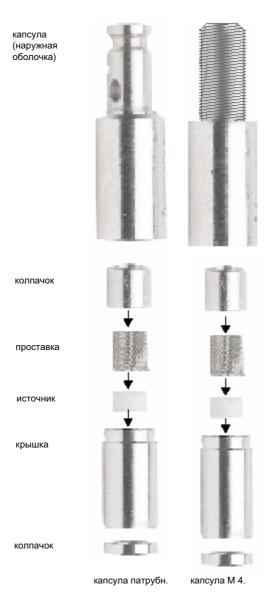
Радиометрическое измерение Источники гамма-излучения

Для измерения уровня, предельного уровня, плотности и границы раздела Соответствуют строжайшим стандартам безопасности



Применение

Радиоактивные изотопы используюся как гамма-источники при измерении уровня, плотности и границы раздела сред, а также при измерении предельного уровня.

Гамма-лучи испускаются радиоактивным источником во всех направлениях. Однако при радиометрическом измерении, требуется излучение только через измеряемую емкость. Все излучение в других направлениях нежелательно и должно быть экранировано. Из этих соображений капсула с источником помещается в защитный контейнер, благодаря которому неэкранированное излучение происходит только в нужном направлении.

Особенности и преимущества

- Точечный источник в специальном контейнереобеспечивает простоту обслуживания и установки
- Специальная конструкция капсулы источника соответствует нормам безопасности по Классу 66646 ISO 2919
- Оптимальный выбор типа источника и его активности для конкретного применения

Вид капсулы источника

Гамма-источники

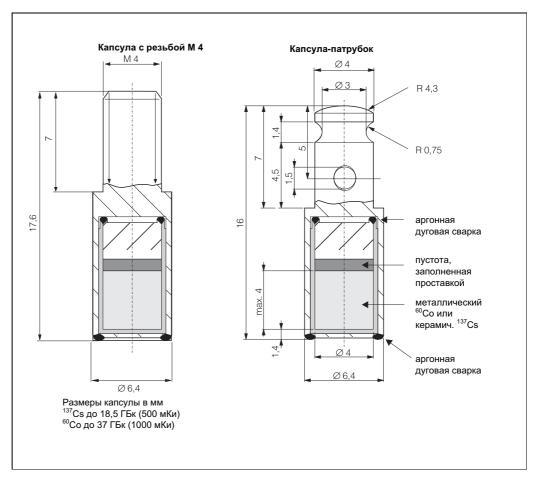
Капсула источники

Радиоактивные источники, как 137Cs, так и 60Cо находятся в сварной капсуле из нержавеющей стали с двойной стенкой. Инкапсуляция соответствует Классу С 66646 по ISO 2919, обеспечивая максимальную защиту от температуры, внешнего давления, удара, вибрации и прокола..

Тест	Класс							
	1	2	3	4	5	6		
Температура	нет	-40 ⁰ С (20 мин.) +80 ⁰ С(1 ч)	-40 ⁰ С (20 мин.) +180 ⁰ С(1 ч)	-40 ⁰ C (20 мин.) +400 ⁰ C (1 ч) и теплоудар от 400 ⁰ C до 20 ⁰ C	-40 ^o C (20 мин.) +600 ^o C (1 ч) и теплоудар от 600 ^o C до 20 ^o C	-40 ⁰ C (20 мин.) +800 ⁰ C (1 ч) и теплоудар от 800 ⁰ C до 20 ⁰ C		
Внешнее давление	нет	от 25 кПа абс. до атомосф. давления	от 25 кПа абс. до 2 МПа абс.	от 25 кПа абс. до 7МПа абс	от 25 кПа абс. до 70МПа абс	от 25 кПа абс. до 170МПа абс		
Удар	нет	50 грамм с высоты 1 м	200 грамм с высоты 1 м	2 кг с высоты 1 м	5 кг с высоты 1 м	20 кг с высоты 1 м		
Вибрация	нет	3 x 10 мин от 25 Гц до 500 Гц с амплитудой 5 gn	3 x 10 мин от 25 Гц до 50 Гц с ампл. 5 gn от 50 Гц до 90 Гц с ампл. 0-635 мм и от 90 Гц до 500 Гц с 10 gn	3 x 30 мин от 25 Гц до 80 Гц с ампл. 1-5 мм от 80 Гц до 2000 Гц с ампл. с 20 gn				
Пробой	нет	1 г с высоты 1 м	10 г с высоты 1 м	50 г с высоты 1 м	300 г с высоты 1 м	1 кг с высоты 1 м		

Классификация защиты капсулы по стандартам ISO 2919. Капсула в каждом случае удовлетворяет максимальным требованиям

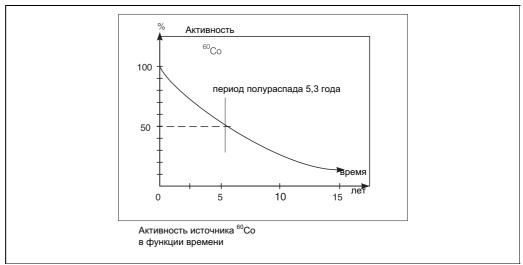
Источник ⁶⁰Со


В капсулу заключен металлический ⁶⁰Со. Перед поставкой производитель тестирует готовые капсулы на герметичность и чистоту. После проверки капсула может применяться как радиоактивный источник в соответствии с ISO 2919. К поставляемому источнику прикладывается сертификат РТВ о проверке на герметичность.

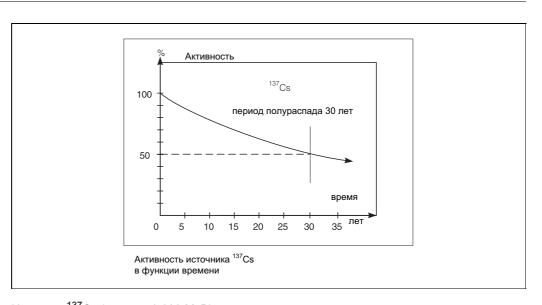
Поскольку радиоактивный источник является металлическим твердым телом в двухстенной сварной капсуле из нержавеющей стали, как правило, нет требований по регулярной проверке герметичности (см. сертификат РТВ).

Источник ¹³⁷Сs

Заключенный в капсулу радиоактивный материал является дисперсией ¹³⁷Cs и керамического наполнителя. Поскольку нет опасности утечки из-за прокола капсулы, регулярный тест на герметичность требуется только через каждые пять лет, если капсула постоянно установлена в контейнере источника Endress+Hauser, или каждые три года для других условий установки. Источник ¹³⁷Cs не рекомендуется для использования в условиях, когда возможна коррозия капсулы из нержавеющей стали.

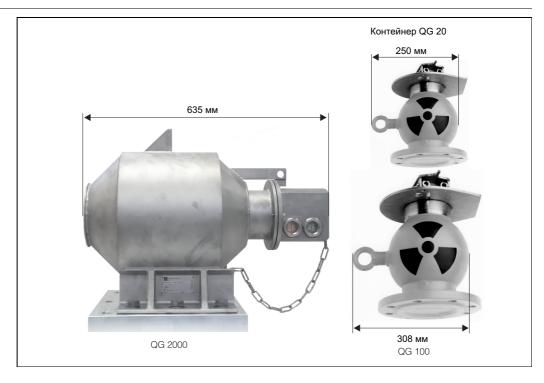

Технические данные

- Bec: 0.02 кг
- Инкапсуляция: двухстенная, сварная нержавеющая сталь 1.4541
- Класс защиты: С 66646 по ISO 2919
- Степень защиты: ІР 68
- Номинальный диапазон рабочих температур: -20°С...+250°С
 Радиоактивный материал: металлический ⁶⁰Со или дисперсия ¹³⁷Сs в керамическом наполнителе
- Энергия ⁶⁰Co : 1.173 и 1.333 МэВ;
 Энергия ¹³⁷Cs : 0.622 МэВ


Применение

Применения источника ⁶⁰Co

Экономичный источник ⁶⁰Co (энергия 1.173 и 1.333 МэВ; полураспад 5,3 года) используется в основном в системах измерения предельного уровня, когда активность ¹³⁷Cs слишком высока. Преимущество данного источника в высокой глубине проникновения, что делает возможным измерения на большом расстоянии или через толстые стенки сосуда. Источник ⁶⁰Co также может применяться для непрерывного измерения уровня, когда активность подходящего источника 137Cs считается слишком высокой


Применения источника ¹³⁷Cs

Источник 137 Cs (энергия 0.622 MэB) идеален для непрерывного измерения уровня и предельного уровня, плотности. Его период полураспада (30 лет) обеспечивает длительный срок эксплуатации без необходимости в замене или перекалибровке. Благодаря низкой энергии источника излучение легко поглощается и часто оборудование может эксплуатаироваться без конрольной зоны. 137 Cs используется при измерении предельного уровня для сыпучих продуктов низкой плотности или на малом расстоянии, где более жесткое излучение 60 Co не может быть достаточно поглощено, или когда предъявляются повышенные требования по сервисному циклу установки

Поставка и транспортировка

Германия

Радиоактивные источники поставляются только, когда мы имеем копию авторизационного свидетельства по эксплуатации радиоактивных материаов. Endress+Hauser будет рад оказать вам помощь в получении необходимых документов. Пожалуйста, связывайтесь с ближайшим центром продаж.

Из соображений безопасности и стоимости, радиоактивные источники, как правило, поставляются уже загруженными в контейнер источника. Также возможна организация доставки источников отдельно в специальном транспортном барабане. Доставка источников осуществляется только специальными уполномоченными транспортными агентами в соответствии с существующим регламентом GGVS/ADR., при

Другие страны

Радиоактивные источники могут поставляться, только при получении нами копии лицензии на импорт. Endress+Hauser будет рад оказать вам помощь в получении необходимых документов. Пожалуйста, связывайтесь с ближайшим центром продаж.

Мы поставляем радиоактивные источники только в их контейнерах.

соблюдении всех норм безопасности.

Доставка источников осуществляется только специальными уполномоченными транспортными агентами в соответствии с существующим регламентом GGVS/ADR и DGR/ IATA, при соблюдении всех норм безопасности.

Доставка радиоактивных источников осуществляется только при предоставлении Endress+Hauser копии вашей авторизации на эксплуатацию радиоактивных материалов. Из соображений безопасности и стоимости, радиоактивные источники, как правило, поставляются уже загруженными в контейнер источника. Также возможна организация доставки источников отдельно в специальном транспортном барабане.

Коды заказа

Изотоп	Ан	тивность	Код заказа для патрубн. источника	Код заказа для источника с резьбой М 4
⁶⁰ Co	37.00 МБк	(1 мКи)	008 347-0000	
⁶⁰ Co	74.00 МБк	(2 мКи)	008 348-0000	008 348-1000
⁶⁰ Co	110.00 МБк	(3 мКи)	008 816-0000	008 816-1000
⁶⁰ Co	185.00 МБк	(5 мКи)	008 349-0000	008 349-1000
⁶⁰ Co	370.00 МБк	(10 мКи)	008 350-0000	008 350-1000
⁶⁰ Co	740.00 МБк	(20 мКи)	008 351-0000	008 351-1000
⁶⁰ Co	1.10 ГБк	(30 мКи)	008 352-0000	008 352-1000
⁶⁰ Co	1.85 ГБк	(50 мКи)	010 012-0000	010 012-1000
⁶⁰ Co	3.70 ГБк	(100 мКи)	008 354-0000	008 354-1000
⁶⁰ Co	5.55 ГБк	(150 мКи)	011 502-0000	011 502-1000
⁶⁰ Co	7.40 ГБк	(200 мКи)	010 108-0000	010 108-1000
¹³⁷ Cs	37.00 МБк	(1 мКи)	008 356-0000	008 356-1000
137Cs	74.00 МБк	(1 мКи)	010 014-0000	010 014-1000
¹³⁷ Cs	110.00 МБк	(3 мКи)	010 014-0000	008 357-1000
¹³⁷ Cs	185.00 МБк	(5 мКи)	008 358-0000	008 358-1000
¹³⁷ Cs	370.00 МБк	(10 мКи)	008 359-0000	008 359-1000
¹³⁷ Cs	550.00 МБк	(15 мКи)	010 015-0000	010 015-1000
¹³⁷ Cs	740.00 МБк	(20 мКи)	008 814-0000	008 814-1000
¹³⁷ Cs	1.10 ГБк	(30 мКи)	010 542-0000	010 542-1000
¹³⁷ Cs	1.85 ГБк	(50 мКи)	008 361-0000	008 361-1000
¹³⁷ Cs	3.70 ГБк	(100 мКи)	008 362-0000	008 362-1000
¹³⁷ Cs	5.55 ГБк	(150 мКи)	011 504-0000	011 504-1000
¹³⁷ Cs	7.40 ГБк	(200 мКи)	010 185-0000	010 185-1000
¹³⁷ Cs	9.25 ГБк	(250 мКи)	011 505-0000	011 505-1000
¹³⁷ Cs	11.00 ГБк	(300 мКи)	010 186-0000	010 186-1000
¹³⁷ Cs	15.00 ГБк	(400 мКи)	010 187-0000	010 187-1000
¹³⁷ Cs	18.50 ГБк	(500 мКи)	010 188-0000	010 188-1000

Источники с другой активностью по запросу

Дополнительная документация

Системная информация

SI 016F/00/en

Системная информация for Gammasilometer, Gammapilot (Radiometric measurement of level, interface layers and density)

Техническая информация

TI 194F/00/

Техническая информация Контейнер Источника QG 020/100

TI 264F/00/en

Техническая информация Контейнер Источника QG 020/100

TI 346F/00/en

Техническая информация Контейнер Источника QG 2000

TI 218F/00/en

Техническая информация Gammapilot FTG 470 Z

TI 177F/00/en

Техническая информация Gammapilot FTG 671

TI 219F/00/en

Техническая информация gammasilometer FMG 671 (P)

TI 110F/00/en

Техническая информация System FMG 573 Z/S-Density

TI 197F/00/en

Техническая информация Detector DG 17 (Z), DG 27 (Z)

TI 180F/00/en

Техническая информация Detector DG 57

Endress+Hauser GmbH+Co. Instruments International P.O.Box2222 D-79574 Weil am Rhein Germany

Tel.(07621) 975-02 Tx 773926 Fax (07621) 975-345 http://www.endress.cominfo@ii.endress.com

