Nivotester with the Liquiphant M/S with FEL57 for the safety function

The following combinations are permitted for the measuring system:

- Nivotester FTL325P-H1#1, FTL325P-H3#3
- Nivotester FTL325P-P1#1, FTL325P-P3#3
- Nivotester FTL325P-T1#1, FTL325P-T3#3

HW version (Hardware): as of V01.00; valid as of serial no. 2C x x x x x x x x x x

- Liquiphant M FTL50-#####7###
- Liquiphant M FTL51-######7###
- Liquiphant M FTL50H-#####7###
- Liquiphant M FTL51H-#####7###
- Liquiphant M FTL51C-#####7###
- Liquiphant S FTL70-######7####
- Liquiphant S FTL71-#####7####
- Valid FW version (Firmware): as of V01.00.01
- Valid HW version (Hardware): as of V01.00

Permitted device types (# = all device versions permitted except for 9 and Y)

Safety function data

The mandatory settings and data for the safety function can be found in the Appendix (Page 27).

The reaction time of the measuring system is ≤ 0.9 s.

MTTR is set at 8 hours.

Note!

Safety systems **without a self-locking function** must be monitored or set to an otherwise safe state after carrying out the safety function within MTTR.

Supplementary device documentation

Warning!

The technical limit values, safety, installation and configuration instructions must be observed in accordance with the documentation associated with the device. The following table displays an overview of the associated documentation and its contents for Liquiphant M/S + Nivotester FTL325P.

The following must be available for the measuring system:

Instrument	Technical Information	Operating Instructions
Nivotester	FTL325P: T1350F/00	For 1-channel device FTL325P-#1#1: KA167F/00
		For 3-channel device FTL325P-#3#3: KA168F/00
Liquiphant M	FTL50, FTL51, FTL50H, FTL51H:	FTL50, FTL51: KA143F/00
	TI328F/00	FTL50, FTL51 with aluminum housing/ separate connection compartment: KA163F/00
		FTL50H, FTL51H: KA144F/00
		FTL50H, FTL51H with aluminum housing/ separate connection compartment: KA164F/00
	FTL51C: TI347F/00	FTL51C: KA162F/00
Liquiphant S	FTL70, FTL71: T1354F/00	FTL70, FTL71: KA172F/00
		FTL70, FTL71 with aluminum housing/ separate connection compartment: KA173F/00
Relevant contents	Connection data, Installation instructions	Setting, configuration, remarks, function tests

Settings and installation instructions

Installation instructions

The ambient conditions for the Nivotester FTL325P must correspond to IP54 (in accordance with EN 60529).

Please refer to the Operating Instructions (KA) for information regarding the correct installation of the Liquiphant M/S with FEL57. Since the application conditions have an effect on the safety of the measurement, pay attention to the notes in the Technical Information (TI) and Operating Instructions (KA).

Refer to the following documentation for instructions on setting the instruments:

Instrument	Setting description in documentation
Nivotester	1-channel device FTL325P-#1#1: KA167F/00
	3-channel device FTL325P-#3#3: KA168F/00
Liquiphant M/S with FEL57	KA143F/00, KA144F/00, KA162F/00, KA163F/00, KA164F/00, KA165F/00, KA172F/00, KA173F/00

Settings for Liquiphant M/S with FEL57	The setting of the density switch has an effect on the probability of failure and the type of function test (see "Appendix" Section).
	The setting of the test mode has an effect on the function test (see "Recurrent function tests of the measuring system" Section).
طا	The SIL evaluation of the Liquiphant M/S comprises the entire device including electronic insert, tuning fork with drive, process connection and internal wiring.
Ű	Caution! After commissioning the measuring system, changes to the settings at the electronic insert FEL57 can impair the safety function!
Settings for Nivotester FTL325P-#3#3 (3-channel)	It is recommended that the shift elements following the overfill protection be left in a safe state after responding until the alarm signal has been acknowledged.
	CH2 CH2 Δs Channel 2+3 in ΔS function (e.g. pump control)
	CH3 This setting is not permitted for the safety function!
	CH1 CH2 Channel 1, independent, CH2 CH3 Δs CH3 CH3 CH3
0 and 10 and	Channel 1 is permitted for the safety function! Channels 2 and 3 in this setting are not permitted for the safety function!
	Caution! Observe the following for the Nivotester FTL325P: The operator must use suitable measures (e.g. current limiter, fuse) to ensure the relay contact characteristics are not exceeded:
	• U \leq 253 V AC 50/60 Hz , I \leq 2 A, P \leq 500 VA at cos ϕ \geq 0.7 or • U \leq 40 V DC, I \leq 2 A, P \leq 80 W
Ċ	Caution! Changes to the measuring system and settings after commissioning can impair the safety function!

Response in operation and failure

Instrument	Setting description in documentation
Nivotester	1-channel device FTL325P-#1#1: KA167F/00
	3-channel device FTL325P-#3#3: KA168F/00
Liquiphant M	FTL50, FTL51: KA143F/00
	FTL50, FTL51 with a luminum housing/separate connection compartment: KA163F/00
	FTL50H, FTL51H: KA144F/00
	FTL50H, FTL51H with aluminum housing/separate connection compartment: KA164F/00
	FTL51C: KA162F/00
Liquiphant S	FTL70, FTL71: KA172F/00
	FTL70, FTL71 with aluminum housing/separate connection compartment: KA173F/00

The response in operation and failure is described in the following documentation.

Repair

In the event of failure of a SIL-labeled E+H device, which has been operated in a protection function, the "Declaration of Contamination and Cleaning" with the corresponding note "Used as SIL device in protection system" must be enclosed when the defective device is returned.

Recurrent function tests of the measuring system

Liquiphant M/S		Nivotester	Test	
Setting for density switch	Setting for test mode	Setting	Test interval	Description of the test procedure
Setting 0.7	STD or EXT	Every permitted setting and fault message CH1 -> ON when channel 1 is connected to a sensor	Annual function test	KA167F/00 KA168F/00
Setting 0.5	STD or EXT	Every permitted setting and fault message CH1 -> ON when channel 1 is connected to a sensor	Annual function test and complete test: checking the covered message, e.g. by approaching the level, after 5 years at the latest	

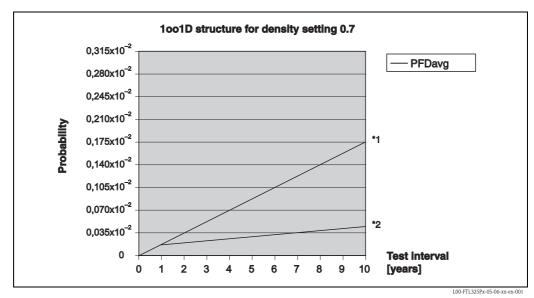
The operativeness of the overfill protection must be checked periodically if the PFD_{avg} values given in the Appendix are used.

The check must be carried out in such a way that it is proven that the overfill protection functions perfectly in interaction with all components. This is guaranteed when the response height is approached in a filling process. If it is not practical to fill to the response height, suitable simulation of the level or of the physical measuring effect must be used to make the level sensor respond. If the operativeness of the level sensor/transmitter can be determined otherwise (exclusion of faults that impair function), the check can also be completed by simulating the corresponding output signal.

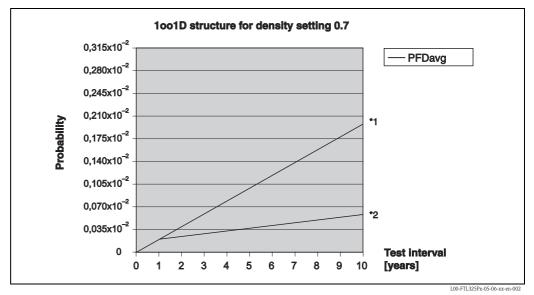
	 Caution! Note the following points for the function test: Every channel must be tested individually by pressing the respective test key. Relay contact switching must be checked electrically, e.g. using a hand multimeter at the terminals. In multi-channel instruments, all channels which do not carry out a safety function must be included in the recurrent function tests if faulty functioning cannot be detected by any other means, e.g. using independent protection measures or by changing the response of the measuring point. As a positive test result, the system reaction must correspond to the specified description. If the system reaction does not correspond to the described procedure, the monitored process must be set to a safe state by means of additional or other measures and/or kept in the safe state until the safety system is repaired.
Failure rates of electrical components	The underlying failure rates of electrical components apply within the usable service life IEC 61508-2 Section 7.4.7.4 Note 3

Appendix

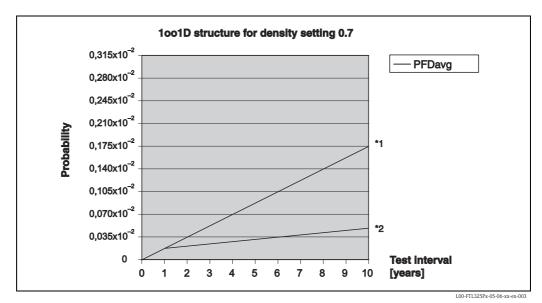
Specific values and wiring options for the measuring system Liquiphant M/S with FEL57 and Nivotester FTL325P

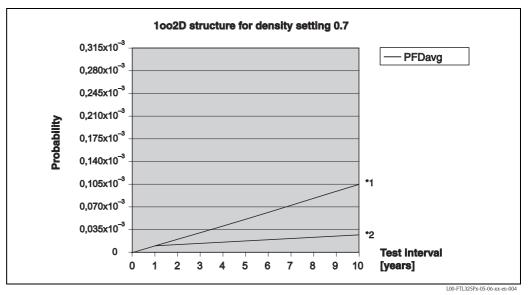

Note!

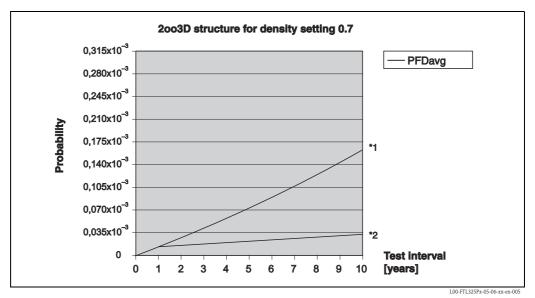
- Note the following points on the tables below:
- A common cause factor $\beta = 5$ % has been assumed for the calculations specified below.

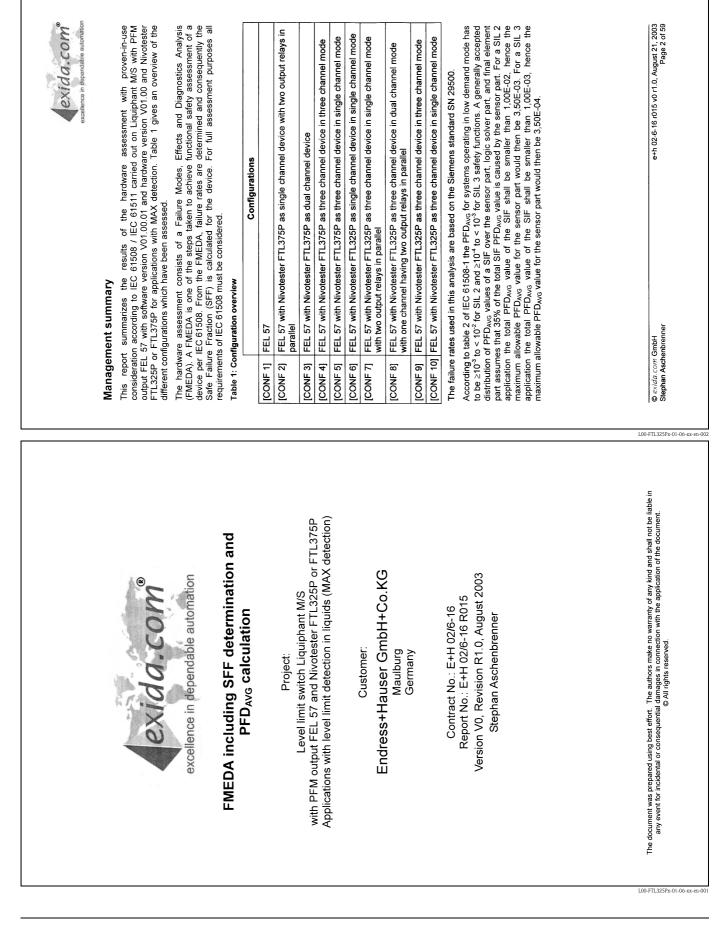

The tables show the specific values and wiring options for the measuring system.

- The PFD_{avg} values for multi-channel systems already contain common cause failures for the associated wiring scheme.
- The PFD_{avg} values are only valid for the associated wiring scheme. They are not suitable for deducing calculations for other wiring schemes.
 - Using NC contacts instead of NO contacts requires further consideration of the installation means.
- The wiring scheme shows the number of instruments (Liquiphant and Nivotester) and the limit relay contact circuits (open, when the sensor signals covering).
- With several instruments in a wiring scheme, they all indicate the same displayed settings.
- The tables show safety-relevant values and wiring options for the measuring system.
- The following safety-relevant values have been taken from the exida report
 - (Report No.: E+H 02/6-16 R015).
- FIT = Failure in Time, 1 FIT = 10^{-9} 1/h


1001 architecture D [CONF 6]				
Liquiphant M/S - Setting	Density 0.7	Density 0.5		
Nivotester FTL325P-#1#1 Setting (1-channel device)	MAX safety			
	()			
SIL	SIL 2	SIL 2	L00-FTL3x5Px-14-06-xx-xx-001	
HFT	0	0		
SFF ¹⁾	95 %	95 %		
PFD _{avg} ¹⁾ (low demand mode of operation)	1.75 x 10 ⁻⁴	1.82 x 10 ⁻⁴		
$\lambda_{sd}^{(1)}$	156 FIT	156 FIT		
$\lambda_{su}^{(1)}$	768 FIT	766 FIT		
$\lambda_{dd}^{(1)}$	1.3 FIT	1.3 FIT		
$\lambda_{du}^{(1)}$	40 FIT	42 FIT		
MTBF		113 years		
Wiring scheme	∞41;]][CH1 Γ <i>1</i>]			
	CH1: ,			
			L00-FTL3x5Px-04-06-xx-xx-001	
Function test with test button	annually	annually		
Complete function test, e.g. approaching the level	not required within the normal service life	at least every 5 years		
¹⁾ Source: Management summary of t	he exida.com test report (see Appendix)		


1001 architecture D [CONF 7]			
Liquiphant M/S - Setting	Density 0.7	Density 0.5	
Nivotester FTL325P-#3#3 Setting (3-channel device)	MAX safety		
SIL	SIL 2	L00-FTL3x5Px-14-06-xx-xx-001	
HFT	0	0	
SFF ¹⁾	95 %	95 %	
PFD_{avg}^{1} (low demand mode of operation)	1.97 x 10 ⁻⁴	2.05 x 10 ⁻⁴	
$\lambda_{sd}^{(1)}$	156 FIT	156 FIT	
$\lambda_{su}^{(1)}$	822 FIT	820 FIT	
$\lambda_{dd}^{(1)}$	1.3 FIT	1.3 FIT	
$\lambda_{du}^{(1)}$	45 FIT	47 FIT	
MTBF	1	123 years	
Wiring scheme			
	CH2 bzw. CH3:		
Function test with test button	annually	annually	
Complete function test, e.g. approaching the level	not required within the normal service life	at least every 5 years	
¹⁾ Source: Management summary of t	he exida.com test report (see Appendix)		


1001 architecture D [CONF 10]		
Liquiphant M/S - Setting	Density 0.7	Density 0.5
Nivotester FTL325P-#3#3 Setting (3-channel device)	MAX safety	
	CH2 [
SIL	SIL 2	100-FEL5xxxx-14-06-06-xx-001
HFT	0	0
SFF ¹⁾	95 %	95 %
PFD_{avg}^{1} (low demand mode of operation)	1.75 x 10 ⁻⁴	1.82 x 10 ⁻⁴
$\lambda_{sd}^{(1)}$	156 FIT	156 FIT
$\lambda_{su}^{(1)}$	768 FIT	766 FIT
$\lambda_{dd}^{(1)}$	1.3 FIT	1.3 FIT
$\lambda_{du}^{(1)}$	40 FIT	42 FIT
MTBF]	118 years
Wiring scheme	СН1 Г/1 СН2 Г/1 СН3 Г/1 СН3 Г/1	
		L00-FTL5xxxx-04-06-xx-xx-006
Function test with test button	annually	annually
Complete function test, e.g. approaching the level	not required within the normal service life	at least every 5 years
¹⁾ Source: Management summary of	the exida.com test report (see Appendix)	



1002 architecture D [CONF 8]				
Liquiphant M/S - Setting	Density 0.7	Density 0.5		
Nivotester FTL325P-#3#3 Setting (3-channel device)	MAX safety			
	j j			
SIL	SIL 3	L00-FEL5xxxx-14-06-06-xx-001		
HFT	1	1		
SFF ¹)	95 %	95 %		
PFD_{avg}^{1} (low demand mode of operation)	9.92 x 10 ⁻⁶	1.03 x 10 ⁻⁵		
$\lambda_{sd}^{(1)}$	156 FIT	156 FIT		
$\lambda_{su}^{(1)}$	822 FIT	820 FIT		
$\lambda_{dd}^{(1)}$	1.3 FIT	1.3 FIT		
$\lambda_{du}^{(1)}$	45 FIT	47 FIT		
MTBF		123 years		
Wiring scheme		SPS/PLC 1002		
		L00-FTL57xxx-04-06-xx-xx-000		
Function test with test button	annually	annually		
Complete function test, e.g. approaching the level	not required within the normal service life	at least every 5 years		
¹⁾ Source: Management summary of t	he exida.com test report (see Appendix))		

	2003 architecture D [CONF 9]	
Liquiphant M/S - Setting	Density 0.7	Density 0.5
Nivotester FTL 325 P-#3#3 Setting (3-channel device)	N	IAX safety
	() 	
SIL	SIL 3	L00-FEL5xxxx-14-06-06-xx-001 SIL 3
HFT	1	1
SFF ¹⁾	94 %	94 %
PFD_{avg}^{1} (low demand mode of operation)	1.29 x 10 ⁻⁵	1.33 x 10 ⁻⁵
$\lambda_{sd}^{(1)}$	155 FIT	155 FIT
$\lambda_{su}^{(1)}$	849 FIT	847 FIT
$\lambda_{dd}^{(1)}$	1.3 FIT	1.3 FIT
$\lambda_{du}^{(1)}$	57 FIT	59 FIT
MTBF	1	01 years
Wiring scheme	≈08	
Function test with test button	annually	annually
Complete function test, e.g. approaching the level	not required within the normal service life	at least every 5 years
¹⁾ Source: Management summary of t	he exida.com test report (see Appendix)	

FMEDA Report

excellence in dependable automation			exce	exida.com
Liquiphant M/S with PFM output FEL 57 is considered to be a Type B ¹ component. Nivotester FTL325P and FTL375P are considered to be Type A ² components. In the following both sub- systems are considered to be Type B components for simplification reasons and as a worst- case assumption.	Table 4: Summary for [CONF 2] with density 0,5 g/cm ⁻ T[Proof] = 1 year	F 2] with density 0,5 g/cr T[Proof] = 1 year		T[Proof] = 10 years
For Type A components with a SFF of 60% to < 90% a hardware fault tolerance of 0 according to table 2 of IEC 61508-2 is sufficient for SIL 2 (sub-) systems and a hardware fault tolerance of 1 is sufficient for SIL 3 (sub-) systems.	Without annual manual test	PFD _{AVG} = 2,85E-04 PFD _{AVG} = 2,85E-04	PFD _{AVG} = 4,41E-04 PFD _{AVG} = 1,43E-03	PFD _{AVG} = 6,36E-04 PFD _{AVG} = 2,85E-03
For Type B components with a SFF of 90% to < 99% a hardware fault tolerance of 0 according to table 2 of IEC 61508-2 is sufficient for SIL 2 (sub-) systems and a hardware fault tolerance of 1 is sufficient for SIL 3 (sub-) systems.	λ _{su} = 1,69E-07 1/h λ _{su} = 6,81E-07 1/h λ _{ud} = 1.32E-09 1/h			
As Liquiphant M/S with PFM output FEL 57 and Nivotester FTL325P or FTL375P are supposed to be proven-in-use devices, an assessment of the hardware with additional proven-in-use demonstration for the device and its software was carried out. Therefore according to the	$\lambda_{au} = 6,51E-08 1/h$ $\lambda_{au} = 6,51E-08 1/h$ SFF = 92%; HFT = 0; architecture suitable for SIL 2	tecture suitable for SIL	2	
requirements of IEC 61511-1 First Edition 2003-01 section 11.4.4 and the assessment described in section 5.1 the hardware fault tolerance could even be reduced.	Table 5: Summary for [CONF 2] with density 0,7 g/cm³	F 2] with density 0,7 g/cr	m³	
Table 2: Summary for ICONF 11 with density 0.5 g/cm ²		T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years
TIProvid = 1 vear TIProvid = 5 veare TIProvid = 40 veare	With annual manual test	PFD _{AVG} = 2,83E-04	PFD _{AVG} = 4,08E-04	PFD _{AVG} = 5,64E-04
I PED = 2 946-04	Without annual manual test	PFD _{AVG} = 2,83E-04	PFD _{AVG} = 1,41E-03	PFD _{AVG} = 2,83E-03
est PFD _{AVG} = 1,39E-04 PFD _{AVG} = 6,96E-04	$\lambda_{sd} = 1,69E-07 \ 1/h$			
	$\lambda_{su} = 6,83E-07 1/h$			
Ast = 1,302-07 1/1 3 = 4.24E-07.1/h	λ _{dd} = 1,33E-09 1/h			
	$\lambda_{du} = 6,45E-08 \ 1/h$			
Add = 1,302-09 1/1 A = 3.18F-08 1/h	SFF = 92%; HFT = 0; architecture suitable for SIL 2	tecture suitable for SIL	2	
SFF = 94%; HFT = 0; architecture suitable for SIL 2	Table 6: Summary for [CONF 3] with density 0,5 g/cm*	F 3] with density 0,5 g/cr	m³	
Table 3: Summary for ICONF 11 with density 0.7 alcm ²		T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years
	With annual manual test	PFD _{AVG} = 2,26E-05	PFD _{AVG} = 3,04E-05	PFD _{AVG} = 4,03E-05
I[Proof] = 1 year I[Proof] = 5 years I[Proof] = 10 years Mith annual heat DED= 1 32E.04 DED= 2 57E.04 DED= 4 13E.04	Without annual manual test	PFD _{AVG} = 2,26E-05	PFD _{AVG} = 1,20E-04	PFD _{AVG} = 2,58E-04
est PFD _{AVG} = 1,32E-04 PFD _{AVG} = 6,58E-04	$\lambda_{sd} = 1,69E-07 1/h$			
	$\lambda_{su} = 7,54E-07 1/h$			
	$\lambda_{dd} = 1,32E-09 \ 1/h$			
A _{su} = 4,20E-U/ 1/N	λ _{du} = 1,01E-07 1/h			
Add = 1,30E-09 1/h 3 - = 3 01E-08 1/h	SFF = 90%; HFT = 1; architecture suitable for SIL 3	tecture suitable for SIL :	3	
SFF = 94%; HFT = 0; architecture suitable for SIL 2				
Type B component: "Complex" component (using micro controllers or programmable logic); for details				
Type A component: "Non-complex" component (all failure modes are well defined); for details see	Ľ			
	© exida.com GmbH		e+h 02-6-16 r0'	e+h 02-6-16 r015 v0 r1.0, August 21, 2003
Stephan Aschenbrenner Page 3 of 59	Stephan Aschenbrenner Stephan Aschenbrenner			Page 4 of 59

L00-FTL325Px-01-06-xx-

excellence in pependable automation				PFD _{AVG} = 2,32E-03 PFD _{AVG} = 4,65E-03					uc z Jem ³	TIProofi = 5 vears TIProofi = 10 vears		-					1L Z	pciii TIPronfi = 5 vears TIPronfi = 10 vears							-2		⁴ The SFF < 90% is the result of the combination of the Type A and Type B sub-systems. The Type B sub-system, however, has a SFF > 90%.	e+h 02-6-16 r015 v0 r1.0, August 21, 2003 Page 6 of 59
	NF 5] with density 0,5 g	T[Proof] = 1 year	PFD _{AVG} = 4,65E-04	PFD _{AVG} = 4,65E-04				shitactura suitabla for S	one of with density 0.7 d	TIProofi = 1 vear	DED = 4 57E-04	PFD _{AVG} = 4,57E-04				C	stillecture suitable 101 S	TIProof = 1 vear	PED = 1 82E-04	PFD _{AVG} = 1,82E-04					itecture suitable for SIL		t of the combination of the SFF > 90%.	
	Table 10: Summary for [CONF 5] with density 0,5 g/cm ³	-	With annual manual test	Without annual manual test	λ _{sd} = 1,69E-07 1/h	λ _{su} = 7,59E-07 1/h	λ _{dd} = 1,32E-09 1/h	λ _{du} = 1,06E-07 1/h SEE = 80% 4. HET = 0: architecture suitebla for SU -2	Table 11: Summary for [CONE 5] with density 0.7 d/cm ³		With annual manual test	Without annual manual test	λ _{sd} = 1,69E-07 1/h	λ _{su} = 7,61E-07 1/h	λ _{dd} = 1,32E-09 1/h	λ _{au} = 1,04E-07 1/h orr = 0000 4 - 1000 - 0000 10	ъг = 09%; пг I = 0, агс		Mith annual manual test	Without annual manual test	λ _{sd} = 1,56E-07 1/h	λ _{su} = 7,66E-07 1/h	λ _{dd} = 1,30E-09 1/h	λ _{du} = 4,16E-08 1/h	SFF = 95%; HFT = 0; architecture suitable for SIL 2		The SFF < 90% is the result sub-system, however, has a \$	© exida.com GmbH Stephan Aschenbrenner
COM [®] the automation			3,64E-05	2,53E-04							10 years	4,2/E-05 3 57F_04							10 years	3,86E-05 3.44E-04						 	LOC	Last 21, 2003
exida.com excelence in dependable automation		T[Proof] = 10 years	E-05 PFD _{AVG} = 3,64E-05	E-04 PFD _{AVG} = 2,53E-04						\vdash	+	E-05 PFD _{AVG} = 4,2/E-05 E-04 PFD ₁₁₀ = 3 52E-04						+		E-05 PFD _{AVG} = 3,86E-05 E-04 PFD _{AVG} = 3,44E-04	-						LOC	2003 of 59
excellence in dependable automation		T[Proof] = 5 years T[Proof] = 10 years	PFD _{AVG} = 2,85E-05	PFD _{AVG} = 1,18E-04					IL 3		I [Proor] = 5 years	PFD _{AVG} = 3,22E-05 PFD ₁₀₀ = 1 46E-04					SIL 3			PFD _{Av6} = 3,03E-05 PFD _{Av6} = 3,86E-05 PFD _{Av6} = 3,44E-04 PFD _{Av6} = 3,44E-04	-				SiL 3		LOC	2003 of 59
excelence in dependable automation	Table 7: Summary for [CONF 3] with density 0,7 g/cm ³	T[Proof] = 5 years T[Proof] = 10 years							SFF = 90%; HFT = 1; arcnitecture suitable for SiL 3		I [Proor] = 5 years	_					SFF = 89% ³ , HFT = 1; architecture suitable for SIL 3	g/cm³	T[Proof] = 5 years						SFF = 89% ^{3,} HFT = 1; architecture suitable for SiL 3			2003 of 59

L00-FTL325Px-01

exidence in dependable automation		T[Proof] = 10 years	PFD _{AVG} = 3,21E-05 DED - 1 10E 04							T[Proof] = 10 years	PFD _{AVG} = 2,82E-05	PFD _{AVG} = 1,05E-04						T[Proof] = 10 years	PFD _{AVG} = 3,61E-05	PFD _{AVG} = 1,68E-04						e+h 02-6-16 r015 v0 r1.0, August 21, 2003 Page 8 of 59
OX9	cm³	T[Proof] = 5 years	PFD _{AVG} = 1,99E-05 DED					3	čm³	T[Proof] = 5 years	PFD _{AVG} = 1,80E-05	PFD _{AVG} = 5,10E-05				ſ	°Ei	T[Proof] = 5 years	PFD _{AVG} = 2,32E-05	PFD _{AVG} = 7,43E-05					m	e+h 02-6-16 r0
	VF 8] with density 0,5 g/o	T[Proof] = 1 year	PFD _{AVG} = 1,03E-05 BED = - 1 03E 0E	DAVE - JOSE -				tecture suitable for SIL	4F 8] with density 0,7 g/c	T[Proof] = 1 year	PFD _{AVG} = 9,92E-06	PFD _{AVG} = 9,92E-06				lecture suitable for SIL	JF 9] with density 0,5 g/c	T[Proof] = 1 year	PFD _{AVG} = 1,33E-05	PFD _{AVG} = 1,33E-05					ecture suitable for SIL 3	
	Table 16: Summary for [CONF 8] with density 0,5 g/cm ³		With annual manual test		Asd = 1,50E-0/ 1/n	Asu = 0,20C-01 1/11	Add = 1,30E-09 1/N 3 - 4 67E 08 1/h	Adv = 4,01 E=00 1/11 SFF = 95%; HFT = 1; architecture suitable for SIL 3	Table 17: Summary for [CONF 8] with density 0,7 g/cm ³		With annual manual test	Without annual manual test	λ _{sd} = 1,56E-07 1/h	λ _{su} = 8,22E-07 1/h	λ _{dd} = 1,30E-09 1/h	λ _{du} = 4,50E-08 1/h SEF = 95%· HFT = 1· architecture suitable for SII_3	Table 18: Summary for [CONF 9] with density 0.5 g/cm ³		With annual manual test	Without annual manual test	λ _{sd} = 1,55E-07 1/h	λ _{su} = 8,47E-07 1/h	λ _{dd} = 1,30E-09 1/h	λ _{du} = 5,91E-08 1/h	SFF = 94%; HFT = 1; architecture suitable for SIL 3	© <i>evida.com</i> GmbH Stephan Åschenbrenner
0 M		ears	E-04	E-03						ars.	=-04	E-03						ears	≡-04	E-03						L00-FTL325F
D and		T[Proof] = 10 years	PFD _{AVG} = 4,56E-04	PFD _{AVG} = 1,75E-03						TIProofi = 10 vears	PFD _{ave} = 6.34E-04	PFD _{AVG} = 2,05E-03						T[Proof] = 10 years	PFD _{AVG} = 5,58E-04	PFD _{AVG} = 1,97E-03						e+h 02-6-16 r015 v0 r1 0, August 21, 2003 Page 7 of 59
exida.com		·																		-						.+h 02-6-16 rt
excellence in depende	cm³	T[Proof] = 5 years	PFD _{AVG} = 3,00E-04	PFD _{AVG} = 8,73E-04				2	cm³	TIProof] = 5 vears	PED ₁₀₀ = 3.96E-04	PFD _{AVG} = 1,02E-03				c	۲ سع	T[Proof] = 5 years	PFD _{AVG} = 3,57E-04	PFD _{AVG} = 9,84E-04					7	φ
excellence in depende	Table 13: Summary for [CONF 6] with density 0,7 g/cm ³	_	PFD _{AVG} = 1,75E-04 PFD _{AVG} = 3,00E-04	PFD _{AVG} = 1,75E-04 PFD _{AVG} = 8,73E-04				λ _{4u} = 3,99E-08 1/h SFF = 95%: HFT = 0: architecture suitable for SIL 2	Table 14: Summarv for ICONF 71 with density 0.5 q/cm ³	TIProofi = 1 vear TIProofi = 5 vears							orr = 30.%; rir = - 0, a cuncedure surador of our z Table 15: Summary for ICONE 71 with density 0.7 alom ³	T[Proof] = 1 year T[Proof] = 5 years		PFD _{AVG} = 1,97E-04 PFD _{AVG} = 9,84E-0					SFF = 95%; HFT = 0; architecture suitable for SIL 2	0

Excelence in pependable automation	A user of Liquiphant M/S with PFM output FEL 57 and Nivotester FTL325P or FTL375P can utilize these failure rates in a probabilistic model of a safety instrumented function (SIF) to	determine suitability in part for safety instrumented system (SIS) usage in a particular satety integrity level (SIL). A full table of failure rates for different operating conditions is presented in	0.11 along with all assumptions.																								0H 6+h 02-6-16 r015 v0 r1.0, August 21, 2003 reiner Page 10 of 59
	A user of Liquutilize these f	determine suit integrity level	section 5.2 to																								© <i>exida.com</i> GmbH Stephan Aschenbrenner Stephan Aschenbrenner
Exida.com [®]		T[Proof] = 10 years	PFD _{AVG} = 3,19E-05 PFD _{AVG} = 1,62F-04	~					TID-010 - 40	PED = 5 33E-04	PFD _{AVG} = 1,82E-03							T[Proof] = 10 years	PFD _{AVG} = 4,56E-04	PFD _{AVG} = 1,75E-03						values are within the but do not fulfil the titer than or equal to the calculated PFD _{Avic} 2 of EC 61508-1 and be better than or equal	e+h 02-6-16 r015 v0 r1.0, August 21, 2003 Pane 9 of 59
AX6	cm³	T[Proof] = 5 years	PFD _{AVG} = 2,11E-05 PFD _{AVG} = 7,18E-05				c		J/CM [*]	PED = 3 385-04	PFD _{AVG} = 9,11E-04					2	j/cm³	T[Proof] = 5 years	PFD _{AVG} = 3,00E-04	PFD _{AVG} = 8,73E-04					2	the calculated PFD _{Aves} able 2 of IEC 61508-1 is range, i.e. to be be teen (e+h 02-6-16 r0
	NF 9] with density 0,7 g/	T[Proof] = 1 year	PFD _{AVG} = 1,29E-05 PFD _{AVG} = 1,29E-05					intecture suitable for SIL	WF 10] WITH GENSITY U,5 (PED = 1 82E-04	PFD _{AVG} = 1,82E-04					itecture suitable for SIL	NF 10] with density 0,7 g	T[Proof] = 1 year		PFD _{AVG} = 1,75E-04					itecture suitable for SIL	Ilow (□) mean that r SIL 3 according to t more than 35% of th more than 35% of th the boxes marked in gr red range for SIL 2 or 5 inot claim more than 35 inot claim more than 35	
	Table 19: Summary for [CONF 9] with density 0,7 g/cm ³		With annual manual test Without annual manual test	λ _{sd} = 1,55E-07 1/h	λ _{su} = 8,49E-07 1/h	λ _{dd} = 1,30E-09 1/h	$\lambda_{du} = 5,74E-08 1/h$	SFF = 94%; HFT = 1; architecture suitable for SIL 3		With annual manual test	Without annual manual test	λ _{sd} = 1,56E-07 1/h	$\lambda_{su} = 7,66E-07 1/h$	λ _{dd} = 1,30E-09 1/h	λ _{du} = 4,16E-08 1/h	SFF = 95%; HFT = 0; architecture suitable for SIL 2	Table 21: Summary for [CONF 10] with density 0,7 g/cm ³		With annual manual test	Without annual manual test	λ _{sd} = 1,56E-07 1/h	λ _{su} = 7,68E-07 1/h	λ _{dd} = 1,30E-09 1/h	λ _{du} = 3,99E-08 1/h	SFF = 95%; HFT = 0; architecture suitable for SIL 2	The boxes marked in yellow (\blacksquare) mean that the calculated PFD _{AvG} values are within the allowed range for SIL2 or SIL 3 according to table 2 of IEC 61508-1 but do not fulfill the requirement to not claim more than 35% of this range, i.e. to be better than or equal to 3,50E-03 or 3,50E-04. The boxes marked in green (\blacksquare) mean that the calculated PFD _{AvG} values are within the allowed range for SIL 2 or SIL 3 according to table 2 of IEC 61508-1 and do fulfill the requirement to not claim more than 35% of this range, i.e. to be better than or equal to 3,50E-03 or 3,50E-04.	© exida.com GmbH Stenhan Aschenbrenner

International Head Quarter

Endress+Hauser GmbH+Co. KG Instruments International Colmarer Str. 6 79576 Weil am Rhein Deutschland

Tel. +49 76 21 9 75 02 Fax +49 76 21 9 75 34 5 www.endress.com info@ii.endress.com

People for Process Automation

