

Handbuch zur Funktionalen Sicherheit

Liquiphant M/S mit Elektronikeinsatz FEL57 + Nivotester FTL325P

Grenzstand-Messsystem

Anwendungsbereich

Überfüllsicherung bzw. betriebliche Maximumdetektion von Flüssigkeiten aller Art in Behältern, welche den besonderen Anforderungen der Sicherheitstechnik nach IEC 61508 genügen sollen.

Die Messeinrichtung erfüllt die Anforderungen

- für Sicherheitsfunktionen bis SIL 3
- an Explosionsschutz durch Eigensicherheit
- an elektromagnetische Verträglichkeit nach EN 61326 und NAMUR-Empfehlung NE 21.

Inhalt

■ Seite 3 bis 18

Handbuch zur Funktionalen Sicherheit

- Zertifiziert durch den TÜV Rheinland/Berlin Brandenburg TÜV Anlagetechnik GmbH Automation, Software und Informationstechnologie nach IEC 61508
- Seite 19 bis 40

Handbuch zur Funktionalen Sicherheit

 unabhängig beurteilt (Functional Assessment) durch exida nach IEC 61508

TÜV Zertifikat

Berlin-Brandenburg

TÜV Anlagentechnik GmbH Automation, Software und Informationstechnologie

ZERTIFIKAT CERTIFICATE

Nr./No. 968/EL 133.01/01

Prüfgegenstand Product tested	Grenzstand-Mess-Sys Nivotester FTL325P m Liquiphant M/S+FEL5	t /	Hersteller Manufacturer	Endress + Hauser GmbH + Co. Hauptstraße 1 D-79689 Maulburg
Typbezeichnung Type designation	Vibrationsgrenzschal Liquiphant M/S+FEL5 mit Auswertegerät Nivotester FTL325P, Geräte-Typen und Einstellungen nach Safety Manual		Verwendungs- zweck Intended application	Maximum-Detektion von Flüssigkeiten in Sicherheits- anwendungen in Schutz- systemen bis SIL 2/AK 4 bzw. SIL 3/AK 5 - 6
Prüfgrundlagen Codes and standa the basis of testing		DIN V 19250 DIN V VDE 0 EN 61131-2/ EN 50178/19	9801/1990 + A1/1 1994	1994
Prüfungsergebnis Test results		Verwendbar für sicherheitsrelevante Anwendungen bis einschließlich SIL 3/AK 6 entsprechend den Ergebnissen des Prüfberichtes Nr. 968/EL 133.00/01 vom 2001-04-30, Unter Beachtung der Anweisungen im Safety Manual SD 111F/00//09.01 werden die Anforderungen der Prüfgrundlagen erfüllt.		
			ty Manuals SD 111F/00//09.01 für nd Wartung müssen beachtet	

Die Prüfberichte Nr. 968/EL 133.00/01 vom 2001-04-30 und Nr. 968/EL 133.01/01 vom 2001-11-28 sind Bestandteile dieses Zertifikates. Dieses Zertifikat ist nur gültig für Erzeugnisse, die mit dem Prüfgegenstand übereinstimmen. Es wird ungültig bei jeglicher Änderung der Prüfgrundlagen für den angegebenen Verwendungszweck.

The test reports No. 968/EL 133.00/01 dated 2001-04-30 and No. 968/EL 133.01/01 dated 2001-11-28 are integral parts of this certificate. This certificate is valid only for products which are identical with the product tested. It becomes invalid at any change of the codes and standards forming the basis of testing for the intended application.

TÜV Anlagentechnik GmbH Geschäftsfeld ASI

Automation, Software und Informationstechnologie

Am Grauen Stein, 51105 Köln Postfach 91 09 51, 51101 Köln

2001-11-28 Postfach 91 09 51, 51101 Kö

Datum/Date Firmenstempel/Company seal

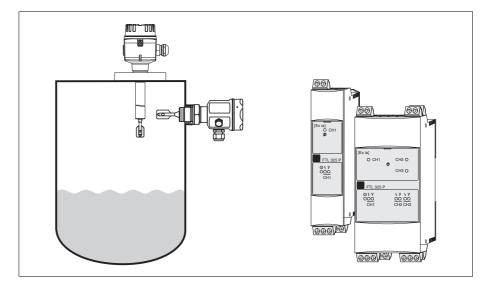
Unterschrift/Signature

10/102 BB neutral 4 98

CILOCOO

Grenzstand-Mess-System liquiphant M/S + nivotester FTL 325 P

Handbuch zur Funktionalen Sicherheit



Einsatzbereiche

Überfüllsicherung bzw. betriebliche Maximumdetektion von Flüssigkeiten aller Art in Behältern oder Rohrleitungen, welche den besonderen Anforderungen der Sicherheitstechnik nach IEC 61508 bzw. DIN V 19250 genügen sollen.

Die Messeinrichtung erfüllt die Anforderungen

- an funktionale Sicherheit gemäß IEC 61508 bzw. DIN V 19250
- an Explosionsschutz durch Eigensicherheit
- an elektromagnetische Verträglichkeit nach NAMUR-Empfehlungen.

Vorteile auf einen Blick

- Für Überfüllsicherungen bis SIL 2/AK 4, in redundanter Ausführung bis SIL 3/AK 5&6
 - Zertifiziert durch den TÜV Rheinland/ Berlin Brandenburg TÜV Anlagetechnik GmbH Automation, Software und Informationstechnologie nach IEC 61508
- Permanente Selbstüberwachung
- Keinerlei Abgleich
- Fremdvibrationssicher durch optimierten Antrieb
- Platzsparendes Schaltgerät
- Prüfung des Mess-Systems per Knopfdruck
- Störsicherheit durch PFM-Technologie

Inhaltsverzeichnis

Allgemeines

Begriffe und Standards

Allgemeine Darstellung eines Sicherheitssystems (Schutzfunktion)

Auslegungstabellen zur Bestimmung des Safety Integrity Levels (SIL)

Sensorik des Sicherheitssystems mit Liquiphant M/S beschichtet oder nicht und Liquiphant S mit Elektronikeinsatz FEL 57 und

Nivotester FTL 325 P

Mess-System

Sicherheitsfunktion

Zulässige Kombinationen des Nivotesters mit dem Liquiphant M/S für die

Sicherheitsfunktion

Angaben für die Sicherheitsfunktion

Mitgeltende Gerätedokumentation

Einstellungen und Installationshinweise

Verhalten im Betrieb und bei Störung

Wiederkehrende Prüfungen des Mess-Systems

Anhang

Spezifische Werte und Verschaltungsarten für das Mess-System Liquiphant M/S (FEL 57) und Nivotester FTL 325 P

Allgemeines

Begriffe und Standards

Abkürzungen

PFD	Probability of dangerous Failure on Demand	Gefährlich Versagenswahrscheinlichkeit bei Anforderung
PFD _{av}	Probability (average) of a dangerous Failure on Demand	Durchschnittliche gefährlich Versagens- wahrscheinlichkeit bei Anforderung
SIL	Safety Integrity Level	Sicherheits-Integritätslevel
	Discrete level (one out of possible four) for specifying the safety integrity requirements of the safety functions to be allocated to the E/E/PE safety related systems where safety integrity level 4 has the highest level of safety integrity and safety integrity level 1 has the lowest	Diskrete Stufe (eine von vier möglichen) zur Spezifizierung der Sicherheitsanforderung für die Integrität der Sicherheitsfunktionen, die dem E/E/PE sicherheitsbezogenen System zugeordnet werden, wobei der Safety-Integritätslevel 4 die höchste Stufe der Sicherheitsintegrität und der Safety-Integritätslevel 1 die niedrigste hat
HFT	Hardware Fault Tolerance	Hardware Fehlertoleranz
	Ability of a functional unit (hardware) to continue to perform a required function in the presence of faults or errors	Fähigkeit einer Funktionseinheit, eine gefor- derte Funktion bei Bestehen von Fehlern oder Abweichungen weiter auszuführen
SFF	Safe Failure Fraction	Anteil sicherheitsgerichteter Fehler
	Fraction of failure which do not have the potential to put the safety-related system in a hazardous or fail-to-function state	Anteil von Ausfällen ohne Potential, das sicherheitsbezogene System in einen gefährlichen oder unzulässigen Funktions- zustand zu setzen
CCF, CC	Common Cause Failure	Ausfall infolge gemeinsamer Ursache
	Failure which is the result of one or more events causing coincident failures of two or more separate channels in a multiple channel system, leading to system failure	Ausfall, der das Ergebnis eines oder mehre- rer Ereignisse ist, die gleichzeitige Ausfälle von zwei oder mehreren getrennten Kanälen in einem mehrkanaligen System verursa- chen und zu einem Systemausfall führen
E/E/PE	Electrical / Electronic / Programmable Electronic System	Elektrisch / elektronisch / programmierbar elektronisches System
XooY	"x out of y" Voting (e.g. 2003)	Auswahlschaltung: X out of Y (z.B. Auswertung 2 aus 3 : 2003)
MTTR	"x out of y" Voting (e.g. 2003)	
MTBF	Mean Time between Failure	
ТІ	Test Interval between life testing of the protection function (in years)	Prüfintervall zwischen Funkionstests der Schutzfunktion (in Jahren)

Tab. 1: Definitionen aus IEC 61508 Teil 4

Relevante Normen

IEC 61508 Part 1-7	Functional safety of programmable electronic safety-related systems (Target group: Manufacturers & Suppliers of Devices)	
IEC 61511 Part 1-3 Draft	Functional safety instrumented systems for the process industry sector. (Target group: Safety Instrumented Systems Designers, Integrators & Users)	
DIN V VDE 0801 A1	Principles for computers in safety-related systems (including Amendment A1)	Grundsätze für Rechner in Systemen mit Sicherheitsaufgaben
DIN V 19250	Fundamental safety aspects for measurement and control equipment	Grundlegende Sicherheitsbetrachtungen für MSR-Schutzeinrichtungen

Tab. 2: Relevante Normen

Begriffe

Sicherheitssystem	Gesamte sicherheitsrelevante Messkette (Schutzfunktion)	
Sicherheitsfunktion	Definierte Funktion, die das System auf Anforderung ausführt	

Tab. 3: Begriffe

Allgemeine Darstellung eines Sicherheitssystems (Schutzfunktion)

Auslegungstabellen zur Bestimmung des Safety Integrity Levels (SIL)

Mit den nachfolgenden Tabellen wird der erreichbare SIL bzw. die Anforderungen bezüglich der "Durchschnittlichen gefährlichen Versagenswahrscheinlichkeit bei Anforderung" (PFD_{av}), der "Hardware Fehlertoleranz" (HFT) und dem "Anteil sicherheitsgerichteter Fehler" (SFF) an das Sicherheitssystem bestimmt. Die spezifischen Werte für das Mess-System Liquiphant M/S (FEL 57) und Nivotester FTL 325 P finden Sie in den Tabellen im Anhang.

Zusammenhang zwischen der Anforderungsklasse (AK) nach DIN V 19250 und dem Safety Integrity Level (SIL) nach IEC 61508:

Anforderungsklasse AK (DIN V 19250)		Safety Integrity Level SIL (IEC 61508)
1		-
2 & 3	\Rightarrow	1
4	\Rightarrow	2
5 & 6	\Rightarrow	3
7 & 8	\Rightarrow	4

Tab. 4: Zusammenhang zwischen AK und SIL

Zulässige Versagenswahrscheinlichkeiten des gesamten Sicherheitssystems in Abhängigkeit vom SIL für Systeme, die auf Anforderungen (z.B. Bedecktmeldung des Sensors) reagieren müssen.

SIL	PFD _{av}
4	≥ 10 ⁻⁵ < 10 ⁻⁴
3	≥ 10 ⁻⁴ < 10 ⁻³
2	≥ 10 ⁻³ < 10 ⁻²
1	≥ 10 ⁻² < 10 ⁻¹

Tab. 5: Zulässige Versagenswahrscheinlichkeiten (Quelle: IEC 61508, Teil1)

Die Bereiche des PFD_{av} teilen sich im allgemeinen für das gesamte Sicherheitssystem wie folgt auf:

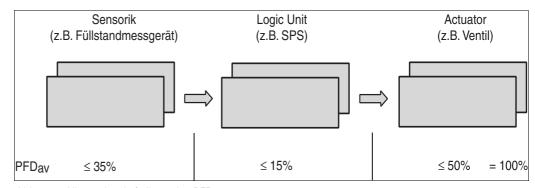


Abb. 1: Allgemeine Aufteilung des PFD_{av}

Die nachfolgende Tabelle zeigt den erreichbaren Safety Integrity Level (SIL) abhängig vom Anteil sicherheitsgerichteter Fehler und der Hardware-Fehlertoleranz des gesamten Sicherheitssystems für Systeme vom Typ B (komplexe Bauelemente, Definition siehe IEC 61508, Teil 2):

SFF	HFT			
	0	1	2	
none: < 60 %	not allowed	SIL 1	SIL 2	
low: 60 %< 90 %	SIL 1	SIL 2	SIL 3	
medium: 90 %< 99 %	SIL 2	SIL 3	SIL 4	
high: ≥ 99 %	SIL 3	SIL 4	SIL 4	

Tab. 6: Erreichbarer SIL (Quelle: IEC 61508, Teil 2)

Sensorik des Mess-Systems mit Liquiphant M/S (FEL 57) und Nivotester FTL 325 P

Grenzstand-Mess-System

In der Abb. 2 sind die Geräte des Mess-Systems dargestellt.

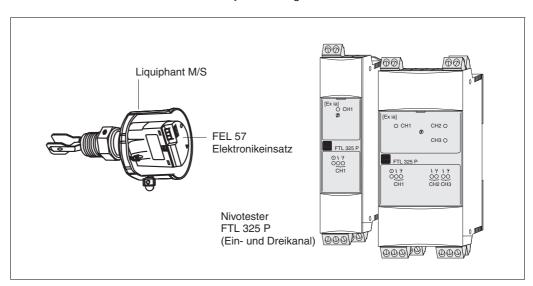


Abb. 2: Geräte des Mess-Systems (beispielhaft)

Sicherheitsfunktion

Die Sicherheitsfunktion gilt für alle Einstellungen in MAX-Sicherheit (Überwachung des Bedecktzustandes) und Verwendung der Schließerkontakte der Füllstandrelais.

Für die Sicherheitsfunktion sind folgende Einstellungen zugelassen:

Gerät	Einstellung	Auslieferzustand
Liquiphant	Dichteschalter-Stellung: 0,5 Dichteschalter-Stellung: 0,7	Dichteschalter-Stellung: 0,7
	Prüfmodus "STD" Prüfmodus "EXT"	Prüfmodus "STD"
Nivotester FTL325P-#3#3	MAX-Sicherheit	MAX-Sicherheit
	Alle Einstellungen außer "AS-Funktion" (siehe Kap. Einstellungen und Installationshinweise)	Dreikanalbetrieb
Nivotester	MAX-Sicherheit	MAX-Sicherheit
FTL325P-#1#1		Einkanalbetrieb

Tab. 7: Einstellungen

Die Einstellung MAX-Sicherheit bewirkt, daß das Füllstandrelais immer in Ruhestromsicherheit arbeitet; d.h. das Relais fällt ab, wenn:

- der Schaltpunkt überschritten wird (Füllstand übersteigt die Ansprechhöhe)
- eine Störung eintritt
- die Netzspannung ausfällt

Zusätzlich zum Füllstandrelais arbeitet das Störmelderelais (Alarmrelais) in Ruhestromsicherheit und fällt ab, wenn:

- eine der folgenden Störungen eintritt:
 - Unterbrechung der Sensorleitung
 - Kurzschluss der Sensorleitung
 - Korrosionsalarm des Sensors
- die Netzspannung ausfällt

Hinweis!

• Mit dem Störmelderelais fällt immer auch das Füllstandrelais ab.

Zulässige Kombinationen des Nivotesters mit dem Liquiphant M/S für die Sicherheitsfunktion

Folgende Kombinationen sind für das Mess-System zulässig:

Nivotester		Liquiphant M + (FEL 57)	Liquiphant S + (FEL 57)
Einkanal-Gerät	Dreikanal-Gerät		
FTL 325 P-H### FTL 325 P-P### FTL 325 P-T###	FTL 325 P-H### FTL 325 P-P### FTL 325 P-T###	FTL 50-#####7###* FTL 51-#####7###* FTL 50 H-#####7###* FTL 51 H-#####7###* FTL 51 C-#####7###*	FTL 70-######7####* FTL 71-######7####*

Tab. 8: Zulässige Gerätetypen (# = alle Geräteausprägung zulässig); *7 = FEL 57

Angaben für die Sicherheitsfunktion

Die **verbindlichen Einstellungen** und Angaben für die Sicherheitsfunktion gehen aus dem **ANHANG** hervor.

Die Reaktionszeit des Mess-Systems beträgt ≤ 0,9s.

Hinweis!

• MTTR wird mit 8 Stunden angesetzt.

Sicherheitssysteme ohne selbstverrieglende Funktion müssen nach Ausfürhrung der Sicherheitsfunktion innerhalb MTTR in einen überwachten oder anderweitig sicheren Zustand gebracht werden.

Mitgeltende Gerätedokumentation

Für das Mess-System müssen folgende Dokumentationen vorhanden sein:

	Technische Information	Betriebsanleitung
Nivotester FTL 325 P	Für alle Gerätetypen:	Einkanal-Gerät FTL 325 P-#1#1: KA 167F
	TI 350F	Dreikanal-Gerät FTL 325 P-#3#3: KA 168F
Liquiphant M	Typen:	Typen: FTL 50, FTL 51: KA 143F
	FTL 50, FTL 51, FTL 50 H, FTL 51 H: TI 328F	Typen: FTL 50, FTL 51: KA 163F (mit Gehäuse Alu/separatem Anschlussraum)
		Typen: FTL 50 H, FTL 51 H: KA 144F
		Typen: FTL 50 H, FTL 51 H: KA 164F (mit Gehäuse Alu/separatem Anschlussraum)
	Typ: FTL 51 C: TI 347F	Тур: FTL 51 С: КА 162 F
		Typ: FTL 51 C: KA 165F (mit Gehäuse Alu/separatem Anschlussraum)
Liquiphant S	Für alle Gerätetypen:	Typen: FTL 70, FTL 71: KA 172F
	TI 354F	Typen: FTL 70, FTL 71: KA 173F (mit Gehäuse Alu/separatem Anschlussraum)
Relevanter Inhalt	Anschlusswerte, Installations- hinweise	Einstellung, Konfiguration, Hinweise, Funktionstests

Tab. 9: Mitgeltende Dokumentationen

Einstellungen und Installationshinweise

Die Umgebungsbedingungen für den Nivotester FTL 325 P müssen der Schutzklasse IP54 (gemäß EN 60529) entsprechen.

Die Anleitung zur Einstellungen der Geräte finden Sie in den folgenden Dokumentationen:

Gerät	Beschreibung der Einstellung in Dokumentation:
Liquiphant M/S (FEL 57)	KA 143F, KA 163F, KA 144F, KA 164F, KA 162F, KA 165F, KA 172F, KA 173F, *
Nivotester FTL 325 P-#1#1	KA 167F
Nivotester FTL 325 P-#3#3	KA 168F

Tab. 10: Gerätedokumentationen (* abhängig vom Typ, siehe Tab. 9)

Einstellungen Liquiphant M/S (FEL 57):

- Die **Einstellung des Dichteschalters** hat Einfluß auf die Versagenswahrscheinlichkeit und die Art des Funktionstests (bitte entnehmen Sie die Details aus dem ANHANG).
- Die Einstellung des Prüfmodus hat Einfluss auf den Funktionstest (bitte entnehmen Sie die Details aus Tabelle 13)

Einstellungen Nivotester FTL 325 P-#3#3 (Dreikanal-Version):

Einstellung	Beschreibung	Achtung!
СН2 Б 3	Kanal 2+3 in Delta-S-Funktion	DIESE EINSTELLUNG IST NICHT FÜR DIE SICHERHEITSFUNKTION ZUGELASSEN
	Kanal 1 unabhängig	Kanal 1 ist für die Sicherheitsfunktion zugelassen
CH1 PARA AS CH3 PARA AS	Kanal 2+3 in Delta-S-Funktion	KANAL 2 UND 3 SIND IN DIESER EINSTELLUNG NICHT FÜR DIE SICHERHEITSFUNKTION ZUGELASSEN

Tab. 11: Einstellungen des Nivotesters

Achtung!

Für den Nivotester FTL 325 P-#### ist folgendes zu beachten:

Durch geeignete Maßnahmen (z.B. Strombegrenzer, Sicherung) muss der Betreiber sicherstellen, daß die zulässigen Kontaktkennwerte der Relais von:

- U ≤ 253 V AC 50/60 Hz , I ≤ 2 A, P ≤ 500 VA bei cos $\phi \geq 0.7$ bzw.
- U \leq 40 V DC, I \leq 2 A, P \leq 80 W

nicht überschritten werden.

Achtung!

Änderungen des Mess-System und seiner Einstellungen nach Inbetriebnahme können die Schutzfunktion beeinträchtigen!

Verhalten im Betrieb und bei Störung

Das Verhalten im Betrieb und bei Störung wird in den folgenden Dokumentationen beschrieben

Gerät	Beschreibung in Dokumentation:
Liquiphant M/S (FEL 57)	KA 143F, KA 163F, KA 144F, KA 164F, KA 162F, KA 165F, KA 172F, KA 173F, *
Nivotester FTL 325 P-#1#1	KA 167F
Nivotester FTL 325 P-#3#3	KA 168F

Tab. 12: Gerätedokumentationen

Wiederkehrende Prüfungen des Mess-Systems

Das Mess-System ist wie folgt zu überprüfen:

Liquipha	ant M/S	Nivotester	Prüfung	
Einstellung Dichte-Schalter	Einstellung Prüfmodus	Einstellung	Prüfintervall	Beschreibung des Prüfablaufs
Einstellung 0,7	STD oder EXT	Jede zulässige Einstellung und Störungs- meldung CH1 -> ON, wenn Kanal 1 mit einem Sensor verbunden ist	Jährlicher Funktionstest	KA 167F KA 168F
Einstellung 0,5	STD oder EXT	Jede zulässige Einstellung und Störungs- meldung CH1 -> ON, wenn Kanal 1 mit einem Sensor verbun- den ist	Jährlicher Funktionstest und vollständiger Test: Überprüfung der Bedeckt- meldung, z.B. durch Anfahren des Füllstandes, spätestens nach 5 Jahren	

Tab. 13: Wiederkehrende Prüfungen

Achtung!

Für den Funktionstest sind folgende Punkte zu beachten:

- Durch Drücken der jeweiligen Prüftaste muß jeder Kanal einzeln getestet werden.
- Das Schalten der Relaiskontakte muß elektrisch, z.B. mit Handmultimeter an den Klemmen, überprüft werden.
- Bei mehrkanaligen Geräten müssen alle Kanäle, die keine Sicherheitsfunktion ausführen, in die Wiederkehrende Prüfung miteinbezogen werden, wenn eine fehlerhafte Funktion nicht anderweitig erkannt werden kann, z.B. mit unabhängigen Schutzmaßnahmen oder durch Änderung des Verhaltens der Mess-Stelle.
- Als positives Prüfergebnis muß die Systemreaktion der genannten Beschreibung entsprechen.
- Wenn die Systemreaktion nicht dem beschriebenen Ablauf entspricht, muss der überwachte Prozess durch zusätzliche oder andere Maßnahmen in einen sicheren Zustand gebracht und/oder im sicheren Zustand gehalten werden, bis eine Instandsetzung des Sicherheitssystems erfolgt ist.

^{(*} abhängig vom Typ, siehe Tab. 9)

ANHANG

Spezifische Werte und Verschaltungsarten für das Mess-System Liquiphant M/S (FEL 57) und Nivotester FTL 325 P Die Tabellen zeigen die spezifischen Werte und Verschaltungsarten für das Mess-System.

Hinweis!

Zu den nachfolgenden Tabellen sind folgende Punkte zu beachten:

- Die Werte PFD_{av} beinhalten bei mehrkanaligen Systemen bereits Common Cause-Fehler für die jeweilige Verschaltung.
- Die Werte PFD_{av} gelten nur für die jeweils zugehörige Verschaltung. Sie sind nicht dazu geeignet, Berechnungen für andere Verschaltungen abzuleiten.
 Insbesondere die Verwendung der Öffnerkontakte an Stelle der Schließerkontakte bedarf einer erweiterten Betrachtung der Installationsmittel.
- Die Verschaltung zeigt die Anzahl der Geräte (Liquiphant und Nivotester) und die Schaltung der Kontakte der Grenzstandrelais (öffnen, wenn Sensor bedeckt meldet).
- Bei mehreren Geräten in einer Verschaltung, weisen alle die gleichen gezeigten Einstellungen auf

Auswahlschaltung: 1001		
Liquiphant-Einstellung	Dichte 0,7	Dichte 0,5
Nivotester FTL 325 P-#1#1 - Einstellung (Einkanal-Gerät)	MAX	MAX
SIL / AK	SIL 2 / AK 4	SIL 2 / AK 4
HFT	0	0
SFF	> 90 %	> 90 %
PFDav	< 0,15 x 10 ⁻²	< 0,20 x 10 ⁻²
Verschaltung	EMERICH1 [/]	CH1 [/]
	CH1: ,,	CH1: ,,
Funktionstest mit Prüftaster	jährlich	jährlich
Vollständiger Funktionstest durch z.B. Anfahren des Füllstandes	innerhalb der normalen Lebensdauer nicht erforderlich	mindestens alle 5 Jahre

Auswahlschaltung: 1001		
Liquiphant-Einstellung	Dichte 0,7	Dichte 0,5
Nivotester FTL 325 P-#3#3- Einstellung (Dreikanal-Gerät)	MAX	MAX
SIL / AK	SIL 2 / AK 4	SIL 2 / AK 4
HFT	0	0
SFF	> 90 %	> 90 %
PFDav	< 0,15 x 10 ⁻²	< 0,20 x 10 ⁻²
Verschaltung	CH1 [/] CH2 [/] CH3 [/]	CH1
	CH2 bzw. CH3 :	CH2 bzw. CH3 : ,,
Funktionstest mit Prüftaster	jährlich	jährlich
Vollständiger Funktionstest durch z.B. Anfahren des Füllstandes	innerhalb der normalen Lebens- dauer nicht erforderlich	mindestens alle 5 Jahre

Auswahlschaltung: 1001		
Liquiphant -Einstellung	Dichte 0,7	Dichte 0,5
Nivotester FTL 325 P-#3#3- Einstellung (Dreikanal-Gerät)	CH1 FACE MAX CH2 FACE AS CH3 FACE AS	CH1 AS MAX
SIL / AK	SIL 2 / AK 4	SIL 2 / AK 4
HFT	0	0
SFF	> 90 %	> 90 %
PFDav	< 0,15 x 10 ⁻²	< 0,20 x 10 ⁻²
Verschaltung	CH1 [/] CH2 [/] CH3 [/]	CH1
	CH1: ,,	CH1: ,,
Funktionstest mit Prüftaster	jährlich	jährlich
Vollständiger Funktionstest durch z.B. Anfahren des Füllstandes	innerhalb der normalen Lebens- dauer nicht erforderlich	mindestens alle 5 Jahre

Auswahlschaltung: 1002		
Liquiphant-Einstellung	Dichte 0,7	Dichte 0,5
Nivotester FTL 325 P-#1#1- Einstellung (Einkanal-Gerät)	MAX	MAX
SIL / AK	SIL 3 / AK 5&6	SIL 3 / AK 5&6
HFT	1	1
SFF	> 90 %	> 90 %
PFDav	< 0,10 x 10 ⁻³	< 0,15 x 10 ⁻³
Verschaltung	CH1 [/]	►NE CH1 Г∕Л
	CH1 ┌∕┐	CH1 [/]
	CH1 + CH1 :	CH1 + CH1 : , __
Funktionstest mit Prüftaster	jährlich	jährlich
Vollständiger Funktionstest durch z.B. Anfahren des Füllstandes	innerhalb der normalen Lebens- dauer nicht erforderlich	mindestens alle 5 Jahre

Auswahlschaltung: 1002		
Liquiphant -Einstellung	Dichte 0,7	Dichte 0,5
Nivotester FTL 325 P-#3#3- Einstellung (Dreikanal-Gerät)	MAX	MAX
SIL / AK	SIL 3 / AK 5&6	SIL 3 / AK 5&6
HFT	1	1
SFF	> 90 %	> 90 %
PFDav	< 0,10 x 10 ⁻³	< 0,15 x 10 ⁻³
Verschaltung	CH1 [/] CH2 [/] CH3 [/] CH1 [/] CH3 [/] CH3 [/]	CH1
	CH2 + CH2 bzw. CH3 + CH3:	CH2 + CH2 bzw. CH3 + CH3:
Funktionstest mit Prüftaster	jährlich	jährlich
Vollständiger Funktionstest durch z.B. Anfahren des Füllstandes	innerhalb der normalen Lebens- dauer nicht erforderlich	mindestens alle 5 Jahre

Auswahlschaltung: 1002		
Liquiphant -Einstellung	Dichte 0,7	Dichte 0,5
Nivotester FTL 325 P-#3#3 -Einstellung (Dreikanal-Gerät)	MAX	MAX
SIL / AK	SIL 3 / AK 5&6	SIL 3 / AK 5&6
HFT	1	1
SFF	> 90 %	> 90 %
PFDav	< 0,10 x 10 ⁻³	< 0,15 x 10 ⁻³
Verschaltung	CH1 [/] CH2 [/] CH3 [/]	CH1 [/] CH2 [/] CH3 [/]
	CH1 + CH2 bzw. CH1 + CH3:	CH1 + CH2 bzw. CH1 + CH3:
Funktionstest mit Prüftaster	jährlich	jährlich
Vollständiger Funktionstest durch z.B. Anfahren des Füllstandes	innerhalb der normalen Lebens- dauer nicht erforderlich	mindestens alle 5 Jahre

Auswahlschaltung: 2003		
Liquiphant- Einstellung	Dichte 0,7	Dichte 0,5
Nivotester FTL 325 P-#3#3- Einstellung (Dreikanal-Gerät)	MAX	MAX
SIL / AK	SIL 3 / AK 5&6	SIL 3 / AK 5&6
HFT	1	1
SFF	> 90 %	> 90 %
PFDav	< 0,10 x 10 ⁻³	< 0,15 x 10 ⁻³
Verschaltung	CH1 [/] CH2 [/] CH3 [/] CH4 [/] CH4 [/] CH5 [/	CH1 [/] CH2 [/] CH3 [/
Fordering to the state of the s	B C A	B C A
Funktionstest mit Prüftaster	jährlich	jährlich
Vollständiger Funktionstest durch z.B. Anfahren des Füllstandes	innerhalb der normalen Lebens- dauer nicht erforderlich	mindestens alle 5 Jahre

16

Notizen

Technische Änderungen vorbehalten

Deutschland Österreich Schweiz

Endress+Hauser Messtechnik GmbH+Co.

Techn. Büro Teltow Potsdamer Straße 12a 14513 Teltow Tel. (0 33 28) 43 58-0 Fax (0 33 28) 43 58-341 E-Maii: VertriebTeltow @de.endress.com

Techn. Büro Frankfurt Eschborner Landstr. 42 60489 Frankfurt Tel. (0 69) 9 78 85-0 Fax (0 69) 7 89 45 82 E-Mail: VertriebFrankfurt @de.endress.com Techn. Büro Hamburg Am Stadtrand 52 22047 Hamburg Tel. (0 40) 69 44 97-0 Fax (0 40) 69 44 97-150 E-Mail: VertriebHamburg @de.endress.com

Techn. Büro Stuttgart Mittlerer Pfad 4 70499 Stuttgart Tel. (0 711) 13 86-0 Fax (0 711) 13 86-222 E-Mail: VertriebStuttgart @de.endress.com Techn. Büro Hannover Misburger Straße 81B 30625 Hannover Tel. (0 511) 2 83 72-0 Fax (0 511) 2 83 72-333 E-Mail: VertriebHannover @de.endress.com

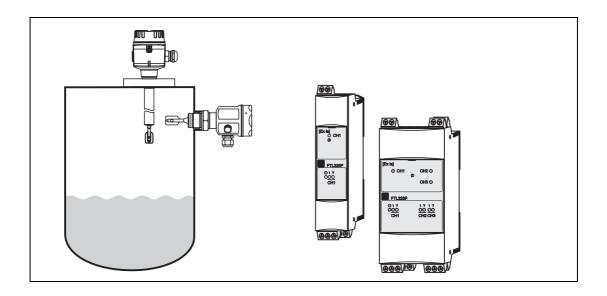
Techn. Büro München Stettiner Straße 5 82110 Germering Tel. (0 89) 8 40 09-0 Fe. (0 89) 8 40 09-133 E-Mail: VertriebMuenchen @de.endress.com Techn. Büro Ratingen Eisenhüttenstraße 12 40882 Ratingen Tel. (0 2102) 8 59-0 Fax (0 2102) 8 59-130 E-Mail: VertriebRatingen @de.endress.com

Ges.m.b.H.
Postfach 173
1235 Wien
Tel. (01) 8 80 56-0
Fax (01) 8 80 56-35
E-Mail:
info@at.endress.com
Internet:
www.at.endress.com

Endress+Hauser

Endress+Hauser AG Sternenhofstraße 21 4153 Reinach/BL 1 Tel. (0 61) 715 75 75 Fax (0 61) 711 16 50 E-Mail: info@ch.endress.com Internet: www.ch.endress.com

Vertriebszentrale Deutschland: Endress+Hauser Messtechnik GmbH+Co. • Postfach 2222 79574 Weil am Rhein • Tel. (0 7621) 975-01 • Fax (0 7621) 975-555 E-Mail: info@de.endress.com • Internet: www.de.endress.com



Handbuch zur Funktionalen Sicherheit

Liquiphant M/S mit Elektronikeinsatz FEL57 + Nivotester FTL325P

Grenzstand-Messsystem

Anwendungsbereich

Überfüllsicherung bzw. betriebliche Maximumdetektion von Flüssigkeiten aller Art in Behältern, welche den besonderen Anforderungen der Sicherheitstechnik nach IEC 61508 genügen sollen.

Die Messeinrichtung erfüllt die Anforderungen

- für Sicherheitsfunktionen bis SIL 3
- an Explosionsschutz durch Eigensicherheit
- an elektromagnetische Verträglichkeit nach EN 61326 und NAMUR-Empfehlung NE 21.

Ihre Vorteile

- Für Überfüllsicherungen bis SIL 2, in redundanter Ausführung bis SIL 3
 - unabhängig beurteilt (Functional Assessment) durch exida nach IEC 61508
- permanente Selbstüberwachung
- keinerlei Abgleich
- Fremdvibrationssicher
- einfache Inbetriebnahme
- platzsparendes Schaltgerät
- Prüfung des Messsystems per Knopfdruck
- Störsicherheit durch PFM-Technologie

Inhaltsverzeichnis

SIL Koniormitatserkiarung
Allgemeines
Aufbau des Messsystems mit Liquiphant M/S mit FEL57
+ Nivotester FTL325P
Sicherheitsfunktion
Einstellungen und Installationshinweise 6 Installationshinweise 6 Einstellungen Liquiphant M/S
mit FEL57
Verhalten im Betrieb und bei Störung8
Wiederkehrende Prüfung des Messsystems8
Ausfallraten elektrischer Bauteile
Anhang9
Spezifische Werte und Verschaltungsarten für das Messsystem Liquiphant M/S mit FEL57 und Nivotester FTL325P9
FMEDA Report15

Registration

SIL Konformitätserklärung

SIL-06002a/00/a2

SIL-Konformitätserklärung

Funktionale Sicherheit nach IEC 61508

SIL Declaration of Conformity

Functional safety according to IEC 61508

Endress+Hauser GmbH+Co. KG, Hauptstraße 1, 79689 Maulburg

erklärt als Hersteller, dass der Füllstandgrenzschalter für Flüssigkeiten declares as manufacturer, that the level limit switch for liquids

Liquiphant M FTL5x or Liquiphant S FTL7x + Electronic insert FEL57 and Nivotester FTL325P

für den Einsatz in Schutzeinrichtungen entsprechend der IEC 61508 geeignet ist, wenn das Handbuch

zur Funktionalen Sicherheit SD111F/00 und nachfolgende Kenngrößen beachtet werden: is suitable for the use in safety-instrumented systems \bar{a} according to IEC 61508, if the functional safety manual SD111F/00 and following characteristics are observed:

Gerät/Product	Liquiphant M or Liquiphant S	Liquiphant M or Liquiphant S
	+FEL57	+FEL57 and FTL325P 3)
Schutzfunktion/Safety Function	Überfüllsicherung/overfill protection	Überfüllsicherung/overfill protection
SIL	2	2
Prüfintervall/Proof test interval	≤ 1 Jahr/year	≤ 1 Jahr/year
Gerätetyp/Device type	В	В
HFT	0	0 (einkanalige Verwendung/single channel use)
SFF	94 %	95%
PFD _{avg} 1)	0,01x10-2	0,02x10-2
λ_{du}	30 FIT	45 FIT
λ_{dd}	1,3 FIT	1,3 FIT
λ_{su}	426 FIT	822 FIT
λ_{sd}	138 FIT	153 FIT
MTBF _{tot} ²⁾	190 Jahre/years	106 Jahre/years

¹⁾ Die Werte entsprechen SIL 2 nach ISA S84.01 / The values comply with SIL 2 according to ISA S84.01 ²⁾ gemäß Siemens SN29500, einschließlich Fehlern, die außerhalb der Sicherheitsfunktion liegen/

according to Siemens SN29500, including faults outside the safety function

Maulburg, 03.03.2006

Endress+Hauser GmbH+Co. KG

Leitung Zertifizierungsstelle Management Certification Department

Leitung Entwicklungsprojekt Management R&D Project

Endress+Hauser

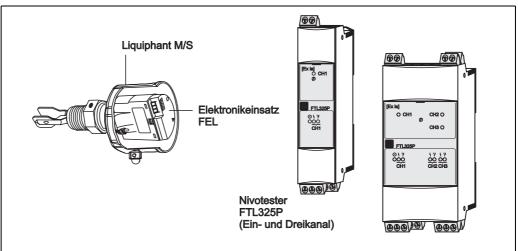
Endress + Hauser

21

³¹ Die Kenngrößen beziehen sich auf alle im Anhang der SD111F/00 dargestellten Konfigurationen und zeigen je Kenngröße den ungünstigsten Wert.

This characteristics are referring to all configurations shown in the appendix of SD111F/00 and are showing the worst value of each characteristic

Allgemeines


Hinweis!

Allgemeine Informationen über Funktionale Sicherheit (SIL) erhalten Sie unter: www.de.endress.com/SIL und in der Kompetenzbroschüre CP002Z "Funktionalen Sicherheit in der Prozess-Instrumentierung zur Risikoreduzierung"

Aufbau des Messsystems mit Liquiphant M/S mit FEL57 + Nivotester FTL325P

Grenzstand-Messsystem

In der folgenden Abbildung ist das Messsystem dargestellt (beispielhaft).

L00-FTL325Px-16-06-xx-de-000

Sicherheitsfunktion

Das sicherheitsbezogene Signal des Messsystems ist das Füllstandrelais des Nivotesters. Alle Sicherheitsfunktionen beziehen sich ausschließlich auf dieses Signal.

Die Sicherheitsfunktion gilt für Einstellungen in MAX-Sicherheit (Überwachung des Bedecktzustandes) und Verwendung der Schließerkontakte der Füllstandrelais.

Die Einstellung MAX-Sicherheit bewirkt, dass das Füllstandrelais immer in Ruhestromsicherheit arbeitet; d.h. das Relais öffnet, wenn:

- der Schaltpunkt überschritten wird (Füllstand übersteigt die Ansprechhöhe)
- eine Störung eintritt
- die Netzspannung ausfällt

Zusätzlich zum Füllstandrelais arbeitet das Störmelderelais in Arbeitsstromsicherheit und schließt den Kontakt, wenn:

- eine der folgenden Störungen eintritt:
 - Unterbrechung der Sensorleitung
 - Kurzschluss der Sensorleitung
 - Korrosionsalarm des Sensors
- Erkennung interner Fehler
- die Netzspannung ausfällt

Der Messbereich des Liquiphant M/S ist abhängig von Einbauort und Gabellänge.

Der Detektionsbereich befindet sich innerhalb der Gabellänge und ist abhängig von der Dichte des Messstoffs.

Während der Gerätekonfiguration und der Wartungsarbeiten am Liquiphant M/S + Nivotester FTL325P müssen zur Gewährleistung der Prozesssicherheit alternative Maßnahmen ergriffen werden.

Für die Sicherheitsfunktion sind folgende Einstellungen zugelassen:

Gerät	Einstellung für die Sicherheitsfunktion	Auslieferzustand
Liquiphant	Dichteschalter-Stellung: 0,5Dichteschalter-Stellung: 0,7	- Dichteschalter-Stellung: 0,7
	– Prüfmodus "STD" Prüfmodus "EXT"	– Prüfmodus "STD"
Nivotester	– MAX-Sicherheit	– MAX-Sicherheit
FTL325P-#3#3	- Alle Einstellungen außer "AS Funktion" (siehe Kapitel "Einstellungen und Installationshinweise")	- 3-Kanal Betrieb
Nivotester FTL325P-#1#1	– MAX-Sicherheit	– MAX-Sicherheit
	- 1-Kanal Betrieb	– 1-Kanal Betrieb

Hinweis!

- Mit dem Störmelderelais fällt immer auch das Füllstandrelais ab.
- Das Störmelderelais ist nicht Teil der Sicherheitsfunktion!

Zulässige Varianten des Nivotesters mit dem Liquiphant M/S mit FEL57 für die Sicherheitsfunktion

Folgende Kombinationen sind für das Messsystem zulässig:

- Nivotester FTL325P-H1#1, FTL325P-H3#3
- Nivotester FTL325P-P1#1, FTL325P-P3#3
- Nivotester FTL325P-T1#1, FTL325P-T3#3

HW-Version (Hardware): ab V01.00; gültig ab Serien-Nr. 2C x x x x x x x x x x x Monat: Dezember ■ Liquiphant M FTL50-#####7### 1

☐ Januar 2 ≙ Februar ■ Liquiphant M FTL51-#####7### ■ Liquiphant M FTL50H-#####7### ■ Liquiphant M FTL51H-#####7### Jahr : 2001 ■ Liquiphant M FTL51C-#####7### ■ Liquiphant S FTL70-#####7### 0 ≘ 1999 1 ≘ 2000 ■ Liquiphant S FTL71-#####7### Z ≘ 2026

- Gültige FW-Version (Firmware): ab V01.00.01
- Gültige HW-Version (Hardware): ab V01.00

Zulässige Gerätetypen (# = alle Geräteausprägungen zulässig außer 9 und Y)

Angaben für die Sicherheitsfunktion

Die **verbindlichen Einstellungen** und Angaben für die Sicherheitsfunktion gehen aus dem Anhang (Seite 9)

Die Reaktionszeit des Mess-Systems beträgt \leq 0,9 s.

Hinweis!

MTTR wird mit 8 Stunden angesetzt.

Sicherheitssysteme **ohne selbstverriegelnde Funktion** müssen nach Ausführung der Sicherheitsfunktion innerhalb MTTR in einen überwachten oder anderweitig sicheren Zustand gebracht werden.

Mitgeltende Gerätedokumentation

Warnung!

Die technischen Grenzwerte, Sicherheits-, Installations- und Einstellhinweise sind gemäß der dem Gerät zugehörigen Dokumentation zu beachten. Die folgende Tabelle stellt eine Übersicht der zugehörigen Dokumentation und deren Inhalte für Liquiphant M/S+Nivotester FTL325P dar.

Für das Messsystem müssen folgende Dokumentationen vorhanden sein:

Gerät	Technische Information	Betriebsanleitung
Nivotester	FTL325P: TI350F/00	Für 1-Kanal Gerät FTL325P-#1#1: KA167F/00
		Für 3-Kanal Gerät FTL325P-#3#3: KA168F/00
Liquiphant M	FTL50, FTL51, FTL50H, FTL51H:	FTL50, FTL51: KA143F/00
	TI328F/00	FTL50, FTL51 mit Alu-Gehäuse/ separatem Anschlussraum: KA163F/00
		FTL50H, FTL51H: KA144F/00
		FTL50H, FTL51H mit Alu-Gehäuse/ separatem Anschlussraum: KA164F/00
	FTL51C: TI347F/00	FTL51C: KA162F/00
Liquiphant S	FTL70, FTL71: TI354F/00	FTL70, FTL71: KA172F/00
		FTL70, FTL71 mit Alu-Gehäuse/ separatem Anschlussraum: KA173F/00
Relevanter Inhalt	Anschlusswerte, Installationshinweise	Einstellung, Konfiguration, Hinweise, Funktionstests

Einstellungen und Installationshinweise

Installationshinweise

Die Umgebungsbedingungen für den Nivotester FTL325P müssen der Schutzklasse IP54 (gemäß EN 60529) entsprechen.

Die Hinweise zur korrekten Installation des Liquiphant M/S mit FEL57 sind der Kompaktanleitung (KA) zu entnehmen. Da die Anwendungsbedingungen Einfluss auf die Sicherheit der Messung haben, sind die entsprechenden Hinweise in der Technischen Information (TI) und Kompaktanleitung (KA) zu beachten.

Die Anleitungen zu den Einstellungen der Geräte finden Sie in den folgenden Dokumentationen:

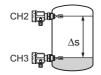
Gerät	Beschreibung der Einstellung in Dokumentation
Nivotester	1-Kanal Gerät FTL325P-#1#1: KA167F/00
	3-Kanal Gerät FTL325P-#3#3: KA168F/00
Liquiphant M/S mit FEL57	KA143F/00, KA144F/00, KA162F/00, KA163F/00, KA164F/00, KA165F/00, KA172F/00, KA173F/00

Einstellungen Liquiphant M/S mit FEL57

Die Einstellung des Dichteschalters hat Einfluss auf die Versagenswahrscheinlichkeit und die Art des Funktionstests (siehe Kapitel "Anhang").

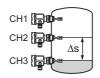
Die Einstellung des Prüfmodus hat Einfluss auf den Funktionstest (siehe Kapitel "Wiederkehrende Prüfung des Messsystems").

Die SIL-Bewertung des Liquiphant M/S schließt das Gesamtgerät inklusive Elektronikeinsatz, Schwinggabel mit Antrieb, Prozessanschluss und interne Verdrahtung ein.



Achtung!

Nach Inbetriebnahme des Messsystems können Änderungen der Einstellungen am Elektronikeinsatz FEL57 die Sicherheitsfunktion beeinträchtigen!


Einstellungen Nivotester FTL325P-#3#3 (3-Kanal)

Es wird empfohlen, die der Überfüllsicherung nachfolgenden Schaltelemente nach dem Ansprechen im Sicherheitszustand zu belassen, bis das Alarmsignal quittiert wurde.

Kanal 2+3 in ∆S Funktion (z.B. Pumpensteuerung)

Diese Enstellung ist nicht für die Sicherheitsfunktion zugelassen!

Kanal 1 unabhängig, Kanal 2+3 in ΔS Funktion (z.B. Pumpensteuerung)

Kanal 1 ist für die Sicherheitsfunktion zugelassen!

Kanal 2 und 3 sind in dieser Einstellung **nicht** für die Sicherheitsfunktion zugelassen!

Achtung!

Für den Nivotester FTL325P ist folgendes zu beachten:

Durch geeignete Maßnahmen (z.B. Strombegrenzer, Sicherung) muss der Betreiber sicherstellen, dass die zulässigen Kontaktkennwerte der Relais von:

- \blacksquare U ≤ 253 V AC 50/60 Hz , I ≤ 2 A, P ≤ 500 VA bei cos $\phi \geq 0.7$ bzw.
- $U \le 40 \text{ V DC}$, $I \le 2 \text{ A}$, $P \le 80 \text{ W}$

nicht überschritten werden.

Achtung!

Änderungen des Messsystems und seiner Einstellungen nach Inbetriebnahme können die Sicherheitsfunktion beeinträchtigen!

Verhalten im Betrieb und bei Störung

Das Verhalten im Betrieb und bei Störung wird in den folgenden Dokumentationen beschrieben.

Gerät	Beschreibung der Einstellung in Dokumentation
Nivotester	1-Kanal Gerät FTL325P-#1#1: KA167F/00
	3-Kanal Gerät FTL325P-#3#3: KA168F/00
Liquiphant M	FTL50, FTL51: KA143F/00
	FTL50, FTL51 mit Alu-Gehäuse/separatem Anschlussraum: KA163F/00
	FTL50H, FTL51H: KA144F/00
	FTL50H, FTL51H mit Alu-Gehäuse/separatem Anschlussraum: KA164F/00
	FTL51C: KA162F/00
Liquiphant S	FTL70, FTL71: KA172F/00
	FTL70, FTL71 mit Alu-Gehäuse/separatem Anschlussraum: KA173F/00

Reparatur

Bei Ausfall eines SIL-gekennzeichneten E+H-Gerätes, das in einer Schutzfunktion betrieben wurde, ist bei der Rücksendung des defekten Gerätes die "Erklärung zur Kontamination und Reinigung" mit dem entsprechenden Hinweis "Einsatz als SIL-Gerät in Schutzeinrichtung" beizulegen.

Wiederkehrende Prüfung des Messsystems

Liquiphant M/S		Nivotester	Prüfung	
Einstellung Dichte-Schalter	Einstellung Prüfmodus	Einstellung	Prüfintervall	Beschreibung des Prüfablaufs
Einstellung 0,7	STD oder EXT	Jede zulässige Einstellung und Störungsmeldung CH1 -> ON wenn Kanal 1 mit einem Sensor verbun- den ist	Jährlicher Funktionstest	KA167F/00 KA168F/00
Einstellung 0,5	STD oder EXT	Jede zulässige Einstellung und Störungsmeldung CH1 -> ON wenn Kanal 1 mit einem Sensor verbun- den ist	Jährlicher Funktionstest und vollständiger Test: Überprüfung der Bedeckt- meldung, z.B. durch Anfahren des Füllstandes, spätestens nach 5 Jahren	

Die Funktionsfähigkeit der Überfüllsicherung ist periodisch zu prüfen, wenn die im Anhang genannten PFD_{avg} -Werte verwendet werden.

Die Prüfung ist so durchzuführen, dass die einwandfreie Funktion der Überfüllsicherung im Zusammenwirken aller Komponenten nachgewiesen wird. Dies ist bei einem Anfahren der Ansprechhöhe im Rahmen einer Befüllung gewährleistet. Wenn eine Befüllung bis zur Ansprechhöhe nicht praktikabel ist, so ist der Standaufnehmer durch geeignete Simulation des Füllstandes oder des physikalischen Messeffekts zum Ansprechen zu bringen. Falls die Funktionsfähigkeit des Standaufnehmers/Messumformers anderweitig erkennbar ist (Ausschluss funktionshemmender Fehler), kann die Prüfung auch durch Simulieren des entsprechenden Ausgangssignals durchgeführt werden.

Achtung!

Für den Funktionstest sind folgende Punkte zu beachten:

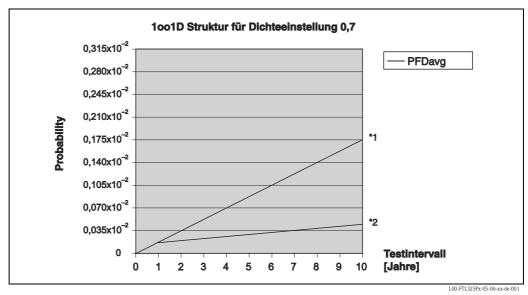
- Durch Drücken der jeweiligen Prüftaste muss jeder Kanal einzeln getestet werden.
- Das Schalten der Relaiskontakte muss elektrisch, z.B. mit Handmultimeter an den Klemmen, überprüft werden.
- Bei mehrkanaligen Geräten müssen alle Kanäle, die keine Sicherheitsfunktion ausführen, in die Wiederkehrende Prüfung miteinbezogen werden, wenn eine fehlerhafte Funktion nicht anderweitig erkannt werden kann, z.B. mit unabhängigen Schutzmaßnahmen oder durch Änderung des Verhaltens der Messstelle.
- Als positives Prüfergebnis muss die Systemreaktion der genannten Beschreibung entsprechen.
- Wenn die Systemreaktion nicht dem beschriebenen Ablauf entspricht, muss der überwachte Prozess durch zusätzliche oder andere Maßnahmen in einen sicheren Zustand gebracht und/oder im sicheren Zustand gehalten werden, bis eine Instandsetzung des Sicherheitssystems erfolgt ist.

Ausfallraten elektrischer Bauteile

Die zugrundegelegten Ausfallraten elektrischer Bauteile gelten innerhalb der nutzbaren Lebensdauer IEC 61508-2 Abschnitt 7.4.7.4 Hinweis 3

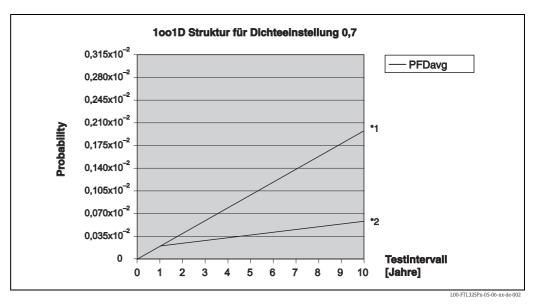
Anhang

Spezifische Werte und Verschaltungsarten für das Messsystem Liquiphant M/S mit FEL57 und Nivotester FTL325P Die Tabellen zeigen die spezifischen Werte und Verschaltungsarten für das Mess-System.

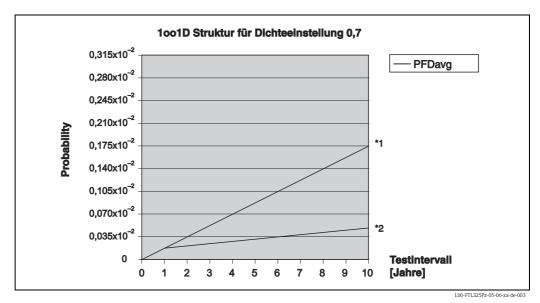


Hinweis!

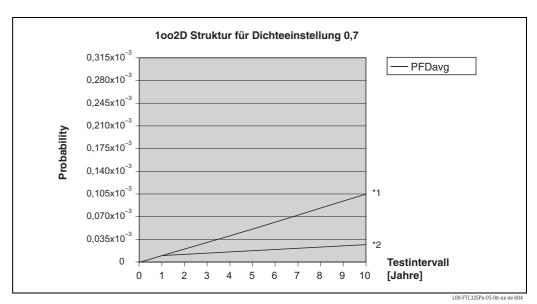
Zu den nachfolgenden Tabellen sind folgende Punkte zu beachten:


- ullet Bei den nachfolgend angegebenen Berechnungen wurde ein Common Cause-Faktor eta=5 % angenommen.
- Die Werte PFD_{avg} beinhalten bei mehrkanaligen Systemen bereits Common Cause-Fehler für die jeweilige Verschaltung.
- Die Werte PFD_{avg} gelten nur für die jeweils zugehörige Verschaltung. Sie sind nicht dazu geeignet, Berechnungen für andere Verschaltungen abzuleiten.
- Insbesondere die Verwendung der Öffnerkontakte an Stelle der Schließerkontakte bedarf einer erweiterten Betrachtung der Installationsmittel.
- Die Verschaltung zeigt die Anzahl der Geräte (Liquiphant und Nivotester) und die Schaltung der Kontakte der Grenzstandrelais (öffnen, wenn Sensor bedeckt meldet).
- Bei mehreren Geräten in einer Verschaltung weisen alle die gleichen gezeigten Einstellungen auf.
- Die Tabellen zeigen sicherheitsrelevante Werte und Verschaltungsarten für das Messsystem.
- Die folgenden sicherheitsrelevanten Werte wurden dem exida Bericht (Report No.: E+H 02/6-16 R015) entnommen.
- FIT = Failure in Time, 1 FIT = 10^{-9} 1/h

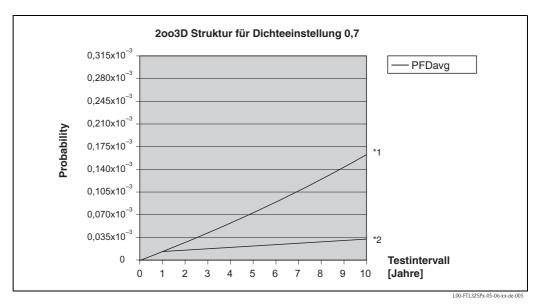
	Auswahlschaltung: 1001 D [CONF	6]
Liquiphant M/S - Einstellung	Dichte 0,7	Dichte 0,5
Nivotester FTL325P-#1#1 Einstellung (1-Kanal-Gerät)	MAX Siche	prheitsschaltung
		L00-FTL3x5Px-14-06-xx-xx-001
SIL	SIL 2	SIL 2
HFT	0	0
SFF ¹	95 %	95 %
PFD _{avg} ¹ (low demand mode of operation)	1,75 x 10 ⁻⁴	1,82 x 10 ⁻⁴
$\lambda_{\rm sd}^{-1}$	156 FIT	156 FIT
λ_{su}^{1}	768 FIT	766 FIT
λ_{dd}^{1}	1,3 FIT	1,3 FIT
λ_{du}^{1}	40 FIT	42 FIT
MTBF	11	3 Jahre
Verschaltung	∞41 -2	:H1 Г/1]
	CH1:	L00-FTL3x5Px-04-06-xx-xx-001
Funktionstest mit Prüftaster	jährlich	jährlich
Vollständiger Funktionstest z.B. Anfahren des Füllstandes	innerhalb der normalen Lebensdauer nicht erforderlich	mindestens alle 5 Jahre
1) Quelle: Management summary des	exida.com Prüfberichtes (siehe Anhang)	


^{*1} ohne jährlichen Funktionstest mit Prüftaster / *2 mit jährlichem Funktionstest mit Prüftaster

	Auswahlschaltung: 1001 D [CONF	77]
Liquiphant M/S - Einstellung	Dichte 0,7	Dichte 0,5
Nivotester FTL325P-#3#3 Einstellung (3-Kanal-Gerät)	MAX Sich	erheitsschaltung
SIL	SIL 2	L00-FTL3x5Px-14-06-xx-xx-001
HFT	0	0
SFF ¹	95 %	95 %
PFD _{avg} ¹ (low demand mode of operation)	1,97 x 10 ⁻⁴	2,05 x 10 ⁻⁴
λ_{sd}^{-1}	156 FIT	156 FIT
λ_{su}^{-1}	822 FIT	820 FIT
λ_{dd}^{-1}	1,3 FIT	1,3 FIT
λ_{du}^{-1}	45 FIT	47 FIT
MTBF	12	23 Jahre
Verschaltung	≈01 (<u></u>	CH1
	CH2 bzw.	CH3:
Funktionstest mit Prüftaster	jährlich	jährlich
Vollständiger Funktionstest z.B. Anfahren des Füllstandes	innerhalb der normalen Lebensdauer nicht erforderlich	mindestens alle 5 Jahre
1) Quelle: Management summary des	exida.com Prüfberichtes (siehe Anhang)	


*1 ohne jährlichen Funktionstest mit Prüftaster / *2 mit jährlichem Funktionstest mit Prüftaster

	Auswahlschaltung: 1001 D [CONF]	[0]
Liquiphant M/S - Einstellung	Dichte 0,7	Dichte 0,5
Nivotester FTL325P-#3#3 Einstellung (3-Kanal-Gerät)	MAX Siche	erheitsschaltung
	CH1 [Δs
		L00-FEL5xxxx-14-06-06-xx-001
SIL	SIL 2	SIL 2
HFT	0	0
SFF ¹	95 %	95 %
PFD _{avg} ¹ (low demand mode of operation)	1,75 x 10 ⁻⁴	1,82 x 10 ⁻⁴
λ_{sd}^{-1}	156 FIT	156 FIT
λ_{su}^{-1}	768 FIT	766 FIT
λ_{dd}^{-1}	1,3 FIT	1,3 FIT
λ_{du}^{1}	40 FIT	42 FIT
MTBF	11	8 Jahre
Verschaltung	SHC CH1 CH2 CH2 CH3	「
Funktionstest mit Prüftaster	jährlich	jährlich
Vollständiger Funktionstest z.B. Anfahren des Füllstandes	innerhalb der normalen Lebensdauer nicht erforderlich	mindestens alle 5 Jahre
1) Quelle: Management summary des	exida.com Prüfberichtes (siehe Anhang)	


*1 ohne jährlichen Funktionstest mit Prüftaster / *2 mit jährlichem Funktionstest mit Prüftaster

	Auswahlschaltung: 1002 D [CONF	8]
Liquiphant M/S - Einstellung	Dichte 0,7	Dichte 0,5
Nivotester FTL325P-#3#3 Einstellung (3-Kanal-Gerät)	MAX Siche	rheitsschaltung
SIL	SIL 3	L00-FEL5xxxx-14-06-06-xx-001
HFT	1	1
SFF ¹	95 %	95 %
	9,92 x 10 ⁻⁶	1,03 x 10 ⁻⁵
PFD _{avg} ¹ (low demand mode of operation)	9,92 X 10 °	1,03 x 10 °
λ_{sd}^{-1}	156 FIT	156 FIT
λ_{su}^{-1}	822 FIT	820 FIT
λ_{dd}^{1}	1,3 FIT	1,3 FIT
λ_{du}^{1}	45 FIT	47 FIT
MTBF	12	3 Jahre
Verschaltung	CH1 \(\tau\) CH2 \(\tau\) CH3 \(\tau\)	SPS
		L00-FTL57xxx-04-06-xx-xx-000
Funktionstest mit Prüftaster	jährlich	jährlich
Vollständiger Funktionstest z.B. Anfahren des Füllstandes	innerhalb der normalen Lebensdauer nicht erforderlich	mindestens alle 5 Jahre
1) Quelle: Management summary des	exida.com Prüfberichtes (siehe Anhang)	

^{*1} ohne jährlichen Funktionstest mit Prüftaster / *2 mit jährlichem Funktionstest mit Prüftaster

	Auswahlschaltung: 2003 D [CON	F 9]
Liquiphant M/S - Einstellung	Dichte 0,7	Dichte 0,5
Nivotester FTL 325 P-#3#3 Einstellung (3-Kanal-Gerät)	MAX Sic	herheitsschaltung
SIL	SIL 3	L00-FEL5xxxx-14-06-06-xx-001
HFT	1	1
SFF ¹	94 %	94 %
PFD _{avg} ¹ (low demand mode of operation)	1,29 x 10 ⁻⁵	1,33 x 10 ⁻⁵
λ_{sd}^{-1}	155 FIT	155 FIT
λ_{su}^{-1}	849 FIT	847 FIT
λ_{dd}^{-1}	1,3 FIT	1,3 FIT
λ_{du}^{-1}	57 FIT	59 FIT
MTBF		101 Jahre
Verschaltung	⇒u:	H1
Funktionstest mit Prüftaster	jährlich	jährlich
Vollständiger Funktionstest z.B. Anfahren des Füllstandes	innerhalb der normalen Lebensdaue nicht erforderlich	mindestens alle 5 Jahre
1) Quelle: Management summary des	exida.com Prüfberichtes (siehe Anhang)

^{*1} ohne jährlichen Funktionstest mit Prüftaster / *2 mit jährlichem Funktionstest mit Prüftaster

FMEDA Report

Management summary

This report summarizes the results of the hardware assessment with proven-in-use consideration according to IEC 61508 / IEC 61511 carried out on Liquiphant M/S with PFM output FEL 57 with software version V01.00.01 and hardware version V01.00 and Nivotester FTL325P or FTL375P for applications with MAX detection. Table 1 gives an overview of the different configurations which have been assessed The hardware assessment consists of a Failure Modes, Effects and Diagnostics Analysis (FMEDA). A FMEDA is one of the steps taken to achieve functional safety assessment of a device per IEC 61508. From the FMEDA, failure rates are determined and consequently the Safe Failure Fraction (SFF) is calculated for the device. For full assessment purposes all requirements of IEC 61508 must be considered

Table 1: Configuration overview

	Configurations
[CONF 1]	FEL 57
[CONF 2]	FEL 57 with Nivotester FTL375P as single channel device with two output relays in parallel
[CONF 3]	FEL 57 with Nivotester FTL375P as dual channel device
[CONF 4]	[CONF 4] FEL 57 with Nivotester FTL375P as three channel device in three channel mode
[CONF 5]	FEL 57 with Nivotester FTL375P as three channel device in single channel mode
[CONF 6]	FEL 57 with Nivotester FTL325P as single channel device in single channel mode
[CONF 7]	[CONF 7] FEL 57 with Nivotester FTL325P as three channel device in single channel mode with two output relays in parallel
[CONF 8]	FEL 57 with Nivotester FTL325P as three channel device in dual channel mode with one channel having two output relays in parallel
[CONF 9]	[CONF 9] FEL 57 with Nivotester FTL325P as three channel device in three channel mode
[CONF 10]	[CONF 10] FEL 57 with Nivotester FTL325P as three channel device in single channel mode

The failure rates used in this analysis are based on the Siemens standard SN 29500

distribution of PFD_{Avo} values of a SIF over the sensor part, logic solver part, and final element part assumes that 35% of the total SIF PFD_{Avo} value is caused by the sensor part. For a SIL 2 application the total PFD_{Avo} value of the SIF shall be smaller than 1,00E-02, hence the maximum allowable PFD_{Avo} value of the SIF shall be smaller than 1,00E-03. For a SIL 3 application the total PFD_{Avo} value of the SIF shall be smaller than 1,00E-03, hence the maximum allowable PFD_{Avo} value for the sensor part would then be 3,50E-03. For a SIL 3 maximum allowable PFD_{Avo} value for the sensor part would then be 3,50E-04. According to table 2 of IEC 61508-1 the PFD_{Avo} for systems operating in low demand mode has to be \geq 10 3 to <10 2 for SIL 2 and \geq 10 3 for SIL 3 safety functions. A generally accepted

© exida.com GmbH Stephan Aschenbrenner

e+h 02-6-16 r015 v0 r1.0, August 21, 2003 Page 2 of 59

FMEDA including SFF determination and PFD_{AVG} calculation

excellence in dependable automation

Project:

Applications with level limit detection in liquids (MAX detection) with PFM output FEL 57 and Nivotester FTL325P or FTL375P Level limit switch Liquiphant M/S

Customer:

Endress+Hauser GmbH+Co.KG Maulburg Germany

Version V0, Revision R1.0, August 2003 Report No.: E+H 02/6-16 R015 Contract No.: E+H 02/6-16 Stephan Aschenbrenner The document was prepared using best effort. The authors make no warranty of any kind and shall not be liable in any event for incidental or consequential danages in connection with the application of the document.

© All rights reserved.

Liquiphant M/S with PFM output FEL 57 is considered to be a Type B¹ component. Nivotester FTL325P and FTL375P are considered to be Type A² components. In the following both subsystems are considered to be Type B components for simplification reasons and as a worstcase assumption. For Type A components with a SFF of 60% to < 90% a hardware fault tolerance of 0 according to table 2 of IEC 61508-2 is sufficient for SIL 2 (sub-) systems and a hardware fault tolerance of 1 is sufficient for SIL 3 (sub-) systems.

For Type B components with a SFF of 90% to < 99% a hardware fault tolerance of 0 according to table 2 of IEC 61508-2 is sufficient for SIL 2 (sub-) systems and a hardware fault tolerance of

to be proven-in-use devices, an assessment of the hardware with additional proven-in-use demonstration for the device and its software was carried out. Therefore according to the requirements of IEC 61511-1 First Edition 2003-01 section 11.4.4 and the assessment described in section 5.1 the hardware fault tolerance could even be reduced. As Liquiphant M/S with PFM output FEL 57 and Nivotester FTL325P or FTL375P are supposed 1 is sufficient for SIL 3 (sub-) systems.

Table 2: Summary for [CONF 1] with density 0,5 g/cm³

	T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years
Vith annual manual test	PFD _{AVG} = 1,39E-04	PFD _{AVG} = 2,95E-04	PFD _{AVG} = 4,90E-04
Vithout annual manual test	PFD _{AVG} = 1,39E-04	PFD _{AVG} = 6,96E-04	PFD _{AVG} = 1,39E-03

 $\lambda_{sd} = 1,38E-07 1/h$

 $\lambda_{su} = 4,24E-07 1/h$

 $\lambda_{dd} = 1,30E-09 1/h$

 $\lambda_{du} = 3,18E-08 1/h$

SFF = 94%; HFT = 0; architecture suitable for SIL 2

Table 3: Summary for [CONF 1] with density 0,7 g/cm³

	T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years
With annual manual test	PFD _{AVG} = 1,32E-04	PFD _{AVG} = 2,57E-04	PFD _{AVG} = 4,13E-04
Without annual manual test	PFD = 1 32E-04	PED = 6 58F-04	PFD = 1 32F.03

λ_{sd} = 1,38E-07 1/h

 $\lambda_{su} = 4,26E-07 1/h$

λ_{dd} = 1,30E-09 1/h

 $\lambda_{du} = 3,01E-08 1/h$

SFF = 94%; HFT = 0; architecture suitable for SIL 2

"Complex" component (using micro controllers or programmable logic); for details see 7.4.3.1.3 of IEC 61508-Type B component:

"Non-complex" component (all failure modes are well defined); for details see 7.4.3.1.2 of IEC 61508-2. Type A component:

© exida.com GmbH Stephan Aschenbrenne

e+h 02-6-16 r015 v0 r1.0, August 21, 2003 Page 3 of 59

Table 4: Summary for [CONF 2] with density 0,5 g/cm³

	T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years
With annual manual test	PFD _{AVG} = 2,85E-04	PFD _{AVG} = 4,41E-04	PFD _{AVG} = 6,36E-04
Without annual manual test	PFD _{AVG} = 2,85E-04	PFD _{AVG} = 1,43E-03	PFD _{AVG} = 2,85E-03

 $\lambda_{sd} = 1,69E-07 1/h$

 $\lambda_{\rm su} = 6.81E-07 1/h$

 $\lambda_{dd} = 1,32E-09 1/h$

 $\lambda_{du} = 6,51E-08 1/h$

SFF = 92%; HFT = 0; architecture suitable for SIL 2

Table 5: Summary for [CONF 2] with density 0,7 g/cm³

	T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years
With annual manual test	PFD _{AVG} = 2,83E-04	PFD _{AVG} = 4,08E-04	PFD _{AVG} = 5,64E-04
Without annual manual test	PFD _{AVG} = 2,83E-04	PFD _{AVG} = 1,41E-03	PFD _{AVG} = 2,83E-03

 $\lambda_{sd} = 1,69E-07 1/h$ $\lambda_{su} = 6.83E-07 1/h$

 $\lambda_{dd} = 1,33E-09 1/h$

 $\lambda_{du} = 6,45E-08 1/h$

SFF = 92%; HFT = 0; architecture suitable for SIL 2

Table 6: Summary for [CONF 3] with density 0,5 g/cm³

	T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years
With annual manual test	PFD _{AVG} = 2,26E-05	PFD _{AVG} = 3,04E-05	PFD _{AVG} = 4,03E-05
Without annual manual test	PFD _{AVG} = 2,26E-05	PFD _{AVG} = 1,20E-04	PFD _{AVG} = 2,58E-04

 $\lambda_{sd} = 1,69E-07 1/h$

 $\lambda_{su} = 7,54E-07 1/h$

 $\lambda_{cd} = 1,32E-09 1/h$

λ_{du} = 1,01E-07 1/h

SFF = 90%; HFT = 1; architecture suitable for SIL 3

© exida.com GmbH Stephan Aschenbrenner

e+h 02-6-16 r015 v0 r1.0, August 21, 2003 Page 4 of 59

Table 7: Summary for [CONF 3] with density 0,7 g/cm³

	T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years
With annual manual test	PFD _{AVG} = 2,22E-05	PFD _{AVG} = 2,85E-05	PFD _{AVG} = 3,64E-05
Without annual manual test PFD _{vvc} = 2.22E-05	PFD ₃₀₀ = 2.22E-05	PFD _{AUC} = 1.18E-04	PFD _{AVC} = 2.53E-04

 $\lambda_{sd} = 1,69E-07 1/h$

 $\lambda_{su} = 7,56E-07 1/h$

 $\lambda_{dd} = 1,32E-09 1/h$

λ_{du} = 9,96E-08 1/h

SFF = 90%; HFT = 1; architecture suitable for SIL 3

Table 8: Summary for [CONF 4] with density 0,5 g/cm³

	T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years
With annual manual test	PFD _{AVG} = 2,43E-05	PFD _{AVG} = 3,22E-05	PFD _{AVG} = 4,27E-05
Without annual manual test	PFD _{AVG} = 2,43E-05	PFD _{AVG} = 1,46E-04	PFD _{AVG} = 3,52E-04

 $\lambda_{sd} = 1,69E-07 1/h$

 $\lambda_{\rm su} = 7,61E-07 1/h$

 $\lambda_{dd} = 1,32E-09 1/h$

λ_{du} = 1,06E-07 1/h

Adu = 1,00E-07 7/11
SFF = 89% 3, HFT = 1; architecture suitable for SIL 3

Table 9: Summary for [CONF 4] with density 0,7 g/cm³

	T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years
With annual manual test	PFD _{AVG} = 2,39E-05	PFD _{AVG} = 3,03E-05	PFD _{AVG} = 3,86E-05
Without annual manual test	PFD _{AVG} = 2,39E-05	PFD _{AVG} = 1,43E-04	PFD _{AVG} = 3,44E-04

 $\lambda_{sd} = 1,69E-07 1/h$

 $\lambda_{\rm su} = 7,63E-07 1/h$

 $\lambda_{dd} = 1,32E-09 1/h$

 $\lambda_{du} = 1,04E-07 1/h$

SFF = 89% 3; HFT = 1; architecture suitable for SIL 3

³The SFF < 90% is the result of the combination of the Type A and Type B sub-systems. The Type B sub-system, however, has a SFF > 90%.

© exida.com GmbH Stephan Aschenbrenner

Table 10: Summary for [CONF 5] with density 0,5 g/cm²

	T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years
With annual manual test	PFD _{AVG} = 4,65E-04	PFD _{AVG} = 6,20E-04	PFD _{AVG} = 8,15E-04
Without annual manual test	PFD _{AVG} = 4,65E-04	PFD _{AVG} = 2,32E-03	PFD _{AVG} = 4,65E-03

 $\lambda_{\rm sd} = 1,69E-07 1/h$

 $\lambda_{\rm su} = 7,59E-07 1/h$

 $\lambda_{dd} = 1,32E-09 1/h$

 λ_{ou} = 1,06E-07 1/h SFF = 89% ⁴; HFT = 0; architecture suitable for SIL 2

Table 11: Summary for [CONF 5] with density 0,7 g/cm³

	T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years
With annual manual test	PFD _{AVG} = 4,57E-04	PFD _{AVG} = 5,82E-04	PFD _{AVG} = 7,39E-04
Without annual manual test	PFD _{AVG} = 4,57E-04	PFD _{AVG} = 2,29E-03	PFD _{AVG} = 4,57E-03

δ 4 ω

λ_{sd} = 1,69E-07 1/h

 $\lambda_{su} = 7,61E-07 1/h$

 $\lambda_{dd} = 1,32E-09 \ 1/h$

 λ_{du} = 1,04E-07 1/h SFF = 89% 4, HFT = 0; architecture suitable for SIL 2

Table 12: Summary for [CONF 6] with density 0,5 g/cm³

	T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years
With annual manual test	PFD _{AVG} = 1,82E-04	PFD _{AVG} = 3,38E-04	PFD _{AVG} = 5,33E-04
Without annual manual test	PFD _{AVG} = 1,82E-04	PFD _{AVG} = 9,11E-04	PFD _{AVG} = 1,82E-03

 $\lambda_{\rm sd} = 1,56E-07 \, 1/h$

 $\lambda_{su} = 7,66E-07 1/h$ $\lambda_{dd} = 1,30E-09 1/h$

λ_{du} = 4,16E-08 1/h

SFF = 95%; HFT = 0; architecture suitable for SIL 2

00-FTI.325Px-01-06-xx-en-00

e+h 02-6-16 r015 v0 r1.0, August 21, 2003 Page 5 of 59

© exida.com GmbH Stephan Aschenbrenner

e+h 02-6-16 r015 v0 r1.0, August 21, 2003 Page 6 of 59

 4 The SFF < 90% is the result of the combination of the Type A and Type B sub-systems. The Type B sub-system, however, has a SFF > 90%.

Endress + Hauser

35

Table 13: Summary for [CONF 6] with density 0,7 g/cm³

	T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years
With annual manual test	PFD _{AVG} = 1,75E-04	PFD _{AVG} = 3,00E-04	PFD _{AVG} = 4,56E-04
Without annual manual test	PFD _{AVG} = 1,75E-04	PFD _{AVG} = 8,73E-04	PFD _{AVG} = 1,75E-03

PFD_{AVG} = 3,21E-05 T[Proof] = 10 years

> PFD_{AVG} = 1,99E-05 PFD_{AVG} = 5,30E-05

PFD_{AVG} = 1,03E-05 PFD_{AVG} = 1,03E-05 T[Proof] = 1 year

> Without annual manual test With annual manual test

 $\lambda_{sd} = 1,56E-07 1/h$ $\lambda_{su} = 8,20E-07 1/h$

T[Proof] = 5 years

Table 16: Summary for [CONF 8] with density 0,5 g/cm³

PFD_{AVG} = 1,10E-04

 $\lambda_{sd} = 1,56E-07 1/h$

 $\lambda_{\rm su} = 7,68E-07 1/h$

 $\lambda_{dd} = 1,30E-09 1/h$ $\lambda_{du} = 3,99E-08 1/h$

SFF = 95%; HFT = 0; architecture suitable for SIL 2

Table 14: Summary for [CONF 7] with density 0,5 g/cm³

T[Proof] = 10 years

PFD_{AVG} = 6,34E-04 $PFD_{AVG} = 2,05E-03$

PFD_{AVG} = 1,02E-03 PFD_{AVG} = 3,96E-04 T[Proof] = 5 years

PFD_{AVG} = 2,05E-04

Without annual manual test

 $\lambda_{sd} = 1,56E-07 1/h$ $\lambda_{su} = 8,20E-07 1/h$

With annual manual test

PFD_{AVG} = 2,05E-04

T[Proof] = 1 year

$\lambda_{du} = 4,67E-08 1/h$

 $\lambda_{dd} = 1,30E-09 1/h$

SFF = 95%; HFT = 1; architecture suitable for SIL 3

Table 17: Summary for [CONF 8] with density 0,7 g/cm³

	T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years
With annual manual test	PFD _{AVG} = 9,92E-06	PFD _{AVG} = 1,80E-05	PFD _{AVG} = 2,82E-05
Without annual manual test	PFD _{AVG} = 9,92E-06	PFD _{AVG} = 5,10E-05	PFD _{AVG} = 1,05E-04

 $\lambda_{sd} = 1,56E-07 1/h$

 $\lambda_{\rm su} = 8,22E-07 1/h$

 $\lambda_{dd} = 1,30E-09 1/h$

 $\lambda_{du} = 4,50E-08 1/h$

SFF = 95%; HFT = 1; architecture suitable for SIL 3

Table 18: Summary for [CONF 9] with density 0,5 g/cm³

T[Proof] = 10 years

T[Proof] = 5 years PFD_{AVG} = 3,57E-04 PFD_{AVG} = 9,84E-04

Table 15: Summary for [CONF 7] with density 0,7 g/cm³

SFF = 95%; HFT = 0; architecture suitable for SIL 2

 $\lambda_{dd} = 1,30E-09 1/h$

 $\lambda_{du} = 4,67E-08 1/h$

PFD_{AVG} = 1,97E-03 PFD_{AVG} = 5,58E-04

PFD_{AVG} = 1,97E-04

Without annual manual test With annual manual test

 $\lambda_{su} = 8,22E-07 1/h$ $\lambda_{dd} = 1,30E-09 1/h$

 $\lambda_{sd} = 1,56E-07 1/h$

PFD_{AVG} = 1,97E-04 T[Proof] = 1 year

PFD _{AVG} = 1,68E-	PFD _{AVG} = 7,43E-05	PFD _{AVG} = 1,33E-05	Without annual manual test
PFD _{AVG} = 3,61E-	PFD _{AVG} = 2,32E-05	PFD _{AVG} = 1,33E-05	With annual manual test
T[Proof] = 10 year	T[Proof] = 5 years	T[Proof] = 1 year	

ars 65 64

 $\lambda_{sd} = 1,55E-07 1/h$

 $\lambda_{su} = 8,47E-07 1/h$

 $\lambda_{dd} = 1,30E-09 1/h$

SFF = 94%; HFT = 1; architecture suitable for SIL 3 λ_{du} = 5,91E-08 1/h

SFF = 95%; HFT = 0; architecture suitable for SIL 2

 $\lambda_{du} = 4,50E-08 1/h$

e+h 02-6-16 r015 v0 r1.0, August 21, 2003 Page 7 of 59

© exida.com GmbH Stephan Aschenbrenner

e+h 02-6-16 r015 v0 r1.0, August 21, 2003 Page 8 of 59

© exida.com GmbH Stephan Aschenbrenner

A user of Liquiphant M/S with PFM output FEL 57 and Nivotester FTL325P or FTL375P can utilize these failure rates in a probabilistic model of a safety instrumented function (SIF) to determine suitability in plant for safety instrumented system (SIS) usage in a particular safety integrity level (SIL). A full table of failure rates for different operating conditions is presented in section 5.2 to 5.11 along with all assumptions.

Table 19: Summary for [CONF 9] with density 0,7 g/cm³

	T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years
With annual manual test	PFD _{AVG} = 1,29E-05	PFD _{AVG} = 2,11E-05	PFD _{AVG} = 3,19E-05
Without annual manual test	PFD _{AVG} = 1,29E-05	PFD _{AVG} = 7,18E-05	PFD _{AVG} = 1,62E-04

λ_{sd} = 1,55E-07 1/h

 $\lambda_{dd} = 1,30E-09 1/h$

 $\lambda_{du} = 5,74E-08 1/h$

SFF = 94%; HFT = 1; architecture suitable for SIL 3

Table 20: Summary for [CONF 10] with density 0,5 g/cm³

	T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years
With annual manual test	PFD _{AVG} = 1,82E-04	PFD _{AVG} = 3,38E-04	PFD _{AVG} = 5,33E-04
Without annual manual test	PFD _{MC} = 1.82E-04	PFD _{AVE} = 9.11E-04	PFD _{M/6} = 1,82E-03

 $\lambda_{sd} = 1,56E-07 1/h$

 $\lambda_{su} = 7,66E-07 1/h$

 $\lambda_{dd} = 1,30E-09 1/h$

 $\lambda_{du} = 4,16E-08 1/h$

SFF = 95%; HFT = 0; architecture suitable for SIL 2

Table 21: Summary for [CONF 10] with density 0,7 g/cm³

	T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 year
With annual manual test	PFD _{AVG} = 1,75E-04	PFD _{AVG} = 3,00E-04	PFD _{AVG} = 4,56E-04
Without annual manual test	PFD _{AVG} = 1,75E-04	PFD _{AVG} = 8,73E-04	PFD _{AVG} = 1,75E-03

 $\lambda_{sd} = 1,56E-07 1/h$

 $\lambda_{su} = 7,68E-07 1/h$ $\lambda_{dd} = 1,30E-09 1/h$

 $\lambda_{du} = 3,99E-08 1/h$

SFF = 95%; HFT = 0; architecture suitable for SIL 2

The boxes marked in yellow (\blacksquare) mean that the calculated PFD_{AVG} values are within the allowed range for SIL2 or SIL 3 according to table 2 of IEC 61508-1 but do not fulfill the requirement to not claim more than 35% of this range, i.e. to be better than or equal to 3,50E-03 or 3,50E-04. The boxes marked in green (\blacksquare) mean that the calculated PFD_{AVG} values are within the allowed range for SIL 2 or SIL 3 according to table 2 of IEC 61508-1 and to 6 fulfill the requirement to not claim more than 35% of this range, i.e. to be better than or equal to 3,50E-03 or 3,50E-04.

© exida.com GmbH Stephan Aschenbrenner

e+h 02-6-16 r015 v0 r1.0, August 21, 2003 Page 10 of 59

© exida.com GmbH Stephan Aschenbrenner

e+h 02-6-16 r015 v0 r1.0, August 21, 2003 Page 9 of 59

Messtechnik	Endress+Hauser Metso AG Sternenhofstraße 21 H 53 Reinach/BL 1 Sel. +41 61 7 15 75 75 Fax +41 61 7 11 16 50 Info@ch.endress.com

People for Process Automation

