Description of Device Functions

Proline Promass 84

Coriolis Mass Flow Measuring System for Custody Transfer
Table of contents

1. **Notes on using this Manual** ... 7
 1.1 Using the table of contents to locate a function description 7
 1.2 Using the graphic of the function matrix to locate a function description 7
 1.3 Using the index of the function matrix to locate a function description 7

2. **Function matrix** .. 8
 2.1 General layout of the function matrix .. 8
 2.1.1 Blocks (A, B, C, etc.) .. 8
 2.1.2 Groups (AAA, AEA, CAA, etc.) .. 8
 2.1.3 Function groups (000, 020, 060, etc.) 8
 2.1.4 Functions (0000, 0001, 0002, etc.) 8
 2.1.5 Codes identifying cells .. 9
 2.2 Function matrix Promass 84 ... 10

3. **Block CUSTODY TRANSFER** ... 11

4. **Block MEASURED VARIABLES** .. 13
 4.1 Group MEASURING VALUES .. 14
 4.1.1 Function group MAIN VALUES .. 14
 4.2 Group SYSTEM UNITS .. 15
 4.2.1 Function group CONFIGURATION 15
 4.2.2 Function group ADDITIONAL CONFIGURATION 18
 4.3 Group SPECIAL-UNITS .. 20
 4.3.1 Function group ARBITRARY UNIT 20

5. **Block QUICK SETUP** .. 22
 5.1 Quick Setup ... 24
 5.1.1 Quick Setup Commissioning ... 24
 5.1.2 Quick Setup Pulsating Flow .. 26
 5.1.3 Quick Setup Gas Measurement ... 28
 5.2 Data back-up/transfer ... 29

6. **Block DISPLAY** .. 30
 6.1 Group CONTROL .. 31
 6.1.1 Function group BASIC CONFIG. 31
 6.1.2 Function group UNLOCKING/LOCKING 33
 6.1.3 Function group OPERATION ... 34
 6.2 Group MAIN LINE .. 35
 6.2.1 Function group CONFIGURATION 35
 6.2.2 Function group MULTIPLEX .. 37
 6.3 Group ADDITION LINE ... 38
 6.3.1 Function group CONFIGURATION 38
 6.3.2 Function group MULTIPLEX .. 40
 6.4 Group INFORMATION LINE ... 42
 6.4.1 Function group CONFIGURATION 42
 6.4.2 Function group MULTIPLEX .. 44

7. **Block TOTALIZER** ... 46
 7.1 Group TOTALIZER (1 to 3) .. 47
 7.1.1 Function group CONFIGURATION 47
 7.1.2 Function group OPERATION ... 49
 7.2 Group HANDLING TOTAL .. 50
12 Factory settings ... 129
12.1 SI units (not for USA and Canada) 129
 12.1.1 Low flow cut off, full scale value, pulse value – Liquid 129
 12.1.2 Low flow cut off, full scale value, pulse value – Gas 129
 12.1.3 Language .. 130
 12.1.4 Density, length, temperature 130
12.2 US units (only for USA and Canada) 131
 12.2.1 Low flow cut off, full scale value, pulse value – Liquid 131
 12.2.2 Low flow cut off, full scale value, pulse value – Gas 131
 12.2.3 Language, density, length, temperature 131

Index of function matrix ... 133

Index ... 137
1 Notes on using this Manual

There are various ways of locating the description of a function of your choice in the manual:

1.1 Using the table of contents to locate a function description

The designations of all the cells in the function matrix are listed in the table of contents. You can use these unambiguous designations (such as USER INTERFACE, INPUTS, OUTPUTS, etc.) to choose whichever functions are applicable to a particular set of conditions. The page references show you exactly where to find the detailed descriptions of the functions in question.

The table of contents is on page 3.

1.2 Using the graphic of the function matrix to locate a function description

This step-by-step, top-down approach starts with the blocks, the highest level, and factory down through the matrix to the description of the function you need:

1. All blocks available, and their related groups, are illustrated on Page 10. Select the block (or the group within the block) which you need for your application and use the page reference to locate the information corresponding to the next level.

2. The page in question contains a graphic showing of the block with all its subordinate groups, function groups and functions. Select the function which you need for your application and use the page reference to locate the detailed function description.

1.3 Using the index of the function matrix to locate a function description

Each "cell" in the function matrix (blocks, groups, function groups, functions) has a unique identifier in the form of a code consisting of one or three letters or a three- or four-digit number. The code identifying a selected "cell" appears at the top right on the local display.

Example:

The function matrix index lists the codes for all the available "cells" in alphabetic and consecutive order, complete with the page references for the corresponding functions.

The index to the function matrix is on Page 133.
2. Function matrix

2.1 General layout of the function matrix

The function matrix consists of four levels:

Blocks → Groups → Function groups → Functions

2.1.1 Blocks (A, B, C, etc.)

The blocks are the highest-level grouping of the operation options for the device. The blocks include, for example: MEASURED VARIABLES, QUICK SETUP, USER INTERFACE, TOTALIZER, etc.

2.1.2 Groups (AAA, AEA, CAA, etc.)

A block consists of one or more groups. Each group represents a more detailed selection of the operation options in the higher-order block. The groups in the "USER INTERFACE" block, for example, include: CONTROL, MAIN LINE, ADDITION LINE, etc.

2.1.3 Function groups (000, 020, 060, etc.)

A group consists of one or more function groups. Each function group represents a more detailed selection of the operation options in the higher-order group. The function groups in the "CONTROL" group, for example, include: BASIC CONFIG., UNLOCKING/Locking, CONTROL, etc.

2.1.4 Functions (0000, 0001, 0002, etc.)

Each function group consists of one or more functions. The functions are used to operate and parameterize the measuring instrument. Numerical values can be entered or parameters selected and saved.

Available functions of the function group "BASIC CONFIG." are: LANGUAGE, DISPLAY DAMPING, CONTRAST LCD, etc.

The procedure for changing the language of the user interface, for example, is as follows:

1. Select the block "USER INTERFACE".
2. Select the group "CONTROL".
3. Select the function group "BASIC CONFIG."
4. Select the function "LANGUAGE" (here you can set the language required).
2.1.5 Codes identifying cells

Each cell (block, group, function group and function) in the function matrix has an individual, unique code.

Blocks:
The code is a letter (A, B, C, etc.)

Groups:
The code consists of three letters (AAA, ABA, BAA, etc.).
The first letter matches the block code (i.e. each group in block A has a code starting with an A _ _; the codes of the groups in block B start with a B _ _, etc.). The other two letters are for identifying the group within the respective block.

Function groups:
The code consists of three digits (000, 001, 100, etc.).

Functions:
The code consists of four digits (0000, 0001, 0201, etc.).
The first three digits are the same as the code for the function group.
The last digit counts the functions in the function group, counting up from 0 to 9 (for example, function 0005 is the sixth function in the group 000).
2.2 Function matrix Promass 84

<table>
<thead>
<tr>
<th>BLOCKS</th>
<th>GROUPS</th>
<th>Function groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSTODY TRANSFER Z</td>
<td>→</td>
<td>see P. 11</td>
</tr>
<tr>
<td>↓</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>MEASURED VARIABLES A</td>
<td>→</td>
<td>see P. 14</td>
</tr>
<tr>
<td>(see P. 13)</td>
<td>→</td>
<td>see P. 15</td>
</tr>
<tr>
<td>↓</td>
<td>→</td>
<td>see P. 20</td>
</tr>
<tr>
<td>QUICK SETUP B</td>
<td>→</td>
<td>see P. 22</td>
</tr>
<tr>
<td>(see P. 22)</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>USER INTERFACE C</td>
<td>→</td>
<td>see P. 31</td>
</tr>
<tr>
<td>(see P. 30)</td>
<td>→</td>
<td>see P. 35</td>
</tr>
<tr>
<td>↓</td>
<td>→</td>
<td>see P. 38</td>
</tr>
<tr>
<td>TOTALIZER D</td>
<td>→</td>
<td>see P. 42</td>
</tr>
<tr>
<td>(see P. 46)</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>OUTPUTS E</td>
<td>→</td>
<td>see P. 50</td>
</tr>
<tr>
<td>(see P. 51)</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>INPUTS F</td>
<td>→</td>
<td>see P. 100</td>
</tr>
<tr>
<td>(see P. 99)</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>BASIC FUNCTION G</td>
<td>→</td>
<td>see P. 104</td>
</tr>
<tr>
<td>(see P. 103)</td>
<td>→</td>
<td>see P. 106</td>
</tr>
<tr>
<td>↓</td>
<td>→</td>
<td>see P. 115</td>
</tr>
<tr>
<td>↓</td>
<td>→</td>
<td>see P. 116</td>
</tr>
<tr>
<td>SUPERVISION J</td>
<td>→</td>
<td>see P. 121</td>
</tr>
<tr>
<td>(see P. 120)</td>
<td>→</td>
<td>see P. 125</td>
</tr>
</tbody>
</table>
3 Block CUSTODY TRANSFER

<table>
<thead>
<tr>
<th>Block</th>
<th>Group</th>
<th>Function groups</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSTODY TRANSFER</td>
<td></td>
<td></td>
<td>CUSTODY TRANSFER (Z000) P. 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PULSE OUT.1 P. 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PULSE OUT.2 P. 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CURR. OUT. 1 P. 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTALIZER 1 C.T. (Z006) P. 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTALIZER 2 C.T. (Z007) P. 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTALIZER 3 C.T. (Z008) P. 11</td>
</tr>
</tbody>
</table>

Function description

CUSTODY TRANSFER

Note!
- If the measuring device is configured in accordance with the NTEP or MC approvals, this block (CUSTODY TRANSFER) is not available.
- If the measuring system is set to custody transfer and the hardware is sealed, then all the measuring instrument functions marked with a lock symbol are protected against access. For additional information on this topic, refer to the Operating Instructions for the Promass 84 (BA109D) in Chapter 7.3.1, "Setting up custody transfer measurement".
- These functions are not available to be used again until you disable custody transfer mode of the measuring system. For additional information on this topic, refer to the Operating Instructions for the Promass 84 (BA109D) in Chapter 7.3.2, "Disabling custody transfer measurement".

CUSTODY TRANSFER (Z000)

Use this function to check whether the measuring point is set to custody transfer.

Display:
- C.T. NO
- C.T. YES

Factory setting:
- C.T. NO

PULSE OUTPUT 1 CUSTODY TRANSFER (Z001)

Note!
- This function is available only if the measuring instrument has a pulse output 1.
- Selection of the pulse output 1 for transferring the calibrated signal.

Options:
- NO
- YES

Factory setting:
- NO

PULSE OUTPUT 2 CUSTODY TRANSFER (Z002)

Note!
- This function is available only if the measuring instrument has a pulse output 2.
- Selection of the pulse output 2 for transferring the calibrated signal.

Options:
- NO
- YES

Factory setting:
- NO
<table>
<thead>
<tr>
<th>Function Description</th>
<th>Custody Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Output 1</td>
<td>Custody Transfer (2003)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Options:</td>
<td>NO</td>
</tr>
<tr>
<td>Factory setting:</td>
<td>NO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function Description</th>
<th>Custody Transfer (2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalizer 1</td>
<td>Custody Transfer</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Options:</td>
<td>NO</td>
</tr>
<tr>
<td>Factory setting:</td>
<td>NO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function Description</th>
<th>Custody Transfer (2007)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalizer 2</td>
<td>Custody Transfer</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Options:</td>
<td>NO</td>
</tr>
<tr>
<td>Factory setting:</td>
<td>NO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function Description</th>
<th>Custody Transfer (2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalizer 3</td>
<td>Custody Transfer</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Options:</td>
<td>NO</td>
</tr>
<tr>
<td>Factory setting:</td>
<td>NO</td>
</tr>
</tbody>
</table>
Block MEASURED VARIABLES

<table>
<thead>
<tr>
<th>Function Groups</th>
<th>Function Blocks</th>
<th>Function Arrays</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. MAIN VALUES</td>
<td>2. MEASURING VALUES</td>
<td>3. SPECIAL VALUES</td>
</tr>
<tr>
<td>2. CONFIGURATION</td>
<td>4. SYSTEM UNITS</td>
<td>5. SPECIAL UNITS</td>
</tr>
<tr>
<td>3. ADDITIONAL</td>
<td>6. MASS FLOW</td>
<td>7. SPECIAL UNITS</td>
</tr>
<tr>
<td>4. SPECIAL CONFIGURATION</td>
<td>8. MASS FLOW</td>
<td>9. SPECIAL UNITS</td>
</tr>
<tr>
<td>5. SYSTEM UNITS</td>
<td>10. SPECIAL CONFIGURATION</td>
<td>11. SPECIAL UNITS</td>
</tr>
<tr>
<td>6. SPECIAL CONFIGURATION</td>
<td>12. SPECIAL CONFIGURATION</td>
<td>13. SPECIAL UNITS</td>
</tr>
<tr>
<td>7. SPECIAL UNITS</td>
<td>14. SPECIAL CONFIGURATION</td>
<td>15. SPECIAL UNITS</td>
</tr>
<tr>
<td>8. SPECIAL UNITS</td>
<td>16. SPECIAL CONFIGURATION</td>
<td>17. SPECIAL UNITS</td>
</tr>
<tr>
<td>9. SPECIAL UNITS</td>
<td>18. SPECIAL CONFIGURATION</td>
<td>19. SPECIAL UNITS</td>
</tr>
<tr>
<td>10. SPECIAL UNITS</td>
<td>20. SPECIAL CONFIGURATION</td>
<td>21. SPECIAL UNITS</td>
</tr>
<tr>
<td>11. SPECIAL UNITS</td>
<td>22. SPECIAL CONFIGURATION</td>
<td>23. SPECIAL UNITS</td>
</tr>
<tr>
<td>12. SPECIAL UNITS</td>
<td>24. SPECIAL CONFIGURATION</td>
<td>25. SPECIAL UNITS</td>
</tr>
<tr>
<td>13. SPECIAL UNITS</td>
<td>26. SPECIAL CONFIGURATION</td>
<td>27. SPECIAL UNITS</td>
</tr>
<tr>
<td>14. SPECIAL UNITS</td>
<td>28. SPECIAL CONFIGURATION</td>
<td>29. SPECIAL UNITS</td>
</tr>
<tr>
<td>15. SPECIAL UNITS</td>
<td>29. SPECIAL CONFIGURATION</td>
<td>30. SPECIAL UNITS</td>
</tr>
</tbody>
</table>

Functions

- **Temperature**
- **Volume**
- **Density**
- **Reference Density**
- **Corresponding Volume Flow**
- **Mass Flow**
- **Mass Unit Reference Density**

Block MEASURED VARIABLES

<table>
<thead>
<tr>
<th>Function Groups</th>
<th>Function Blocks</th>
<th>Function Arrays</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. MAIN VALUES</td>
<td>2. MEASURING VALUES</td>
<td>3. SPECIAL VALUES</td>
</tr>
<tr>
<td>2. CONFIGURATION</td>
<td>4. SYSTEM UNITS</td>
<td>5. SPECIAL UNITS</td>
</tr>
<tr>
<td>3. ADDITIONAL</td>
<td>6. MASS FLOW</td>
<td>7. SPECIAL UNITS</td>
</tr>
<tr>
<td>4. SPECIAL CONFIGURATION</td>
<td>8. MASS FLOW</td>
<td>9. SPECIAL UNITS</td>
</tr>
<tr>
<td>5. SYSTEM UNITS</td>
<td>10. SPECIAL CONFIGURATION</td>
<td>11. SPECIAL UNITS</td>
</tr>
<tr>
<td>6. SPECIAL CONFIGURATION</td>
<td>12. SPECIAL CONFIGURATION</td>
<td>13. SPECIAL UNITS</td>
</tr>
<tr>
<td>7. SPECIAL UNITS</td>
<td>14. SPECIAL CONFIGURATION</td>
<td>15. SPECIAL UNITS</td>
</tr>
<tr>
<td>8. SPECIAL UNITS</td>
<td>16. SPECIAL CONFIGURATION</td>
<td>17. SPECIAL UNITS</td>
</tr>
<tr>
<td>9. SPECIAL UNITS</td>
<td>18. SPECIAL CONFIGURATION</td>
<td>19. SPECIAL UNITS</td>
</tr>
<tr>
<td>10. SPECIAL UNITS</td>
<td>19. SPECIAL CONFIGURATION</td>
<td>20. SPECIAL UNITS</td>
</tr>
<tr>
<td>11. SPECIAL UNITS</td>
<td>20. SPECIAL CONFIGURATION</td>
<td>21. SPECIAL UNITS</td>
</tr>
<tr>
<td>12. SPECIAL UNITS</td>
<td>21. SPECIAL CONFIGURATION</td>
<td>22. SPECIAL UNITS</td>
</tr>
<tr>
<td>13. SPECIAL UNITS</td>
<td>22. SPECIAL CONFIGURATION</td>
<td>23. SPECIAL UNITS</td>
</tr>
<tr>
<td>14. SPECIAL UNITS</td>
<td>23. SPECIAL CONFIGURATION</td>
<td>24. SPECIAL UNITS</td>
</tr>
<tr>
<td>15. SPECIAL UNITS</td>
<td>24. SPECIAL CONFIGURATION</td>
<td>25. SPECIAL UNITS</td>
</tr>
<tr>
<td>16. SPECIAL UNITS</td>
<td>25. SPECIAL CONFIGURATION</td>
<td>26. SPECIAL UNITS</td>
</tr>
<tr>
<td>17. SPECIAL UNITS</td>
<td>26. SPECIAL CONFIGURATION</td>
<td>27. SPECIAL UNITS</td>
</tr>
<tr>
<td>18. SPECIAL UNITS</td>
<td>27. SPECIAL CONFIGURATION</td>
<td>28. SPECIAL UNITS</td>
</tr>
<tr>
<td>19. SPECIAL UNITS</td>
<td>28. SPECIAL CONFIGURATION</td>
<td>29. SPECIAL UNITS</td>
</tr>
<tr>
<td>20. SPECIAL UNITS</td>
<td>29. SPECIAL CONFIGURATION</td>
<td>30. SPECIAL UNITS</td>
</tr>
</tbody>
</table>

Endress + Hauser

13
4.1 Group MEASURING VALUES

4.1.1 Function group MAIN VALUES

<table>
<thead>
<tr>
<th>Function Description</th>
<th>MEAS. VARIABLES A ➞ MEASURING VALUES AAA ➞ MAIN VALUES 000</th>
</tr>
</thead>
</table>
| **Note!** | • The units of all the measured variables shown here can be set in the SYSTEM UNITS group.
 | • If the fluid in the pipe flows backwards, a negative sign prefixes the flow reading on the display. |
| **MASS FLOW** (0000) | The currently measured mass flow appears on the display.
 | Display:
 | 5-digit floating-point number, including unit and sign
 | (e.g. 462.87 kg/h; –731.63 lb/min; etc.) |
| **VOLUME FLOW** (0001) | The calculated volume flow appears on the display. The volume flow is derived from the measured mass flow and the measured density of the fluid.
 | Display:
 | 5-digit floating-point number, including unit and sign
 | (e.g. 5.5445 dm³/min; 1.4359 m³/h; –731.63 gal/d; etc.) |
| **CORRECTED VOLUME FLOW** (0004) | The calculated corrected volume flow appears on the display. The calculated corrected volume flow is derived from the measured mass flow and the reference density of the fluid (density at reference temperature, measured or fixed entry).
 | Display:
 | 5-digit floating-point number, including unit and sign
 | (e.g. 1.3549 Nm³/h; 7.9846 scm/day; etc.) |
| **DENSITY** (0005) | The currently measured density or its specific gravity appears on the display.
 | Display:
 | 5-digit floating-point number, including unit
 | (e.g. 1.2345 kg/dm³; 993.5 kg/m³; 1.0015 SG_20 °C; etc.) |
| **REFERENCE DENSITY** (0006) | The density of the fluid, at reference temperature, appears on the display.
 | The reference density can be calculated using the measured density or specified using the FIXED REFERENCE DENSITY function (see Page 110).
 | Display:
 | 5-digit floating-point number, including unit
 | (e.g. 1.2345 kg/dm³; 993.5 kg/m³; 1.0015 SG_20 °C; etc.) |
| **TEMPERATURE** (0008) | The currently measured temperature appears on the display.
 | Display:
 | max. 4-digit fixed-point number, including unit and sign
 | (e.g. –23.4 °C; 160.0 °F; 295.4 K; etc.) |
4.2 Group SYSTEM UNITS

4.2.1 Function group CONFIGURATION

![Diagram](image)

Function description

You can select the units for measured variables in this function group.

<table>
<thead>
<tr>
<th>UNIT MASS FLOW (0400)</th>
<th>For selecting the unit for displaying the mass flow. The unit you select here is also valid for:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Current outputs</td>
</tr>
<tr>
<td></td>
<td>- Frequency outputs</td>
</tr>
<tr>
<td></td>
<td>- Status output switch point (limit value for mass flow, flow direction)</td>
</tr>
<tr>
<td></td>
<td>- Low flow cut off</td>
</tr>
</tbody>
</table>

Note!
You can select the following time units:
s = seconds, m = minutes, h = hours, d = day

Options:
Metric:
gram → g/time unit
kilogram → kg/time unit
ton → t/time unit

US:
ounce → oz/time unit
pound → lb/time unit
ton → ton/time unit

For arbitrary units (see function TEXT ARBITRARY MASS on Page 20)

FOR EXAMPLE → FOR example/time unit

Factory setting:
Country-dependent (kg/h or US-lb/min)

Note!
If you defined a unit of mass in the function group ARBITRARY UNIT 060 (see Page 20), the unit in question is shown here.

<table>
<thead>
<tr>
<th>UNIT MASS (0401)</th>
<th>For selecting the unit for displaying the mass. The unit you select here is also valid for:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Pulse value (e.g. kg/p)</td>
</tr>
</tbody>
</table>

Options:
Metric → g; kg; t
US → oz; lb; ton

For free selectable units → FOR EXAMPLE (see function TEXT ARBITRARY MASS on Page 20)

Factory setting:
Country-dependent (kg or US-lb)

Note!
- If you defined a unit of mass in the function group ARBITRARY UNIT 060 (see Page 20), the unit in question is shown here.
- The unit for the totalizers is independent of the selection made here and is selected separately for each totalizer.
UNIT VOLUME FLOW (0402)

For selecting the unit for displaying the volume flow. The unit you select here is also valid for:

- Current outputs
- Frequency outputs
- Status output switch point (limit value for volume flow, flow direction)
- Low flow cut off

Note!
You can select the following time units:
s = seconds, m = minutes, h = hours, d = day

Options:
Metric:
- Cubic centimeter → cm³/time unit
- Cubic decimeter → dm³/time unit
- Cubic meter → m³/time unit
- Milliliter → ml/time unit
- Liter → l/time unit
- Deciliter → dl/time unit
- Hectoliter → hl/time unit
- Megaliter → Ml/time unit

US:
- Cubic centimeter → cc/time unit
- Acre foot → af/time unit
- Cubic foot → ft³/time unit
- Fluid ounce → fl oz/time unit
- Gallon → gal/time unit
- Kilogallon → Kgal/time unit
- Million gallon → Mgal/time unit
- Barre (normal fluids: 31.5 gal/bbl) → bbl/time unit
- Barre (beer: 31.0 gal/bbl) → bbl/time unit
- Barre (petrochemicals: 42.0 gal/bbl) → bbl/time unit
- Barre (filling tanks: 55.0 gal/bbl) → bbl/time unit

Imperial:
- Gallon → gal/time unit
- Mega gallon → Mgal/time unit
- Barre (beer: 36.0 gal/bbl) → bbl/time unit
- Barre (petrochemicals: 34.97 gal/bbl) → bbl/time unit

Arbitrary unit (see function TEXT ARBITRARY VOLUME on Page 20)

Factory setting:
Country-dependent (m³/h or US-Mgal/day)

Note!
If you defined a unit of volume in the function group ARBITRARY UNIT 4060 (see Page 20), the unit in question is shown here.

UNIT VOLUME (0403)

For selecting the unit for displaying the volume. The unit you select here is also valid for:

Pulse value (e.g. m³/p)

Options:
Metric → cm³; dm³; m³; ml; l; hl; Ml Mega
US → cc; af; ft³; oz f; gal; Kgal; Mgal; bbl (normal fluids); bbl (beer); bbl (petrochemicals) → bbl (filling tanks)
Imperial → gal; Mgal; bbl (beer); bbl (petrochemicals)
Arbitrary unit (see function TEXT ARBITRARY VOLUME on Page 20)

Factory setting:
m³

Note!
- If you defined a unit of volume in the function group ARBITRARY UNIT 4060 (see Page 20), the unit in question is shown here.
- The unit of the totalizers is independent of the selection made here and is selected separately for each totalizer.
Function description

MEASURED VARIABLES ➔ SYSTEM UNITS ➔ CONFIGURATION

<table>
<thead>
<tr>
<th>Function Description</th>
<th>Description</th>
</tr>
</thead>
</table>
| **UNIT CORRECTED VOLUME FLOW (0404)** | For selecting the unit for displaying the corrected volume flow. The unit you select here is also valid for:
- Current outputs
- Frequency outputs
- Status output switch point (limit value for corrected volume flow, flow direction)
- Low flow cut off

Note! You can select the following time units:
s = seconds, m = minutes, h = hours, d = day

Options:
| Metric: Nm \(^3\)/time unit
| US: Sm \(^3\)/time unit
| Factory setting: Nm \(^3\)/h |
| **UNIT CORRECTED VOLUME (0405)** | For selecting the unit for displaying the corrected volume. The unit you select here is also valid for:
- Pulse value (e.g. Nm \(^3\)/p)

Options:
| Metric: Nm \(^3\)
| US: Sm \(^3\)
| Factory setting: Nm \(^3\) |

Note! The unit of the totalizers is independent of the selection made here and is selected separately for each totalizer.
4.2.2 Function group ADDITIONAL CONFIGURATION

<table>
<thead>
<tr>
<th>Function Description</th>
<th>MEASURED VARIABLES ➞ SYSTEM UNITS ➞ ADDITIONAL CONFIGURATION</th>
</tr>
</thead>
</table>
| **UNIT DENSITY**

(0420)

- For selecting the unit for displaying the density.
- The unit you select here is also valid for:
 - Current outputs
 - Frequency outputs
 - Status output switch point (limit value for density)
 - Density response value for EPD
 - Density adjustment value

Options:
- Metric:
 - g/cm³, g/cc, kg/dm³, kg/l, kg/m³
 - SD 4 °C, SD 15 °C, SD 20 °C, SG 4 °C, SG 15 °C, SG 20 °C
- US:
 - lb/ft³, lb/gal, lb/bbl (normal fluids), lb/bbl (beer), lb/bbl (petrochemicals), lb/bbl (filling tanks)
- Imperial:
 - lb/gal, lb/bbl (beer), lb/bbl (petrochemicals)

Factory setting:
- kg/l

SD = Specific Density, SG = Specific Gravity

The specific density is the ratio of fluid density to water density (at water temperature = 4, 15, 20 °C).

| **UNIT REFERENCE DENSITY**

(0421)

- For selecting the unit for displaying the reference density.
- The unit you select here is also valid for:
 - Current outputs
 - Frequency outputs
 - Status output switch point (limit value for standard density)
 - Fixed reference density (for calculation of corrected volume flow)

Options:
- Metric:
 - kg/Nm³
 - kg/Nl
- US:
 - g/Scc
 - kg/Sm³
 - lb/Scf

Factory setting:
- kg/Nl
Function description

MEASURED VARIABLES ➞ SYSTEM UNITS ➞ ADDITIONAL CONFIGURATION

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Options</th>
<th>Factory setting</th>
</tr>
</thead>
</table>
| **UNIT TEMPERATURE**
(0422) | For selecting the unit for displaying the temperature. | °C (Celsius)
K (Kelvin)
°F (Fahrenheit)
°R (Rankine) | °C |
| **UNIT LENGTH**
(0424) | For selecting the unit for displaying the length of the nominal diameter. | MILLIMETER
INCH | MILLIMETER |
| **UNIT PRESSURE**
(0426) | For selecting the unit for displaying the pressure. | bar a
bar g
psi a
psi g | bar g |
4.3 Group SPECIAL-UNITS

4.3.1 Function group ARBITRARY UNIT

<table>
<thead>
<tr>
<th>MEASURED VARIABLES (A)</th>
<th>MEASURING VALUES (AAA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM UNITS (ACA)</td>
<td></td>
</tr>
<tr>
<td>SPECIAL UNITS (AEA)</td>
<td>ARBITRARY UNIT (060)</td>
</tr>
</tbody>
</table>

Function description

MEASURED VARIABLES → SPECIAL-UNITS → ARBITRARY UNIT

Use this function group to define a selectable unit for mass, mass flow, volume, volume flow and density (optional).

TEXT ARBITRARY MASS (0600)

- **Use this function to enter a text for the selectable mass / mass flow unit. You define only the text, the unit of time is provided from a choice of options (s, min, h, day).**
 - **User input:**
 - xxxx (max. 4 characters)
 - Valid characters are A-Z, 0-9, +,-, decimal point, white space or underscore
 - **Factory setting:**
 - "_ _ _ _" (No text)
 - **Example:**
 - If your text entry is "CENT" (for centner), this text string appears on the display complete with the unit of time, e.g. "CENT/min":
 - CENT = Mass (text input)
 - CENT / min = Mass flow as shown (on the display)

FACTOR ARBITRARY MASS (0601)

- **Use this function to define a quantity factor (without time) for the selectable mass / mass flow unit.**
 - **User input:**
 - 7-digit floating-point number
 - **Factory setting:**
 - 1
 - **Reference quantity:**
 - kg
 - **Example:**
 - One centner is equivalent to 50 kg → 0.02 centner = 1 kg
 - User input: 0.02

TEXT ARBITRARY VOLUME (0602)

- **Use this function to enter a text for the selectable volume / volume flow unit. You define only the text, the unit of time is provided from a choice of options (s, min, h, day).**
 - **User input:**
 - xxxx (max. 4 characters)
 - Valid characters are A-Z, 0-9, +,-, decimal point, white space or underscore
 - **Factory setting:**
 - "_ _ _ _" (No text)
 - **Example:**
 - If your text entry is "GLAS", this text string appears on the display complete with the unit of time, e.g. "GLAS/min":
 - GLAS = Volume (text input)
 - GLAS / min = Volume flow as shown (on the display)
Function description

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTOR ARBITRARY VOLUME</td>
<td>Use this function to define a quantity factor (without time) for the selectable unit. The volume unit on which this factor is based is one liter.</td>
</tr>
<tr>
<td>(0603)</td>
<td>User input: 7-digit floating-point number</td>
</tr>
<tr>
<td></td>
<td>Factory setting: 1</td>
</tr>
<tr>
<td></td>
<td>Reference quantity: Liter</td>
</tr>
<tr>
<td></td>
<td>Example: The volume of a glass is 0.5 0 → 2 glasses = 1 liter User input: 2</td>
</tr>
</tbody>
</table>

| **TEXT ARBITRARY DENSITY** | Use this function to enter a text for the selectable density unit. User input: xxxx (max. 4 characters) Valid characters are A-Z, 0-9, +,-, decimal point, white space or underscore |
| (0604) | **Factory setting:** "..." (No text) Example: Enter text "CE_L" (for centner per liter). |

FACTOR ARBITRARY DENSITY	Use this function to define a quantity factor for the selectable density unit. The density unit on which this factor is based is one kg/l.
(0605)	**User input:** 7-digit floating-point number
	Factory setting: 1
	Reference quantity: kg/l
	Example: One centner per liter is equivalent to 50 kg/l → 0.02 centner/l = 1 kg/l User input: 0.02
5 Block QUICK SETUP

<table>
<thead>
<tr>
<th>Block</th>
<th>Group</th>
<th>Function groups</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUICK SETUP</td>
<td>(B)</td>
<td>⇒</td>
<td>⇒</td>
</tr>
</tbody>
</table>

Function description

QUICK SETUP COMMISSIONING (1002)

Start the setup for commissioning.

- **Options:**
 - YES
 - NO

- **Factory setting:**
 - NO

- **Note!**
 - You will find the flowchart of the Setup menu on Page 24.
 - For additional information on Setups, refer to the Operating Instructions for the Promass 84 (BA109D).

QUICK SETUP PULSATING FLOW (1003)

Start the application-specific Setup menu for pulsating flow.

- **Options:**
 - YES
 - NO

- **Factory setting:**
 - NO

- **Note!**
 - You will find the flowchart of the Setup menu on Page 26.
 - For additional information on Setups, refer to the Operating Instructions for the Promass 84 (BA109D).

QUICK SETUP GAS MEASUREMENT (1004)

Start the application-specific Setup menu for gas measurement.

- **Options:**
 - YES
 - NO

- **Factory setting:**
 - NO

- **Note!**
 - You will find the flowchart of the Setup menu on Page 28.
 - For additional information on Setups, refer to the Operating Instructions for the Promass 84 (BA109D).
Function description

T-DAT SAVE/LOAD (1009)

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANCEL</td>
<td>Use this function to save the parameter settings / configuration of the transmitter in a transmitter DAT (T-DAT), or to load the parameter settings from the T-DAT into the EEPROM (manual backup function).</td>
</tr>
<tr>
<td>SAVE</td>
<td>Application examples:</td>
</tr>
<tr>
<td></td>
<td>- After commissioning, the current measuring point parameters can be saved to the T-DAT as a backup.</td>
</tr>
<tr>
<td></td>
<td>- If the transmitter is replaced for some reason, the data from the T-DAT can be loaded into the new transmitter (EEPROM).</td>
</tr>
<tr>
<td>LOAD</td>
<td>Options:</td>
</tr>
<tr>
<td></td>
<td>CANCEL</td>
</tr>
<tr>
<td></td>
<td>SAVE (from EEPROM to T-DAT)</td>
</tr>
<tr>
<td></td>
<td>LOAD (from the T-DAT into EEPROM)</td>
</tr>
</tbody>
</table>

Factory setting:

CANCEL

Note:

- If the target device has an older software version, the message "TRANSM. SW-DAT" is displayed during startup. Then only the SAVE function is available.

- LOAD

 This function is only possible if the target device has the same software version as, or a more recent software version than, the source device.

- SAVE

 This function is always available.
5.1 Quick Setup

In the case of measuring devices without a local display, the individual parameters and functions must be configured via the configuration program, e.g. FieldCare.

If the measuring device is equipped with a local display, all the important device parameters for standard operation can be configured quickly and easily by means of the "Commissioning" Quick Setup menu.

- Quick Setup Commissioning, see below
- Quick Setup Pulsating Flow → Page 26
- Quick Setup Gas Measurement → Page 28

5.1.1 Quick Setup Commissioning

1. The DELIVERY SETTING option sets every selected unit to the factory setting. The ACTUAL SETTING option accepts the units you previously configured.
2. Only units not yet configured in the current Setup are offered for selection in each cycle. The unit for mass, volume and corrected volume is derived from the corresponding flow unit.
3. The YES option remains visible until all the units have been configured. NO is the only option displayed when no further units are available.
4. Only the outputs not yet configured in the current Setup are offered for selection in each cycle.
5. The YES option remains visible until all the outputs have been configured. NO is the only option displayed when no further outputs are available.
6. The "automatic parameterization of the display" option contains the following basic settings/factory settings:
 YES: Main line = Mass flow; Additional line = Totalizer 1; Information line = Operating/system conditions
 NO: The existing (selected) settings remain.
7. The DOUBLE PULS 90° or DOUBLE PULS 180° can only be selected for frequency/pulse output 2 and only if the PULSE operating mode was selected for frequency/pulse output 1.
 The frequency/pulse output 2 then works with the parameters selected by frequency/pulse output 1, but phase-shifted by 90° or 180°.

Note!
The display returns to the function QUICK SETUP COMMISSIONING (1002) if you press the key combination during parameter interrogation. The stored parameters remain valid.
Fig. 1: QUICK SETUP COMMISSIONING menu for straightforward configuration of the major device functions
5.1.2 Quick Setup Pulsating Flow

Fig. 2: QUICK SETUP PULSATING FLOW menu for operation with severely pulsating flow. Recommended settings are found on the following page.

1. Only totalizers not yet configured in the current Setup are offered for selection in each cycle.
2. The YES option remains visible until all the totalizers have been configured. NO is the only option displayed when no further totalizers are available.
3. Only the outputs not yet configured in the current Quick Setup are offered for selection in each cycle.
4. The YES option remains visible until all the outputs have been configured. NO is the only option displayed when no further outputs are available.
5. The DOUBLE PULS 90° or DOUBLE PULS 180° can only be selected for frequency/pulse output 2 and only if the PULSE operating mode was selected for frequency/pulse output 1. The frequency/pulse output 2 then works with the parameters selected by frequency/pulse output 1, but phase-shifted by 90° or 180°.

Note!
- The display returns to the function QUICK SETUP PULSATING FLOW (1003) if you press the key combination during parameter interrogation. The stored parameters remain valid.
- You can call up this Setup menu either directly from the COMMISSIONING Setup menu or manually by means of the function QUICK SETUP PULSATING FLOW (1003).
Quick Setup Pulsating Flow

HOME position → ▶ → MEASURED VARIABLE (A)
MEASURED VARIABLE → ▶ → QUICK SETUP (B)
QUICK SETUP → ▶ → QS PULS. FLOW (1003)

<table>
<thead>
<tr>
<th>Function No.</th>
<th>Function name</th>
<th>Selection with ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>1003</td>
<td>QS PULS. FLOW</td>
<td>YES</td>
</tr>
</tbody>
</table>

After ▶ is pressed by way of confirmation, the Quick Setup menu calls up all the subsequent functions in succession.

Basic configuration

<table>
<thead>
<tr>
<th>Function No.</th>
<th>Function name</th>
<th>Selection with ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>DISPLAY DAMPING</td>
<td>1 s</td>
</tr>
<tr>
<td>3002</td>
<td>TOTALIZER MODE (DAA) BALANCE (Totalizer 1)</td>
<td></td>
</tr>
<tr>
<td>3002</td>
<td>TOTALIZER MODE (DAB) BALANCE (Totalizer 2)</td>
<td></td>
</tr>
<tr>
<td>3002</td>
<td>TOTALIZER MODE (DAC) BALANCE (Totalizer 3)</td>
<td></td>
</tr>
</tbody>
</table>

Signal type for CURRENT OUTPUT 1 to n

<table>
<thead>
<tr>
<th>Function No.</th>
<th>Function name</th>
<th>Selection with ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>4004</td>
<td>MEASURING MODE</td>
<td>PULS. FLOW</td>
</tr>
<tr>
<td>4005</td>
<td>TIME CONSTANT</td>
<td>1 s</td>
</tr>
</tbody>
</table>

Signal type for FREQ./PULSE OUTPUT 1 to n (for FREQUENCY mode of operation)

<table>
<thead>
<tr>
<th>Function No.</th>
<th>Function name</th>
<th>Selection with ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>4206</td>
<td>MEASURING MODE</td>
<td>PULS. FLOW</td>
</tr>
<tr>
<td>4208</td>
<td>TIME CONSTANT</td>
<td>0 s</td>
</tr>
</tbody>
</table>

Signal type for FREQ./PULSE OUTPUT 1 to n (for PULSE mode of operation)

<table>
<thead>
<tr>
<th>Function No.</th>
<th>Function name</th>
<th>Selection with ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>4225</td>
<td>MEASURING MODE</td>
<td>PULS. FLOW</td>
</tr>
</tbody>
</table>

Other settings

<table>
<thead>
<tr>
<th>Function No.</th>
<th>Function name</th>
<th>Selection with ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>8005</td>
<td>ALARM DELAY</td>
<td>0 s</td>
</tr>
<tr>
<td>6400</td>
<td>ASSIGN LOW FLOW CUTOFF MASS FLOW</td>
<td></td>
</tr>
<tr>
<td>6402</td>
<td>ON-VALUE LOW FLOW CUTOFF Setting depends on diameter: DN 1 = 0.02 [kg/h] or [l/h] DN 2 = 0.10 [kg/h] or [l/h] DN 4 = 0.45 [kg/h] or [l/h] DN 8 = 2.0 [kg/h] or [l/h] DN 15 = 6.5 [kg/h] or [l/h] DN 25 = 18 [kg/h] or [l/h] DN 40 = 45 [kg/h] or [l/h] DN 50 = 70 [kg/h] or [l/h] DN 80 = 180 [kg/h] or [l/h] DN 100 = 350 [kg/h] or [l/h] DN 150 = 650 [kg/h] or [l/h] DN 250 = 1800 [kg/h] or [l/h]</td>
<td></td>
</tr>
<tr>
<td>6403</td>
<td>OFF-VALUE LOW FLOW CUTOFF 50%</td>
<td></td>
</tr>
<tr>
<td>6404</td>
<td>PRESSURE SHOCK SUPPRESSION 0 s</td>
<td></td>
</tr>
</tbody>
</table>

Back to the HOME position:
→ Press and hold down Esc key ▶ for longer than three seconds or
→ Repeatedly press and release Esc key ▶ → Exit the function matrix step by step
5.1.3 Quick Setup Gas Measurement

Quick Setup Gas Measurement

<table>
<thead>
<tr>
<th>Function No.</th>
<th>Function name</th>
<th>Setting to be selected (YES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1004</td>
<td>QS GAS MEASUREMENT</td>
<td>YES</td>
</tr>
</tbody>
</table>
| | After ENTER is pressed by way of confirmation, the Quick Setup menu calls up all the subseque

Fig. 3: QUICK SETUP GAS MEASUREMENT menu

Quick Setup automatically deactivates the function EMPTY PIPE DETECTION (6420) is automatically switched off by the Quick Setup.
5.2 Data back-up/transfer

You can use the T-DAT SAVE/LOAD function to transfer data (device parameters and settings) between the T-DAT (removable memory) and the EEPROM (device memory).

This is required for the following applications:
- Creating a backup: current data are transmitted from an EEPROM to the T-DAT.
- Replacing a transmitter: current data are copied from an EEPROM to the T-DAT, then transmitted to the EEPROM of the new transmitter.
- Duplicating data: current data are copied from an EEPROM to the T-DAT, then transmitted to EEPROMs of identical measuring points.

Note!
Installing and removing the T-DAT → Operating Instructions of the Promass 84 (BA109D)

Data storage/transmission with T-DAT SAVE/LOAD

Notes on the LOAD and SAVE options:

LOAD:
Data are transmitted from the T-DAT to the EEPROM.

Note!
- Previously saved settings on the EEPROM are deleted.
- This selection is available only if the T-DAT contains valid data.
- This selection can be made only if the software version of the T-DAT is the same or newer than that of the EEPROM. Otherwise, the error message "TRANSM. SW-DAT" appears after the restart and the LOAD function is subsequently no longer available.

SAVE:
Data are transmitted from the EEPROM to the T-DAT.
<table>
<thead>
<tr>
<th>Block</th>
<th>Groups</th>
<th>Function groups</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>User interface</td>
<td>Operation (CA) P. 31</td>
<td>Basic config. (200) P. 31</td>
<td>Language (2000) P. 31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unlocking/locking (204) P. 33</td>
<td>Display damping (2001) P. 31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operation (204) P. 34</td>
<td>Contrast LCD (2003) P. 31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test display (2040) P. 34</td>
<td>Backlight (2004) P. 32</td>
</tr>
<tr>
<td>Main line</td>
<td>Configuration (220) P. 35</td>
<td>Assign (2200) P. 35</td>
<td>100% value (2201) P. 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assign (2220) P. 37</td>
<td>Format (2202) P. 36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiflex (222) P. 37</td>
<td></td>
</tr>
<tr>
<td>Additional line</td>
<td>Configuration (240) P. 38</td>
<td>Assign (2400) P. 38</td>
<td>100% value (2401) P. 38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assign (2420) P. 40</td>
<td>Format (2421) P. 41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiflex (242) P. 40</td>
<td></td>
</tr>
<tr>
<td>Information line</td>
<td>Configuration (260) P. 42</td>
<td>Assign (2600) P. 42</td>
<td>100% value (2601) P. 43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assign (2620) P. 44</td>
<td>Format (2621) P. 45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiflex (262) P. 44</td>
<td></td>
</tr>
</tbody>
</table>
6.1 Group CONTROL

6.1.1 Function group BASIC CONFIG.

<table>
<thead>
<tr>
<th>USER INTERFACE</th>
<th>C</th>
<th>⇒</th>
<th>CONTROL</th>
<th>CAA</th>
<th>⇒</th>
<th>BASIC CONFIGURATION</th>
<th>200</th>
</tr>
</thead>
</table>

Function description

DISPLAY ➞ CONTROL ➞ BASIC CONFIG.

LANGUAGE

(2000)

(only for NTEP, MC)

For selecting the language for all texts, parameters and messages shown on the local display.

Note:

The displayed options depend on the available language group shown in the LANGUAGE GROUP ((8226) ➔ Page 126) function.

Options:

- Language group WEST EU / USA:
 - ENGLISH
 - DEUTSCH
 - FRANCAIS
 - ESPANOL
 - ITALIANO
 - NEDERLANDS
 - PORTUGUESE

- Language group EAST EU / SCAND:
 - ENGLISH
 - NORSK
 - SVENSKA
 - SUOMI
 - POLISH
 - RUSSIAN
 - CZECH

- Language group ASIA:
 - ENGLISH
 - BAHASA INDONESIA
 - JAPANESE (syllabary)

- Language group CHINA:
 - ENGLISH
 - CHINESE

Factory setting:

Country-dependent (Page 130)

Note:

- If you press the
 keys simultaneously at startup, the language defaults to ENGLISH.
- You can change the language group via the configuration software FieldCare. Please do not hesitate to contact your Endress+Hauser sales office if you have any questions.

DISPLAY DAMPING

(2002)

(only for NTEP, MC)

For entering a time constant which defines how the display reacts to severely fluctuating flow variables, either very quickly (enter a low time constant) or with damping (enter a high time constant).

User input:

0 to 100 seconds

Factory setting:

1 s

Note:

Setting the time constant to zero seconds switches off damping.

CONTRAST LCD

(2003)

(only for NTEP, MC)

For adjusting the display contrast to suit local operating conditions.

User input:

10 to 100%

Factory setting:

50%
Function description

DISPLAY ➞ CONTROL ➞ BASIC CONFIG.

<table>
<thead>
<tr>
<th>BACKLIGHT (2004)</th>
<th>For adjusting the backlight to suit local operating conditions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>◀ (only for NTEP, MC)</td>
<td>User input: 0 to 100%</td>
</tr>
<tr>
<td></td>
<td>Note! Entering the value 0 means that the backlight is switched off. The display then no longer emits any light, i.e. the display texts can no longer be read in the dark.</td>
</tr>
<tr>
<td></td>
<td>Factory setting: 50%</td>
</tr>
</tbody>
</table>
6.1.2 Function group UNLOCKING/LOCKING

Function description

| USER INTERFACE | CONTROL | CAA | BASIC CONFIGURATION 200 | UNLOCKING/LOCKING 202 |

ACCESS CODE (2020)

All data of the measuring system are protected against inadvertent change. Programming is disabled and the settings cannot be changed until a code is entered in this function.

If you press the or keys in any function, the measuring system automatically goes to this function and the prompt to enter the code appears on the display (when programming is disabled).

You can enable programming by entering your personal code (Factory setting = 84, see function DEFINE PRIVATE CODE (2021)).

To set the measuring instrument to access-protection mode, enter the custody code 8400 here. This locks all the functions that are marked with a keyhole symbol (\(\mathbb{D}\)).

User input:
- max. 4-digit number: 0 to 9999

Note!
- Programming is disabled if you do not press a key within 60 seconds following automatic return to the HOME position.
- You can also disable programming in this function by entering any number (other than the defined private code).
- The Endress+Hauser service organization can be of assistance if you mislay your personal code.

DEFINE PRIVATE CODE (2021)

For specifying a personal code for enabling programming in the function ACCESS CODE.

User input:
- 0 to 9999 (max. 4-digit number)

Factory setting:
- 84

Note!
- Programming is always enabled with the code 0.
- Programming has to be enabled before this code can be changed. When programming is disabled this function is not available, thus preventing others from accessing your personal code.

STATUS ACCESS (2022)

Indicates whether access to the function matrix is currently possible (ACCESS CUSTOMER) or whether configuration is locked (LOCKED).

Display:
- ACCESS CUSTOMER (parameterization possible)
- LOCKED (parameterization disabled)

ACCESS CODE COUNTER (2023)

Displays how often the customer code, service code or the digit "0" (code-free) has been entered to gain access to the function matrix.

Display:
- max. 7-digit number: 0 to 9999999

Factory setting:
- 0
6.1.3 Function group OPERATION

Function description

TEST DISPLAY (2040)

For testing the operability of the local display and its pixels.

Options:
- OFF
- ON

Factory setting:
- OFF

Test sequence:
1. Start the test by selecting ON.
2. All pixels of the main line, additional line and information line are darkened for minimum 0.75 second.
3. Main line, additional line and information line show an "8" in each field for minimum 0.75 seconds.
4. Main line, additional line and information line show a "0" in each field for minimum 0.75 seconds.
5. Main line, additional line and information line show nothing (blank display) for minimum 0.75 second.

When the test is completed, the local display returns to its initial state and the setting changes to OFF.
6.2 Group MAIN LINE

6.2.1 Function group CONFIGURATION

Function description

1 = Main line
2 = Addition line
3 = Information line

ASSIGN (2200)

For assigning a value to be displayed to the main line (top line in the local display). This value is displayed during normal operation.

Options:
- OFF
- MASS FLOW
- MASS FLOW IN %
- VOLUME FLOW
- VOLUME FLOW IN %
- CORRECTED VOLUME FLOW
- CORRECTED VOLUME FLOW IN %
- DENSITY
- REFERENCE DENSITY
- TEMPERATURE
- ACTUAL CURRENT
- ACTUAL VALUE FREQUENCY (1 to 2)
- TOTALIZER (1 to 3)
- CUSTODY TRANSFER

Factory setting:
- MASS FLOW

100% VALUE (2201)

Note! This function is not available unless one of the following was selected in the ASSIGN function (2200):
- MASS FLOW IN %
- VOLUME FLOW IN %
- CORRECTED VOLUME FLOW IN %

For specifying the value to be shown on the display as the 100% value.

User input:
- 5-digit floating-point number

Factory setting:
- depends on nominal diameter and country → Page 129 ff.
Function description

USER INTERFACE ➔ MAIN LINE ➔ CONFIGURATION

<table>
<thead>
<tr>
<th>FORMAT (2202)</th>
<th>Select the number of places after the decimal point displayed for the reading in the main line.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Options: XXXXX. - XXX.X - XXX.XX - XX.XXX - X.XXXX</td>
</tr>
<tr>
<td></td>
<td>Factory setting: X.XXXX</td>
</tr>
</tbody>
</table>

Note:
- Note that this setting only affects the reading as it appears on the display, it has no influence on the accuracy of the system’s calculations.
- The places after the decimal point as computed by the measuring device cannot always be displayed, depending on this setting and the engineering unit. In such instances an arrow appears on the display between the measuring value and the engineering unit (e.g. 1.2 → kg/h), indicating that the measuring system is computing with more decimal places than can be shown on the display.
6.2.2 Function group MULTIPLEX

Function description

USER INTERFACE ➔ MAIN LINE ➔ MULTIPLEX

<table>
<thead>
<tr>
<th>ASSIGN (2220)</th>
<th>For assigning a second reading to the main line, to be displayed in the main line alternately (every 10 seconds) with the value defined in the ASSIGN function (2200).</th>
</tr>
</thead>
</table>
| **Options:** | OFF
| | MASS FLOW
| | MASS FLOW IN %
| | VOLUME FLOW
| | VOLUME FLOW IN %
| | CORRECTED VOLUME FLOW
| | CORRECTED VOLUME FLOW IN %
| | DENSITY
| | REFERENCE DENSITY
| | TEMPERATURE
| | ACTUAL CURRENT
| | ACTUAL VALUE FREQUENCY (1 to 2)
| | TOTALIZER (1 to 3)
| | CUSTODY TRANSFER
| **Factory setting:** | OFF |

| 100% VALUE (2221) | **Note!**
|-------------------| This function is not available unless one of the following was selected in the ASSIGN function (2220):
| | • MASS FLOW IN %
| | • VOLUME FLOW IN %
| | • CORRECTED VOLUME FLOW IN %
| | For specifying the value to be shown on the display as the 100% value.
| **User input:** | 5-digit floating-point number
| **Factory setting:** | depends on nominal diameter and country → Page 129 ff. |

| FORMAT (2222) | Select the number of places after the decimal point displayed for the second reading in the main line.
|---------------| **Options:**
| | XXXXX. - XXX.X - XXX.XX - XX.XXX -X.XXXX
| **Factory setting:** | X.XXXX

Note!
- Note that this setting only affects the reading as it appears on the display, it has no influence on the accuracy of the system’s calculations.
- The places after the decimal point as computed by the measuring device cannot always be displayed, depending on this setting and the engineering unit. In such instances an arrow appears on the display between the measuring value and the engineering unit (e.g. 1.2 → kg/h), indicating that the measuring system is computing with more decimal places than can be shown on the display.
6.3 Group ADDITION LINE

6.3.1 Function group CONFIGURATION

<table>
<thead>
<tr>
<th>USER INTERFACE</th>
<th>C</th>
<th>CONTROL</th>
<th>CAA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAIN LINE</td>
<td></td>
<td>CCA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADDITIONAL</td>
<td></td>
<td>CEA</td>
<td></td>
</tr>
<tr>
<td>LINE CONFIG</td>
<td></td>
<td>240</td>
<td></td>
</tr>
</tbody>
</table>

Function description

USER INTERFACE ➝ ADDITION LINE ➝ CONFIGURATION

<table>
<thead>
<tr>
<th>ASSIGN (2400)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = Main line</td>
<td></td>
</tr>
<tr>
<td>2 = Addition line</td>
<td></td>
</tr>
<tr>
<td>3 = Information line</td>
<td></td>
</tr>
</tbody>
</table>

ASSIGN (2400)

For assigning a value to be displayed to the additional line (middle line in the local display). This value is displayed during normal operation.

Options:

- OFF
- MASS FLOW
- MASS FLOW IN %
- VOLUME FLOW
- VOLUME FLOW IN %
- CORRECTED VOLUME FLOW
- CORRECTED VOLUME FLOW IN %
- DENSITY
- REFERENCE DENSITY
- TEMPERATURE
- MASS FLOW BARGRAPH IN %
- VOLUME FLOW BARGRAPH IN %
- CORRECTED VOLUME FLOW BARGRAPH IN %
- ACTUAL CURRENT
- ACTUAL VALUE FREQUENCY (1 to 2)
- TOTALIZER (1 to 3)
- TAG NAME
- CUSTODY TRANSFER

Factory setting:

TOTALIZER 1

100% VALUE (2401)

Note!

This function is not available unless one of the following was selected in the ASSIGN function (2400):

- MASS FLOW IN %
- VOLUME FLOW IN %
- CORRECTED VOLUME FLOW IN %
- MASS FLOW BARGRAPH IN %
- VOLUME FLOW BARGRAPH IN %
- CORRECTED VOLUME FLOW BARGRAPH IN %

For specifying the value to be shown on the display as the 100% value.

User input:

5-digit floating-point number

Factory setting:

depends on nominal diameter and country ➝ Page 129 ff.
FORMAT (2402)

- **Note!** This function is not available unless a number was selected in the ASSIGN function (2400).
- Select the number of places after the decimal point displayed for the reading in the addition line.

Options:
- XXXXX - XXX.X - XXX.XX - XX.XXX - X.XXXX

Factory setting: X.XXXX

- **Note!**
 - If this setting only affects the reading as it appears on the display, it has no influence on the accuracy of the system’s calculations.
 - The places after the decimal point as computed by the measuring device cannot always be displayed, depending on this setting and the engineering unit. In such instances an arrow appears on the display between the measuring value and the engineering unit (e.g. 1.2 → kg/h), indicating that the measuring system is computing with more decimal places than can be shown on the display.

DISPLAY MODE (2403)

- **Note!** This function is not available unless one of the following was selected in the ASSIGN (2400) function:
 - MASS FLOW BARGRAPH IN %
 - VOLUME FLOW BARGRAPH IN %
 - CORRECTED VOLUME FLOW BARGRAPH IN %

Use this function to define the format of the bar graph.

Options:
- STANDARD
 - Simple bar graph with 25 / 50 / 75% gradations and integrated sign.

- SYMMETRY
 - Symmetrical bar graph for positive and negative directions of flow, with -50 / 0 / +50% gradations and integrated sign.

Factory setting: STANDARD
6.3.2 Function group MULTIPLEX

For assigning a second reading to the addition line, to be displayed in the addition line alternately (every 10 seconds) with the value defined in the ASSIGN function (2400).

Options:
- OFF
- MASS FLOW
- MASS FLOW IN %
- VOLUME FLOW
- VOLUME FLOW IN %
- CORRECTED VOLUME FLOW
- CORRECTED VOLUME FLOW IN %
- DENSITY
- REFERENCE DENSITY
- TEMPERATURE
- MASS FLOW BARGRAPH IN %
- VOLUME FLOW BARGRAPH IN %
- CORRECTED VOLUME FLOW BARGRAPH IN %
- ACTUAL CURRENT
- ACTUAL VALUE FREQUENCY (1 to 2)
- TOTALIZER (1 to 3)
- TAG NAME
- CUSTODY TRANSFER

Factory setting:
OFF

Note!
Multiplex mode is suspended as soon as a fault / notice message is generated. The message in question appears on the display.

- Fault message (identified by a lightning icon):
 - If ON was selected in the ACKNOWLEDGE FAULTS (8004) function, multiplex mode is continued as soon as the fault has been acknowledged and is no longer active.
 - If OFF has been selected in the ACKNOWLEDGE FAULTS (8004) function, multiplex mode is continued as soon as the fault is no longer active.

- Notice message (identified by an exclamation mark):
 - Multiplex mode is continued as soon as the notice message is no longer active.
Function description
USER INTERFACE ➔ ADDITION LINE ➔ MULTIPLEX

| **100% VALUE (2421)** | Note! This function is not available unless one of the following was selected in the ASSIGN function (2420):
• MASS FLOW IN %
• VOLUME FLOW IN %
• CORRECTED VOLUME FLOW IN %
• MASS FLOW BARGRAPH IN %
• VOLUME FLOW BARGRAPH IN %
• CORRECTED VOLUME FLOW BARGRAPH IN %
For specifying the value to be shown on the display as the 100% value.
User input: 5-digit floating-point number
Factory setting: depends on nominal diameter and country ➔ Page 129 ff. |
| **FORMAT (2422)** | Note! This function is not available unless a number was selected in the ASSIGN function (2420).
Select the number of places after the decimal point displayed for the second reading in the addition line.
Options: XXXXX. - XXXX.X - XXX.XX - XX.XXX -X.XXXX
Factory setting: X.XXXX
Note! Note that this setting only affects the reading as it appears on the display, it has no influence on the accuracy of the system’s calculations.
The places after the decimal point as computed by the measuring device cannot always be displayed, depending on this setting and the engineering unit. In such instances an arrow appears on the display between the measuring value and the engineering unit (e.g. 1.2 ➔ kg/h), indicating that the measuring system is computing with more decimal places than can be shown on the display. |
| **DISPLAY MODE (2423)** | Note! This function is not available unless one of the following was selected in the ASSIGN function (2420):
• MASS FLOW BARGRAPH IN %
• VOLUME FLOW BARGRAPH IN %
• CORRECTED VOLUME FLOW BARGRAPH IN %
Use this function to define the format of the bar graph.
Options:
STANDARD
Simple bar graph with 25 / 50 / 75% gradations and integrated sign.
SYMmetry
Symmetrical bar graph for positive and negative directions of flow, with −50 / 0 / +50% gradations and integrated sign.
Factory setting:
STANDARD |
6.4 Group INFORMATION LINE

6.4.1 Function group CONFIGURATION

<table>
<thead>
<tr>
<th>USER INTERFACE</th>
<th>Control</th>
<th>CAA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAIN LINE</td>
<td>CCA</td>
</tr>
<tr>
<td></td>
<td>ADDITIONAL LINE</td>
<td>CEA</td>
</tr>
<tr>
<td>INFORMATION LINE</td>
<td>CGA</td>
<td></td>
</tr>
</tbody>
</table>

⇒ CONFIGURATION 260

Function description

<table>
<thead>
<tr>
<th>USER INTERFACE</th>
<th>INFORMATION LINE</th>
<th>CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = Main line</td>
<td>2 = Addition line</td>
<td>3 = Information line</td>
</tr>
</tbody>
</table>

For assigning a value to be displayed to the information line (bottom line in the local display). This value is displayed during normal operation.

Options:

- OFF
- MASS FLOW
- MASS FLOW IN %
- VOLUME FLOW
- VOLUME FLOW IN %
- CORRECTED VOLUME FLOW
- CORRECTED VOLUME FLOW IN %
- DENSITY
- REFERENCE DENSITY
- TEMPERATURE
- MASS FLOW BARGRAPH IN %
- VOLUME FLOW BARGRAPH IN %
- CORRECTED VOLUME FLOW BARGRAPH IN %
- ACTUAL CURRENT
- ACTUAL VALUE FREQUENCY (1 to 2)
- TOTALIZER (1 to 3)
- TAG NAME
- OPERATING/SYSTEM CONDITIONS
- FLOW DIRECTION READING
- CUSTODY TRANSFER

Factory setting:

- OPERATING/SYSTEM CONDITIONS
Function description

USER INTERFACE → INFORMATION LINE → CONFIGURATION

<table>
<thead>
<tr>
<th>Function description</th>
<th>User input</th>
<th>Factory setting</th>
<th>Note!</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% VALUE (2601)</td>
<td>-</td>
<td>-</td>
<td>This function is not available unless one of the following was selected in the ASSIGN function (2600): • MASS FLOW IN % • VOLUME FLOW IN % • CORRECTED VOLUME FLOW IN % • MASS FLOW BARGRAPH IN % • VOLUME FLOW BARGRAPH IN % • CORRECTED VOLUME FLOW BARGRAPH IN % For specifying the value to be shown on the display as the 100% value.</td>
</tr>
<tr>
<td>FORMAT (2602)</td>
<td>5-digit floating-point number</td>
<td>depends on nominal diameter and country → Page 129 ff.</td>
<td></td>
</tr>
<tr>
<td>DISPLAY MODE (2603)</td>
<td>-</td>
<td>-</td>
<td>This function is not available unless one of the following was selected in the ASSIGN (2600) function: • MASS FLOW BARGRAPH IN % • VOLUME FLOW BARGRAPH IN % • CORRECTED VOLUME FLOW BARGRAPH IN % Use this function to define the format of the bar graph.</td>
</tr>
</tbody>
</table>

Options:

- STANDARD
 - Simple bar graph with 25/50/75% gradations and integrated sign.

- SYMMETRY
 - Symmetrical bar graph for positive and negative directions of flow, with -50/0/+50% gradations and integrated sign.

Factory setting:

- STANDARD
6.4.2 Function group MULTIPLEX

<table>
<thead>
<tr>
<th>USER INTERFACE</th>
<th>C =></th>
<th>CONTROL</th>
<th>CAA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MAIN LINE</td>
<td>CCA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADDITIONAL LINE</td>
<td>CEA</td>
</tr>
<tr>
<td>INFORMATION LINE</td>
<td>CGA</td>
<td>=></td>
<td>CONFIGURATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MULTIPLEX</td>
<td>262</td>
</tr>
</tbody>
</table>

Function description

USER INTERFACE → INFORMATION LINE → MULTIPLEX

ASSIGN (2620)

For assigning a second reading to the information line, to be displayed in the information line alternately (every 10 seconds) with the value defined in the ASSIGN function (2600).

Options:
- OFF
- MASS FLOW
- MASS FLOW IN %
- VOLUME FLOW
- VOLUME FLOW IN %
- CORRECTED VOLUME FLOW
- CORRECTED VOLUME FLOW IN %
- DENSITY
- REFERENCE DENSITY
- TEMPERATURE
- MASS FLOW BARGRAPH IN %
- VOLUME FLOW BARGRAPH IN %
- CORRECTED VOLUME FLOW BARGRAPH IN %
- ACTUAL CURRENT
- ACTUAL VALUE FREQUENCY (1 to 2)
- TOTALIZER (1 to 3)
- TAG NAME
- OPERATING/SYSTEM CONDITIONS
- FLOW DIRECTION READING
- CUSTODY TRANSFER

Factory setting:
- OFF

Note!

Multiplex mode is suspended as soon as a fault / notice message is generated. The message in question appears on the display.

- Fault message (identified by a lightning icon):
 - If ON was selected in the ACKNOWLEDGE FAULTS (8004) function, multiplex mode is continued as soon as the fault has been acknowledged and is no longer active.
 - If OFF has been selected in the ACKNOWLEDGE FAULTS (8004) function, multiplex mode is continued as soon as the fault is no longer active.

- Notice message (identified by an exclamation mark):
 - Multiplex mode is continued as soon as the notice message is no longer active.
<table>
<thead>
<tr>
<th>Function description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% VALUE (2621)</td>
</tr>
</tbody>
</table>

Note!
This function is not available unless one of the following was selected in the ASSIGN function (2620):
- MASS FLOW IN %
- VOLUME FLOW IN %
- CORRECTED VOLUME FLOW IN %
- MASS FLOW BARGRAPH IN %
- VOLUME FLOW BARGRAPH IN %
- CORRECTED VOLUME FLOW BARGRAPH IN %

For specifying the value to be shown on the display as the 100% value.

User input:
5-digit floating-point number

Factory setting:
depends on nominal diameter and country → Page 129 ff.

| FORMAT (2622) |

Note!
This function is not available unless a number was selected in the ASSIGN function (2620).

Select the number of places after the decimal point displayed for the second reading in the information line.

Options:
- XXXXX. - XXXX.X - XXX.XX - XX.XXX - X.XXXX

Factory setting:
X.XXXX

Note!
- Note that this setting only affects the reading as it appears on the display, it has no influence on the accuracy of the system's calculations.
- The places after the decimal point as computed by the measuring device cannot always be displayed, depending on this setting and the engineering unit. In such instances an arrow appears on the display between the measuring value and the engineering unit (e.g. 1.2 → kg/h), indicating that the measuring system is computing with more decimal places than can be shown on the display.

| DISPLAY MODE (2623) |

Note!
This function is not available unless one of the following was selected in the ASSIGN function (2620):
- MASS FLOW BARGRAPH IN %
- VOLUME FLOW BARGRAPH IN %
- CORRECTED VOLUME FLOW BARGRAPH IN %

Use this function to define the format of the bar graph.

Options:
- STANDARD
 Simple bar graph with 25 / 50 / 75% gradations and integrated sign.

- SYMMETRY
 Symmetrical bar graph for positive and negative directions of flow, with -50 / 0 / +50% gradations and integrated sign.

Factory setting:
STANDARD
7 Block TOTALIZER

<table>
<thead>
<tr>
<th>Block</th>
<th>TOTALIZER (D) P. 486</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOTALIZER 1 (DAA) P. 47</td>
</tr>
<tr>
<td></td>
<td>TOTALIZER 2 (DAB) P. 47</td>
</tr>
<tr>
<td></td>
<td>TOTALIZER 3 (DAC) P. 47</td>
</tr>
<tr>
<td>Groups</td>
<td>TOTALIZER 1 OPERATION (DAA) P. 47</td>
</tr>
<tr>
<td></td>
<td>TOTALIZER 2 OPERATION (DAB) P. 47</td>
</tr>
<tr>
<td></td>
<td>TOTALIZER 3 OPERATION (DAC) P. 47</td>
</tr>
</tbody>
</table>

Function Groups	TOTALIZER 1 CONFIGURATION (DAA) P. 47
	TOTALIZER 2 CONFIGURATION (DAB) P. 47
	TOTALIZER 3 CONFIGURATION (DAC) P. 47
	HANDLING TOTALIZER (DJ A) P. 50

<table>
<thead>
<tr>
<th>Functions</th>
<th>TOTALIZER MODE</th>
<th>RESET TOTALIZER (3003) P. 48</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OVERFLOW (3041) P. 49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIT TOTALIZER (3001) P. 47</td>
<td></td>
</tr>
</tbody>
</table>

| ⇒ | ⇒ | ⇒ | ⇒ | ⇒ | ⇒ | ⇒ | ⇒ | ⇒ |
7.1 Group TOTALIZER (1 to 3)

7.1.1 Function group CONFIGURATION

<table>
<thead>
<tr>
<th>TOTALIZER</th>
<th>D</th>
<th>TOTALIZER 1</th>
<th>DAA</th>
<th>⇒</th>
<th>CONFIGURATION 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTALIZER</td>
<td>D</td>
<td>TOTALIZER 2</td>
<td>DAB</td>
<td>⇒</td>
<td>CONFIGURATION 300</td>
</tr>
<tr>
<td>TOTALIZER</td>
<td>D</td>
<td>TOTALIZER 3</td>
<td>DAC</td>
<td>⇒</td>
<td>CONFIGURATION 300</td>
</tr>
</tbody>
</table>

Function description

TOTALIZER → TOTALIZER (1 to 3) → CONFIGURATION

The function descriptions below apply to totalizers 1 to 3; the totalizers are independently configurable.

<table>
<thead>
<tr>
<th>ASSIGN (3000)</th>
<th>Options (standard):</th>
</tr>
</thead>
<tbody>
<tr>
<td>For assigning a measured variable to the totalizer in question.</td>
<td></td>
</tr>
<tr>
<td>Options (standard):</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>MASS FLOW</td>
<td></td>
</tr>
<tr>
<td>VOLUME FLOW</td>
<td></td>
</tr>
<tr>
<td>CORRECTED VOLUME FLOW</td>
<td></td>
</tr>
<tr>
<td>Factory setting:</td>
<td></td>
</tr>
<tr>
<td>MASS FLOW</td>
<td></td>
</tr>
</tbody>
</table>

Note!
- This function *cannot* be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for the available functions Z006 to Z008 in the CUSTODY TRANSFER block.
- The totalizer is reset to 0 as soon as the selection is changed.
- If you select OFF in the function group of the totalizer in question, only the ASSIGN (ASSIGN(3000)) function remains visible.

<table>
<thead>
<tr>
<th>UNIT TOTALIZER (3001)</th>
<th>Options: for the MASS FLOW assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>For selecting the unit for the measured variable assigned in the function ASSIGN (3000).</td>
<td></td>
</tr>
<tr>
<td>Options:</td>
<td></td>
</tr>
<tr>
<td>Metric → g; kg; t</td>
<td></td>
</tr>
<tr>
<td>US → oz; lb; ton</td>
<td></td>
</tr>
<tr>
<td>Arbitrary unit → _ _ _ _</td>
<td></td>
</tr>
<tr>
<td>Factory setting:</td>
<td></td>
</tr>
<tr>
<td>kg</td>
<td></td>
</tr>
</tbody>
</table>

Options: for the VOLUME FLOW assignment
- Metric → cm³; dm³; m³; l; hl; l; hl; Mi Mega
- US → cc; af; ft³; oz; gal; Kg; Mgal; bbl (normal fluids); bbl (beer); bbl (petrochemicals); bbl (filling tanks)
- Imperial → gal; Mgal; bbl (beer); bbl (petrochemicals)
- **Arbitrary unit → _ _ _ _**
| **Factory setting:** |
| m³ |

(continued on next page)
Function description

TOTALIZER ➞ TOTALIZER (1 to 3) ➞ CONFIGURATION

| UNIT TOTALIZER (continued) | Options: for the CORRECTED VOLUME FLOW assignment
| | Metric → Nl; Nm³
| | US → Sm³; Scf
| Factory setting: | Nm³
| Note! | This function cannot be changed if:
| | • The measuring device has been configured in accordance with NTEP or MC approval.
| | • The measuring device has been configured in accordance with PTB, NMi, METAS or BEV approval and YES has been selected for the available functions Z006 to Z008 in the CUSTODY TRANSFER block.

| TOTALIZER MODE (3002) | For selecting how the totalizer should operate.
| Options: | BALANCE
| | Positive and negative flow components. The positive and negative flow components are balanced. In other words, net flow in the flow direction is registered.
| | FORWARD
| | Only positive flow components
| | REVERSE
| | Only negative flow components
| Factory setting: | Totalizer 1 = BALANCE
| | Totalizer 2 = FORWARD
| | Totalizer 3 = REVERSE
| Note! | This function cannot be changed if:
| | • The measuring device has been configured in accordance with NTEP or MC approval.
| | • The measuring device has been configured in accordance with PTB, NMi, METAS or BEV approval and YES has been selected for the available functions Z006 to Z008 in the CUSTODY TRANSFER block.

| RESET TOTALIZER (3003) | Resets the total and the overflow of the totalizer to zero.
| Options: | NO
| | YES
| Factory setting: | NO
| Note! | This function cannot be changed if:
| | • The measuring device has been configured in accordance with NTEP or MC approval.
| | • The measuring device has been configured in accordance with PTB, NMi, METAS or BEV approval and YES has been selected for the available functions Z006 to Z008 in the CUSTODY TRANSFER block.
| | • If the measuring instrument is equipped with a status input, with the appropriate configuration a reset for each individual totalizer can also be triggered by a pulse (see the function ASSIGN STATUS INPUT (5000) on Page 100).

Proline Promass 84 Device Functions

Endress + Hauser
7.1.2 Function group OPERATION

<table>
<thead>
<tr>
<th>TOTALIZER D</th>
<th>TOTALIZER 1 DAA</th>
<th>CONFIGURATION 300</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>OPERATION 304</td>
</tr>
<tr>
<td>TOTALIZER 2 DAB</td>
<td>CONFIGURATION 300</td>
<td>OPERATION 304</td>
</tr>
<tr>
<td>TOTALIZER 3 DAC</td>
<td>CONFIGURATION 300</td>
<td>OPERATION 304</td>
</tr>
</tbody>
</table>

Function description
TOTALIZER ➞ TOTALIZER (1 to 3) ➞ OPERATION

The function descriptions below apply to totalizers 1 to 3; the totalizers are independently configurable.

SUM (3040)
Displays the total for the totalizer's measured variable aggregated since measuring began. The value can be positive or negative, depending on the setting selected in the function TOTALIZER MODE (3002), and the direction of flow.

Display:
max. 7-digit floating-point number, including sign and unit (e.g. 15467.04 m³; –4925.631 kg)

Note!
- The effect of the setting in the TOTALIZER MODE function (see Page 48) is as follows:
 - If the setting is BALANCE, the totalizer balances flow in the positive and negative directions.
 - If the setting is FORWARD, the totalizer registers only flow in the positive direction.
 - If the setting is REVERSE, the totalizer registers only flow in the negative direction.
- The totalizer's response to faults is defined in the FAILSAFE MODE (3801) function (see Page 50).

OVERFLOW (3041)
Displays the total for the totalizer's overflow aggregated since measuring began. Total flow quantity is represented by a floating-point number consisting of max. 7 digits. You can use this function to view higher numerical values (> 9,999,999) as overflows. The effective quantity is thus the total of OVERFLOW plus the value returned by the SUM function.

Example:
Reading for 2 overflows: 2 · 10⁷ kg (= 20,000,000 kg)
The value displayed in the function SUM = 196,845.7 kg
Effective total quantity = 20,196,845.7 kg

Display:
integer with exponent, including sign and unit, e.g. 2 · 10⁷ kg
7.2 Group HANDLING TOTAL.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESET ALL TOTALIZERS</td>
<td>(3800) resets the totals and the overflows of all totalizers to zero.</td>
</tr>
<tr>
<td></td>
<td>Options:</td>
</tr>
<tr>
<td></td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>Factory setting:</td>
</tr>
<tr>
<td></td>
<td>NO</td>
</tr>
</tbody>
</table>

Note!
- This function cannot be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for the available functions Z006 to Z008 in the CUSTODY TRANSFER block.
- If the measuring instrument has a status input and if it is appropriately configured, a reset for the totalizer (1 to 3) can also be triggered by a pulse (see the ASSIGN STATUS INPUT function (5000) on Page 100).

<table>
<thead>
<tr>
<th>FAILSAFE MODE</th>
<th>(3801) use this function to define the common response of all totalizers (1 to 3) in case of error.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Options:</td>
</tr>
<tr>
<td></td>
<td>STOP</td>
</tr>
<tr>
<td></td>
<td>The totalizer is paused until the fault is rectified.</td>
</tr>
<tr>
<td></td>
<td>ACTUAL VALUE</td>
</tr>
<tr>
<td></td>
<td>The totalizer continues to count based on the current flow measuring value. The fault is ignored.</td>
</tr>
<tr>
<td></td>
<td>HOLD VALUE</td>
</tr>
<tr>
<td></td>
<td>The totalizer continues to count the flow that based on the last valid flow value (before the fault occurred).</td>
</tr>
<tr>
<td></td>
<td>Factory setting:</td>
</tr>
<tr>
<td></td>
<td>STOP</td>
</tr>
</tbody>
</table>

Note!
- This function cannot be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for the available functions Z006 to Z008 in the CUSTODY TRANSFER block.
<table>
<thead>
<tr>
<th>Block</th>
<th>Groups</th>
<th>Function groups</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUTS (E)</td>
<td>CURRENT OUTPUT 1 to 2 (EA, EAB)</td>
<td>CONFIGURATION (400) P. 52</td>
<td>CURRENT SPAN (4001) P. 53, VALUE 4 mA (4002) P. 54, VALUE 20 mA (4003) P. 56, MEASURING MODE (4004) P. 56, TIME CONSTANT (4005) P. 59, FAILSAFE MODE (4006) P. 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPERATION (404) P. 61</td>
<td>ACTUAL CURRENT (4041) P. 61, SIMULATION CURRENT (4042) P. 61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INFORMATION (408) P. 62</td>
<td>TERMINAL NUMBER (4080) P. 62</td>
</tr>
<tr>
<td></td>
<td>PULSE/FREQ. to 2 (ECA, ECB)</td>
<td>CONFIGURATION (420) P. 63</td>
<td>MODE OF OPERATION (4201) P. 64, START VALUE FREQUENCY (4202) P. 64, END VALUE FREQUENCY (4203) P. 65, VALUE MIN (4204) P. 65, VALUE MAX (4205) P. 66, MEASURING MODE (4206) P. 67, OUTPUT SIGNAL (4207) P. 69, TIME CONSTANT (4208) P. 71, FAILSAFE MODE (4209) P. 72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPERATION (430) P. 83</td>
<td>ACTUAL FREQUENCY (4301) P. 83, SIMULATION FREQUENCY (4302) P. 83, VALUES SIMUL. FREQUENCY (4303) P. 84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INFORMATION (438) P. 88</td>
<td>TERMINAL NUMBER (4380) P. 88</td>
</tr>
<tr>
<td>RELAY OUTPUT (EGA)</td>
<td></td>
<td>CONFIGURATION (470) P. 89</td>
<td>ASSIGN RELAY (4700) P. 89, ON VALUE (4701) P. 90, SWITCH-ON DELAY (4702) P. 90, OFF VALUE (4703) P. 90, SWITCH-OFF DELAY (4704) P. 91, MEASURING MODE (4705) P. 92, TIME CONSTANT (4706) P. 92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPERATION (474) P. 93</td>
<td>ACTUAL STATUS RELAY (4740) P. 93, SIMULATION SWITCH POINT (4741) P. 93, VALUES SIMUL. SWITCH POINT (4742) P. 94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INFORMATION (478) P. 95</td>
<td>TERMINAL NUMBER (4780) P. 95</td>
</tr>
</tbody>
</table>
8.1 Group CURRENT OUTPUT 1 to 2

8.1.1 Function group CONFIGURATION

For assigning a measured variable to the current output.

Options:
- OFF
- MASS FLOW
- VOLUME FLOW
- CORRECTED VOLUME FLOW
- DENSITY
- REFERENCE DENSITY
- TEMPERATURE

Factory setting:
- MASS FLOW

Note!
- This function cannot be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMi, METAS or BEV approval and YES has been selected for function Z003 in the CUSTODY TRANSFER block.
- If you select OFF, the only function shown in the CONFIGURATION function group is this function, in other words ASSIGN CURRENT OUTPUT (4000).
Function description

CURRENT SPAN (4001)

For selecting the current span. The selection specifies the operational range and the lower and upper signal on alarm. For the current output 1 the option HART can be defined additionally.

Options:
- 0–20 mA
- 4–20 mA
- 4–20 mA HART
- 4–20 mA NAMUR
- 4–20 mA HART NAMUR
- 4–20 mA US
- 4–20 mA HART US
- 0–20 mA (25 mA)
- 4–20 mA (25 mA)
- 4–20 mA (25 mA) HART

Factory setting:
Country-specific
- 4–20 mA HART NAMUR or 4–20 mA HART US (for current output 1)
- 4–20 mA NAMUR or 4–20 mA US (for all other current outputs)

Note!
- This function **cannot** be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMi, METAS or BEV approval and YES has been selected for function Z003 in the CUSTODY TRANSFER block.
- The option HART is only supported by the current output designated as current output 1 in the device software (terminals 26 and 27, see function (4080) (➔ Page 62) on TERMINAL NUMBER).
- When switching the hardware from an active (factory setting) to a passive output signal select a current span of 4–20 mA.

Current span, operational range and signal on alarm level

<table>
<thead>
<tr>
<th>a</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20 mA</td>
<td>0 - 20.5 mA</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>4-20 mA</td>
<td>4 - 20.5 mA</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>4-20 mA HART</td>
<td>4 - 20.5 mA</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>4-20 mA NAMUR</td>
<td>3.8 - 20.5 mA</td>
<td>3.5</td>
<td>22.6</td>
</tr>
<tr>
<td>4-20 mA HART NAMUR</td>
<td>3.8 - 20.5 mA</td>
<td>3.5</td>
<td>22.6</td>
</tr>
<tr>
<td>4-20 mA US</td>
<td>3.9 - 20.8 mA</td>
<td>3.75</td>
<td>22.6</td>
</tr>
<tr>
<td>4-20 mA HART US</td>
<td>3.9 - 20.8 mA</td>
<td>3.75</td>
<td>22.6</td>
</tr>
<tr>
<td>0-20 mA (25 mA)</td>
<td>0 - 24 mA</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>4-20 mA (25 mA)</td>
<td>4 - 24 mA</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>4-20 mA (25 mA) HART</td>
<td>4 - 24 mA</td>
<td>2</td>
<td>25</td>
</tr>
</tbody>
</table>

a = Current span

1 = Operational range (measuring information)

2 = Lower signal on alarm level

3 = Upper signal on alarm level

Note!
- If the measured value is outside the measuring range (defined in the functions VALUE 0_4 mA (4002) and VALUE 20 mA (4003)), a notice message is displayed.
- In case of a fault the behavior of the current output is according to the selected option in the function FAILSAFE MODE (4006). Change the error category in the function ASSIGN SYSTEM ERROR ([8000] → Page 121) to generate a fault message instead of a notice message.
VALUE 0_4 mA (4002)

Use this function to assign the 0/4 mA current a value. The value can be higher or lower than the value assigned to 20 mA (function VALUE 20 mA (4003) → Page 56). Positive and negative values are permissible, depending on the measured variable in question (e.g. mass flow).

Example:
4 mA assigned value = -250 kg/h
20 mA assigned value = +750 kg/h
Calculated current value = 8 mA (at zero flow)

Note!
- This function cannot be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMi, METAS or BEV approval and YES has been selected for function Z003 in the CUSTODY TRANSFER block.
- Note that values with different signs cannot be entered for 0/4 mA and 20 mA if SYMMETRY is the setting selected for the MEASURING MODE function (4004). In this case, the message "INPUT RANGE EXCEEDED" appears on the display.

Example for STANDARD measuring mode:

![Diagram](A0001223)

1 = Lower range-value (0 to 20 mA)
2 = Lower signal on alarm level: depends on the setting in the function CURRENT SPAN
3 = Lower range-value (4 to 20 mA): depends on the setting in the function CURRENT SPAN
4 = Full scale value (0/4 to 20 mA): depends on the setting in the function CURRENT SPAN
5 = Maximum current value: depends on the setting in the function CURRENT SPAN
6 = Failsafe mode (upper signal on alarm level): depends on the setting in the functions CURRENT SPAN (see Page 53) and FAILSAFE MODE (see Page 50)

A = Measuring range

User input:
5-digit floating-point number, with sign

Factory setting:
0 [kg/h] or 0.5 [kg/l] or −50 [°C]

Note!
- The appropriate unit is taken from the following functions:
 - UNIT MASS FLOW (0400)
 - UNIT VOLUME FLOW (0402)
 - UNIT CORRECTED VOLUME FLOW (0404)
 - UNIT DENSITY (0420)
 - UNIT REFERENCE DENSITY (0421)
 - UNIT TEMPERATURE (0422)
(see Page 15 to Page 19).

Caution!
The current output responds differently, depending on the parameters set in the various functions. Some examples of parameter settings and their effect on the current output are given in the following section.
Function description

OUTPUTS → CURRENT OUTPUT 1 to 2 → CONFIGURATION

Parameter setting example A:
1. VALUE 0_4 mA (4002) = not equal to zero flow (e.g. –5 kg/h)
 VALUE 20 mA (4003) = not equal to zero flow (e.g. 10 kg/h) or
2. VALUE 0_4 mA (4002) = not equal to zero flow (e.g. 100 kg/h)
 VALUE 20 mA (4003) = not equal to zero flow (e.g. –40 kg/h)

and

MEASURING MODE (4004) = STANDARD

When you enter the values for 0/4 mA and 20 mA, the working range of the measuring device is defined. If the effective flow drops below or exceeds this working range (see ➀), a fault/notice message is generated (#351 to 354, current range) and the current output responds in accordance with the parameter settings in the function FAILSAFE MODE (4006).

Parameter setting example B:
1. VALUE 0_4 mA (4002) = equal to zero flow (e.g. 0 kg/h)
 VALUE 20 mA (4003) = not equal to zero flow (e.g. 10 kg/h) or
2. VALUE 0_4 mA (4002) = not equal to zero flow (e.g. 100 kg/h)
 VALUE 20 mA (4003) = equal to zero flow (e.g. 0 kg/h)

and

MEASURING MODE (4004) = STANDARD

When you enter the values for 0/4 mA and 20 mA, the working range of the measuring device is defined. In doing so, one of the two values is parameterized as zero flow (e.g. 0 kg/h).

If the effective flow drops below or exceeds the value parameterized as the zero flow, no fault/notice message is generated and the current output retains its value.

If the effective flow drops below or exceeds the other value, a fault/notice message is generated (#351 to 354, current range) and the current output responds in accordance with the parameter settings in the function FAILSAFE MODE (4006).

Parameter setting example C:

MEASURING MODE (4004) = SYMMETRY

The current output signal is independent of the direction of flow (absolute amount of the measured variable). The 0_4 mA value ➀ and the 20 mA value ➁ must have the same sign (+ or -). The 20 mA VALUE ➀ (e.g. backflow) corresponds to the mirrored 20 mA VALUE ➁ (e.g. flow).

Parameter setting example D:

MEASURING MODE (4004) = PULSATING FLOW → Page 56 ff.
Function description

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE 20 mA (4003)</td>
<td>Use this function to assign the 20 mA current a value. The value can be higher or lower than the value assigned to 0/4 mA (function VALUE 0_4 mA (4002) → Page 54). Positive and negative values are permissible, depending on the measured variable in question (e.g. mass flow). Example: 4 mA assigned value = - 250 kg/h 20 mA assigned value = +750 kg/h Calculated current value = 8 mA (at zero flow) Note that values with different signs cannot be entered for 0/4 mA and 20 mA, if SYMMETRY is the setting selected in the function MEASURING MODE (4004). In this case, the message "INPUT RANGE EXCEEDED" appears. User input: 5-digit floating-point number, with sign Factory setting: Depends on nominal diameter [kg/h] or 2 [kg/l] or 200 [°C] ! Note! • This function cannot be changed if: – The measuring device has been configured in accordance with NTEP or MC approval. – The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for function Z003 in the CUSTODY TRANSFER block. • The appropriate unit is taken from the following functions: – UNIT MASS FLOW (0400) – UNIT VOLUME FLOW (0402) – UNIT CORRECTED VOLUME FLOW (0404) – UNIT DENSITY (0420) – UNIT REFERENCE DENSITY (0421) – UNIT TEMPERATURE (0422) (see Page 15 to Page 19). • Example for selection STANDARD in the function MEASURING MODE (4004) → Page 56. Caution! It is very important to read and comply with the information in the function VALUE 0_4 mA (4002) (under "Caution", examples of parameter settings) on Page 54.</td>
</tr>
<tr>
<td>MEASURING MODE (4004)</td>
<td>Use this function to define the measuring mode for the current output. Options: STANDARD SYMMETRY PULSATING FLOW Factory setting: STANDARD ! Note! This function cannot be changed if: • The measuring device has been configured in accordance with NTEP or MC approval. • The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for function 2003 in the CUSTODY TRANSFER block.</td>
</tr>
</tbody>
</table>

(continued on next page)
MEASURING MODE
(continued)

Description of the individual options:

STANDARD
The current output signal is proportional to the measured variable. The flow components outside the scaled measuring range (defined by the 0_4 mA VALUE ➀ and the 20 mA VALUE ➁) are taken into account as follows for signal output:

- If one of the values is defined as equal to the zero flow (e.g. VALUE 0_4 mA = 0 kg/h), no message is given if this value is exceeded or not achieved and the current output retains its value (in example 4 mA).
- If the other value is exceeded or not achieved, the message "CURRENT OUTPUT AT FULL SCALE VALUE" appears and the current output responds in accordance with the parameter setting in the function FAILSAFE MODE (4006).

- If both values defined are not equal to the zero flow (for example VALUE 0_4 mA = –5 kg/h, VALUE 20 mA = 10 kg/h), the message "CURRENT OUTPUT AT FULL SCALE VALUE" appears if the measuring range is exceeded or not achieved and the current output responds in accordance with the parameter settings in the function FAILSAFE MODE (4006).

SYMMETRY
The current output signal is independent of the direction of flow (absolute amount of the measured variable). The 0_4 mA value ➀ and the 20 mA value ➁ must have the same sign (+ or -). The 20 mA VALUE ② (e.g. backflow) corresponds to the mirrored 20 mA VALUE ➁ (e.g. flow).

Note:
- The direction of flow can be output via the configurable status outputs.
- SYMMETRY cannot be selected unless the values in the VALUE 0_4 mA (4002) and VALUE 20 mA (4003) functions have the same sign or one of the values is zero. If the values have different signs, SYMMETRY cannot be selected and an "ASSIGNMENT NOT POSSIBLE" message is displayed.

PULSATING FLOW
If flow is characterized by severe fluctuations as is the case, for example, with reciprocating pumps, flow components outside the measuring range are buffered, balanced and output after a maximum delay of 60 seconds. If the buffered data cannot be processed within approx. 60 seconds, a fault/notice message appears.
Under certain plant conditions, flow values can aggregate in the buffer, for example in the case of prolonged and unwanted fluid backflow. However, this buffer is reset in all relevant programming adjustments which affect the current output.
Detailed explanations and information

Function description
OUTPUS → CURRENT OUTPUT 1 to 2 → CONFIGURATION

How the current output responds under the following postulated conditions:

1. Defined measuring range (➀–➁): ➀ and ➁ have the same sign

and the following flow behavior:

- **STANDARD**
The current output signal is proportional to the measured variable. The flow components outside the scaled measuring range are not taken into account for signal output.

- **SYMMETRY**
The current output signal is independent of the direction of flow.

- **PULSATING FLOW**
Flow components outside the measuring range are buffered, balanced and output after a maximum delay of 60 seconds.

2. Defined measuring range (➀–➁): ➀ and ➁ do not have the same sign.

Flow a (—) outside, b (— —) within the measuring range.

(continued on next page)
Function description

OUTPUTS ➞ CURRENT OUTPUT 1 to 2 ➞ CONFIGURATION

<table>
<thead>
<tr>
<th>Detailed explanations and information (continued)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARD</td>
<td></td>
</tr>
<tr>
<td>a (—): The flow components outside the scaled measuring range cannot be taken into account for signal output. A fault message is generated (# 351 to 354, current range) and the current output responds in accordance with the parameter settings in the function FAILSAFE MODE (4006).</td>
<td></td>
</tr>
<tr>
<td>b (--): The current output signal is proportional to the measured variable assigned.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMMETRY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>This option is not available under these circumstances, because the 0_4 mA value and the 20 mA value have different signs.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PULSATING FLOW</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow components outside the measuring range are buffered, balanced and output after a maximum delay of 60 seconds.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME CONSTANT (4005)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering a time constant defines how the current output signal reacts to severely fluctuating measured variables, either very quickly (enter a low time constant) or with damping (enter a high time constant).</td>
<td></td>
</tr>
<tr>
<td>User input:</td>
<td></td>
</tr>
<tr>
<td>Fixed-point number 0.01 to 100.00 s</td>
<td></td>
</tr>
<tr>
<td>Factory setting:</td>
<td></td>
</tr>
<tr>
<td>1.00 s</td>
<td></td>
</tr>
</tbody>
</table>

Note! This function cannot be changed if:
- The measuring device has been configured in accordance with NTEP or MC approval.
- The measuring device has been configured in accordance with PTB, NMi, METAS or BEV approval and YES has been selected for function Z003 in the CUSTODY TRANSFER block.
FAILSAFE MODE (4006)

For safety reasons it is advisable to ensure that the current output assumes a predefined state in the event of a fault. The setting you select here affects only the current output. It has no effect on other outputs and the display (e.g., totalizers).

Options:
- **MIN. CURRENT**
 The current output adopts the value of the lower signal on alarm level (as defined in the function (4001) [→ Page 53], see CURRENT SPAN.
- **MAX. CURRENT**
 The current output adopts the value of the upper signal on alarm level (as defined in the function CURRENT SPAN (4001), → Page 53).
- **HOLD VALUE (not recommended)**
 Measuring value output is based on the last measuring value saved before the error occurred.
- **ACTUAL VALUE**
 Measured value output is based on the current flow measurement.
 The fault is ignored.

Factory setting:
MIN. CURRENT

⚠️ Note!
This function **cannot** be changed if:
- The measuring device has been configured in accordance with NTEP or MC approval.
- The measuring device has been configured in accordance with PTB, NMi, METAS or BEV approval and YES has been selected for function Z003 in the CUSTODY TRANSFER block.
8.1.2 Function group OPERATION

```
<table>
<thead>
<tr>
<th>Outputs</th>
<th>E</th>
<th>CURRENT OUTPUT 1</th>
<th>EAA</th>
<th>CONFIGURATION 400</th>
<th>↓</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CURRENT OUTPUT 2</td>
<td>EAB</td>
<td>CONFIGURATION 400</td>
<td>↓</td>
</tr>
</tbody>
</table>
```

Function description

OUTPUTS ⇔ CURRENT OUTPUT ⇔ OPERATION

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Options</th>
<th>Factory Setting</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTUAL CURRENT (4040)</td>
<td>Use this function to view the computed actual value of the output current.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td>0.00 to 25.00 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIMULATION CURRENT (4041)</td>
<td>Activates simulation of the current output.</td>
<td>OFF</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>Options</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factory setting</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>This function cannot be changed if:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– The measuring device has been configured in accordance with NTEP or MC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>approval.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– The measuring device has been configured in accordance with PTB, NML, METAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>or BEV approval and YES has been selected for function Z003 in the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CUSTODY TRANSFER block.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The "SIMULATION CURRENT OUTPUT" message indicates that simulation is active.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The measuring device continues to measure while simulation is in progress,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>i.e. the current measured values are output correctly via the other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>outputs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VALUE SIMULATION CURRENT (4042)</td>
<td>Use this function to define a freely selectable value (e.g. 12 mA) to be</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User input</td>
<td>output at the current output. This value is used to test downstream devices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and the measuring device itself.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factory setting</td>
<td>0.00 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>This function cannot be changed if:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– The measuring device has been configured in accordance with NTEP or MC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>approval.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– The measuring device has been configured in accordance with PTB, NML, METAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>or BEV approval and YES has been selected for function Z003 in the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CUSTODY TRANSFER block.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This function is displayed only if the function SIMULATION CURRENT (4041)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>is active (= ON).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caution!</td>
<td>The setting is not saved in the event of a power failure.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Endress+Hauser
8.1.3 Function group INFORMATION

Function description

<table>
<thead>
<tr>
<th>TERMINAL NUMBER</th>
<th>Use this function to view the numbers of the terminals (in the connection compartment) and the polarity used by the current output.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4080)</td>
<td></td>
</tr>
</tbody>
</table>
8.2 Group PULSE/FREQUENCY OUTPUT (1 to 2)

8.2.1 Function group CONFIGURATION

<table>
<thead>
<tr>
<th>OUTPUTS</th>
<th>E</th>
<th>CURRENT OUTPUT 1 EAA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CURRENT OUTPUT 2 EAB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PULSE/FREQ. OUTPUT 1 ECA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PULSE/FREQ. OUTPUT 2 ECB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CONFIGURATION 420</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CONFIGURATION 420</td>
</tr>
</tbody>
</table>

Function description

<table>
<thead>
<tr>
<th>MODE OF OPERATION (4200)</th>
<th>Configuration of the output as a pulse, frequency or status output. The functions available in this function group vary, depending on which option you select here. Options: PULSE, FREQUENCY, STATUS, DOUBLE PULS 90° (only with pulse output 2), DOUBLE PULS 180° (only with pulse output 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory setting:</td>
<td>PULSE</td>
</tr>
<tr>
<td>Note!</td>
<td>The selection DOUBLE PULS 90° and DOUBLE PULS 180° can be changed only if: Two pulse/frequency outputs are available. The operating mode of the first pulse/frequency output is set to PULSE. With this setting, the two pulse/frequency outputs are operated with the configuration of the first but the second lags behind the first as follows:</td>
</tr>
<tr>
<td></td>
<td>– For DOUBLE PULS 90°, half a pulse width</td>
</tr>
<tr>
<td></td>
<td>– For DOUBLE PULS 180°, half a pulse width</td>
</tr>
</tbody>
</table>
Function description

OUTPUTS ➔ PULSE/FREQUENCY OUTPUT (1 to 2) ➔ CONFIGURATION (FREQUENCY)

| **ASSIGN FREQUENCY** (4201) | For assigning a measured variable to the frequency output.
| **Options:** |
| OFF |
| MASS FLOW |
| VOLUME FLOW |
| CORRECTED VOLUME FLOW |
| DENSITY |
| REFERENCE DENSITY |
| TEMPERATURE |
| **Factory setting:** | MASS FLOW
| **Note!** | This function cannot be changed if:
| – The measuring device has been configured in accordance with NTEP or MC approval.
| – The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
| – This function cannot be changed unless the FREQUENCY setting was selected in the OPERATION MODE (4200) function.
| – If you select OFF, the only function shown in the CONFIGURATION function group is ASSIGN FREQUENCY (4201). |

| **START VALUE FREQUENCY** (4202) | For defining an initial frequency for the frequency output. You define the associated measured value of the measuring range in the function VALUE f MIN (4204) ➔ Page 65.
| **User input:** |
| 5-digit fixed-point number: 0 to 10000 Hz |
| **Factory setting:** | 0 Hz
| **Example:** |
| VALUE f LOW = 0 kg/h, start value frequency = 0 Hz
This means that at a flow rate of 0 kg/h, a frequency of 0 Hz is output.
VALUE f MIN. = 1 kg/h, start value frequency = 10 Hz
This means that at a flow rate of 1 kg/h, a frequency of 10 Hz is output.
| **Note!** | This function cannot be changed if:
| – The measuring device has been configured in accordance with NTEP or MC approval.
| – The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
| – This function is not available unless the PULSE option was selected in the MODE OF OPERATION (4200) function. |
END VALUE FREQUENCY (4203)

For defining a full scale frequency for the frequency output. You define the associated measured value of the measuring range in the function VALUE f HIGH (4205) → Page 66.

User input:
5-digit fixed-point number: 2 to 10000 Hz

Factory setting:
10000 Hz

Example:
- VALUE f HIGH = 10000 kg/h, full scale value = 10000 Hz
 - This means that at a flow rate of 10000 kg/h, a freq. of 10000 Hz is output.
- VALUE f HIGH = 3600 kg/h, full scale value = 10000 Hz
 - This means that at a flow rate of 3600 kg/h, a frequency of 10000 Hz is output.

Note!
- This function **cannot** be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMi, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
- This function is not available unless the PULSE option was selected in the MODE OF OPERATION(4200) function.
- In the FREQUENCY operating mode the output signal is symmetrical (on/off ratio = 1:1). At low frequencies the pulse duration is limited to a maximum of 2 seconds, i.e. the on/off ratio is no longer symmetrical.

VALUE f MIN (4204)

Use this function to assign a variable to the start value frequency (4202 → Page 64). The value can be higher or lower than the value assigned to the VALUE f HIGH. Positive and negative values are permissible, depending on the measured variable in question (e.g. mass flow). You define a measuring range by defining the VALUE f LOW and VALUE f HIGH values.

User input:
5-digit floating-point number

Factory setting:
0 [kg/h] or 0 [kg/l] or –50 °C

Note!
- This function **cannot** be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMi, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
- This function is not available unless the PULSE option was selected in the MODE OF OPERATION(4200) function.
- For a graphic illustration of the VALUE f LOW, see the VALUE f HIGH (4205) function.
- Note that values with different signs cannot be entered for VALUE f LOW and VALUE f HIGH, if SYMMETRY is the setting selected for the MEASURING MODE function (4206). In this case, the message "INPUT RANGE EXCEEDED" appears on the display.
- The appropriate unit is taken from the following functions:
 - UNIT MASS FLOW (0400)
 - UNIT VOLUME FLOW (0402)
 - UNIT CORRECTED VOLUME FLOW (0404)
 - UNIT DENSITY (0420)
 - UNIT REFERENCE DENSITY (0421)
 - UNIT TEMPERATURE (0422)
 (see P. 15 to F. 19).
Proline Promass 84 Device Functions

Function description

OUTPUTS ➔ PULSE/FREQUENCY OUTPUT (1 to 2) ➔ CONFIGURATION (FREQUENCY)

VALUE f HIGH (4205)

Use this function to assign a variable to the end value frequency (4203) ➔ Page 65). The value can be higher or lower than the value assigned to the VALUE f LOW. Positive and negative values are permissible, depending on the measured variable in question (e.g., mass flow). You define a measuring range by defining the VALUE f LOW and VALUE f HIGH values.

User input:
5-digit floating-point number

Factory setting:
Depends on nominal diameter [kg/h] or 2 [kg/l] or 200 [°C]

Note:
- This function cannot be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMi, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
- This function is not available unless the FREQUENCY option was selected in the MODE OF OPERATION (4200) function.
- Note that values with different signs cannot be entered for VALUE f LOW and VALUE f HIGH, if SYMMETRY is the setting selected for the MEASURING MODE function (4206). In this case, the message "INPUT RANGE EXCEEDED" appears on the display.

Parameter setting example 1:
1. VALUE f MIN (4204) = not equal to zero flow (e.g., –5 kg/h)
 VALUE f HIGH (4205) = not equal to zero flow (e.g., 10 kg/h) or
2. VALUE f MIN (4204) = not equal to zero flow (e.g., 100 kg/h)
 VALUE f HIGH (4205) = not equal to zero flow (e.g., –40 kg/h) and
 MEASURING MODE (4206) = STANDARD

When you enter the values for VALUE f LOW and VALUE f HIGH the working range of the measuring device is defined. If the effective flow drops below or exceeds this working range (see ①), a fault or notice message is generated (#355 to 358, frequency area) and the frequency output responds in accordance with the parameter settings in the function FAILSAFE MODE (4209).
Function description

OUTPUTS ➔ PULSE/FREQUENCY OUTPUT (1 to 2) ➔ CONFIGURATION (FREQUENCY)

<table>
<thead>
<tr>
<th>VALUE f HIGH</th>
<th>Parameter setting example 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(continued)</td>
<td>1. VALUE f MIN (4204) = not equal to zero flow (e.g. 0 kg/h)</td>
</tr>
<tr>
<td></td>
<td>VALUE f HIGH (4205) = not equal to zero flow (e.g. 10 kg/h) or</td>
</tr>
<tr>
<td></td>
<td>2. VALUE f MIN (4204) = not equal to zero flow (e.g. 100 kg/h)</td>
</tr>
<tr>
<td></td>
<td>VALUE f HIGH (4205) = not equal to zero flow (e.g. 0 kg/h)</td>
</tr>
<tr>
<td></td>
<td>and</td>
</tr>
<tr>
<td></td>
<td>MEASURING MODE (4206) = STANDARD</td>
</tr>
</tbody>
</table>

When you enter the values for VALUE f LOW and VALUE f HIGH the working range of the measuring device is defined. In doing so, one of the two values is parameterized as the zero flow (e.g. 0 kg/h).

If the effective flow drops below or exceeds the value parameterized as the zero flow, no fault/notice message is generated and the frequency output retains its value.

If the effective flow drops below or exceeds the other value, a fault/notice message is generated (#355 to 358, frequency area) and the frequency output responds in accordance with the FAILSAFE MODE (4209) function.

![Diagram](A0001277)

Deliberately only one flow direction is output with this setting and flow values in the other flow direction are suppressed.

Parameter setting example 3:

| MEASURING MODE (4206) = SYMMETRY |

The frequency output signal is independent of the direction of flow (absolute amount of the measured variable). The VALUE f LOW ✇ and VALUE f HIGH ✇ must have the same sign (+ or -). The VALUE f HIGH ✇ (e.g. backflow) corresponds to the mirrored VALUE f MAX ✇ (e.g. flow).

![Diagram](A0001278)

ASSIGN STATUS (4241) = FLOW DIRECTION
With this setting e.g. the flow direction output via a switching contact can be made.

Parameter setting example 4:

| MEASURING MODE (4206) = PULSATING FLOW ➔ Page 67 ff. |

Use this function to define the measuring mode for the frequency output.

Options:
- STANDARD
- SYMMETRY
- PULSATING FLOW

Factory setting:
- STANDARD

⚠️ **Note!**
This function **cannot** be changed if:
- The measuring device has been configured in accordance with NTEP or MC approval.
- The measuring device has been configured in accordance with FTB, NMI, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.

(continued on next page)
Proline Promass 84 Device Functions

MEASURING MODE
(continued)

Description of the individual options:

STANDARD
The frequency output signal is proportional to the measured variable. The flow components outside the scaled measuring range (defined by the VALUE f LOW \(^\text{1}\) and the VALUE f HIGH \(^\text{2}\)) are not taken into account for signal output.

- If one of the values is defined as equal to the zero flow (e.g., VALUE f LOW = 0 kg/h), no message is given if this value is exceeded or not achieved and the frequency output retains its value (0 Hz in the example). If the other value is exceeded or not achieved, the message "FREQUENCY OUTPUT AT FULL SCALE VALUE" appears and the frequency output responds in accordance with the parameter setting in the function FAILSAFE MODE (4209).

- If both values defined are not equal to the zero flow (for example VALUE f LOW = \(-5\) kg/h; VALUE f MAX = 10 kg/h) the message "FREQUENCY OUTPUT AT FULL SCALE VALUE" appears if the measuring range is exceeded or not achieved and the frequency output responds in accordance with the parameter settings in the function FAILSAFE MODE (4209).

SYMMETRY
The frequency output signal is independent of the direction of flow (absolute amount of the measured variable). The VALUE f LOW \(^\text{1}\) and VALUE f HIGH \(^\text{2}\) must have the same sign (+ or -). The VALUE f HIGH \(^\text{2}\) (e.g. backflow) corresponds to the mirrored VALUE f HIGH \(^\text{1}\) (e.g. flow).

Note!
- This function is not available unless the PULSE option was selected in the MODE OF OPERATION (4200) function.
- The direction of flow can be output via the configurable status outputs.
- SYMMETRY cannot be selected unless the values in the VALUE f MIN (4204) and VALUE f HIGH (4205) functions have the same sign or one of the values is zero. If the values have different signs, SYMMETRY cannot be selected and an "ASSIGNMENT NOT POSSIBLE" message is displayed.

PULSATING FLOW
If flow is characterized by severe fluctuations as is the case, for example, with reciprocating pumps, flow components outside the measuring range are buffered, balanced and output after a maximum delay of 60 seconds. If the buffered data cannot be processed within approx. 60 seconds, a fault/notice message appears.
Under certain plant conditions, flow values can aggregate in the buffer, for example in the case of prolonged and unwanted fluid backflow. However, this buffer is reset in all relevant programming adjustments which affect the frequency output.
Output Signal (4207)

For selecting the output configuration of the frequency output.

Options:
- 0 = PASSIVE - POSITIVE
- 1 = PASSIVE - NEGATIVE
- 2 = ACTIVE - POSITIVE (this selection is not supported)
- 3 = ACTIVE - NEGATIVE (this selection is not supported)

Factory setting: PASSIVE - POSITIVE

Explanation

PASSIVE = power is supplied to the frequency output by means of an external power supply.

Configuring the output signal level (POSITIVE or NEGATIVE) determines the quiescent behavior (at zero flow) of the frequency output.

The internal transistor is activated as follows:
- If POSITIVE is selected, the internal transistor is activated with a **positive** signal level.
- If NEGATIVE is selected, the internal transistor is activated with a **negative** signal level (0 V).

Note!

- This function cannot be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NML, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
- Function is not available unless the FREQUENCY setting was selected in the MODE OF OPERATION function.
- With the passive output configuration, the output signal levels of the frequency output depend on the external circuit (see examples).

Example for passive output circuit (PASSIVE)

If PASSIVE is selected, the frequency output is configured as an open collector.

![Diagram](A0002147.png)

- ① = Open collector
- ② = External power supply
- ③ = Line monitoring off
- ④ = Line monitoring on (default)

Note!

For continuous currents up to 25 mA ($I_{\text{max}} = 250 \text{ mA} / 20 \text{ ms}$),

(continued on next page)
Function description

OUTPUT SIGNAL
(continued)

Example for output configuration PASSIVE-POSITIVE:

Output configuration with an external pull-up resistance.
In the quiescent state (at zero flow), the output signal level at the terminals is 0 V.

![Diagram](a0004687)

1. = Open collector
2. = Pull-Up-Resistance
3. = Transistor activation in POSITIVE quiescent state (at zero flow)
4. = Output signal level in quiescent state (at zero flow)

In the operating status (flow present), the output signal level changes from 0 V to a positive voltage level.

![Diagram](a0001975)

Example for output configuration PASSIVE-NEGATIVE:

Output configuration with an external pull-down resistance.
In the quiescent state (at zero flow), a positive voltage level is measured via the pull-down resistance.

![Diagram](a0004689)

1. = Open collector
2. = Pull-Down-Resistance
3. = Transistor activation in POSITIVE quiescent state (at zero flow)
4. = Output signal level in quiescent state (at zero flow)

In the operating status (flow present), the output signal level changes from a positive voltage level to 0 V.

![Diagram](a0001981)

(continued on next page)
OUTPUT SIGNAL (continued)

Example for output configuration PASSIVE-NEGATIVE:

Output configuration with an external pull-up resistance.

In the quiescent state (at zero flow), the output signal level at the terminals is at a positive voltage level.

\[+ U_{\text{max}} = 30 \text{ V DC} \]

![Diagram showing output configuration](image)

- **①** = Open collector
- **②** = Pull-Up-Resistance
- **③** = Transistor activation in NEGATIVE quiescent state (at zero flow)
- **④** = Output signal level in quiescent state (at zero flow)

In the operating status (flow present), the output signal level changes from a positive voltage level to 0 V.

![Diagram showing operating status](image)

TIME CONSTANT (4208)

Entering a time constant defines how the frequency output signal reacts to severely fluctuating measured variables, either very quickly (enter a low time constant) or with damping (enter a high time constant).

User input:

Fixed-point number 0.00 to 100.00 s

Factory setting:

0.00 s

Note:

- This function **cannot** be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
- This function is not available unless the PULSE option was selected in the MODE OF OPERATION (4200) function.
FAILSAFE MODE (4209)

For safety reasons it is advisable to ensure that the frequency output assumes a predefined state in the event of a fault. The setting you select here affects only the frequency output. It has no effect on other outputs and the display (e.g., totalizers).

Options:
- **fallback value**
 - Output is 0 Hz.
- **failsafe value**
 - Output is the frequency specified in the failsafe value function (4211).
- **hold value**
 - Measured value output is based on the last measured value saved before the error occurred.
- **actual value**
 - Measured value output is based on the current flow measurement. The fault is ignored.

Factory setting:
- **fallback value**

Note!
- This function cannot be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the custody transfer block.
- This function is not available unless the FREQUENCY option was selected in the MODE OF OPERATION (4200) function.

FAILSAFE VALUE (4211)

For specifying the frequency that the measuring device outputs in the event of an error.

User input:
- Max. 5-digit number: 0 to 12500 Hz

Factory setting:
- 12500 Hz

Note!
- This function cannot be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the custody transfer block.
- This function is not available unless FREQUENCY was selected in the MODE OF OPERATION function (4200) and FAILSAFE LEVEL was selected in the FAILSAFE MODE function (4209).
ASSIGN PULSE (4221)

Use this function to assign a measured variable to the pulse output.

Options:
- OFF
- MASS FLOW
- VOLUME FLOW
- CORRECTED VOLUME FLOW

Factory setting:
- MASS FLOW

Note!
- This function cannot be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
- This function is not available unless the PULSE option was selected in the MODE OF OPERATION (4200) function.
- If you select OFF, the only function shown in the CONFIGURATION function group is this function, in other words ASSIGN PULSE (4221).

PULSE VALUE (4222)

Use this function to define the flow at which a pulse is triggered. These pulses can be totaled by an external totalizer, and the total flow quantity since measuring started can be registered in this way.

User input:
- 5-digit floating-point number [unit]

Factory setting:
- depends on nominal diameter and country, [Value] [kg or lb] / pulse;
- corresponds to the factory setting for the pulse value (see Page 129 ff.).

Note!
- This function cannot be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
- This function is not available unless the PULSE option was selected in the MODE OF OPERATION (4200) function.
- The appropriate unit is taken from the following functions:
 - UNIT MASS (0401)
 - UNIT VOLUME (0403)
 - UNIT STANDARD VOLUME (0405)
 (see Page 15 or Page 17).
Function description

OUTPUTS ➔ PULSE/FREQUENCY OUTPUT (1 to 2) ➔ CONFIGURATION (PULSE)

PULSE WIDTH (4223)

Use this function to enter the pulse width of the output pulse.

User input:
0.05 to 2000 ms

Factory setting:
100 ms

Pulse output is always with the pulse width (B) entered in this function. The pauses (P) between the individual pulses are automatically configured. However, they must at least correspond to the pulse width (B = P).

Note!
- This function cannot be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
- This function is not available unless the PULSE option was selected in the MODE OF OPERATION (4200) function.
- When entering the pulse width, select a value that can still be processed by an external totalizer (e.g. mechanical totalizer, PLC, etc.).

Caution!
If the pulse number or frequency resulting from the pulse value entered (see function PULSE VALUE (4222) ➔ Page 73) and from the current flow is too large to maintain the pulse width selected (the time interval is smaller than the pulse width B entered), a system error message is generated (# 359 to 362, pulse buffer) after approx. 5 seconds buffer/balance time.
<table>
<thead>
<tr>
<th>Function description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASURING MODE</td>
</tr>
<tr>
<td>(4225)</td>
</tr>
</tbody>
</table>

Use this function to define the measuring mode for the pulse output.

Options:

- **STANDARD**
 - Only positive flow components are totaled. Negative components are not taken into account.
- **SYMMETRY**
 - Positive and negative flow components are taken into account.
 - **Note!**
 - The direction of flow can be output via the status outputs.
- **PULSATING FLOW**
 - If flow is characterized by severe fluctuations, as is the case, for example, with reciprocating pumps, the positive and negative flow components are totaled, with the signs taken into account (e.g. $-10 \text{l} + 25 \text{l} = 15 \text{l}$).
 - Flow components outside the maximum pulse number per second (value/width) are buffered, balanced and output after a maximum delay of 60 seconds. If the buffered data cannot be processed within approx. 60 seconds, a fault/notice message appears.
 - Under certain plant conditions, flow values can aggregate in the buffer, for example in the case of prolonged and unwanted fluid backflow. However, this buffer is reset in all relevant programming adjustments which affect the pulse output.
- **STANDARD REVERSE**
 - Only negative flow components are totaled. Positive components are not taken into account.

Factory setting:

- **STANDARD**

 - **Note!**
 - This function **cannot** be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMi, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
 - This function is not available unless the PULSE option was selected in the MODE OF OPERATION (4200) function.
Function description

<table>
<thead>
<tr>
<th>OUTPUT SIGNAL (4226)</th>
<th>For selecting the output configuration of the pulse output.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options:</td>
<td></td>
</tr>
<tr>
<td>0 = PASSIVE - POSITIVE</td>
<td></td>
</tr>
<tr>
<td>1 = PASSIVE - NEGATIVE</td>
<td></td>
</tr>
<tr>
<td>2 = ACTIVE - POSITIVE (this selection is not supported)</td>
<td></td>
</tr>
<tr>
<td>3 = ACTIVE - NEGATIVE (this selection is not supported)</td>
<td></td>
</tr>
<tr>
<td>Factory setting:</td>
<td>PASSIVE - POSITIVE</td>
</tr>
</tbody>
</table>

Explanation

PASSIVE = power is supplied to the pulse output by means of an external power supply. Configuring the output signal level (POSITIVE or NEGATIVE) determines the quiescent behavior (at zero flow) of the pulse output.

The internal transistor is activated as follows:

- If POSITIVE is selected, the internal transistor is activated with a positive signal level.
- If NEGATIVE is selected, the internal transistor is activated with a negative signal level (0 V).

Note!

- This function cannot be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMi, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
 - Function is not available unless the PULSE setting was selected in the MODE OF OPERATION (4200) function.
 - With the passive output configuration, the output signal levels of the pulse output depend on the external circuit (see examples).

Example for passive output circuit (PASSIVE)

If PASSIVE is selected, the pulse output is configured as an open collector.

![Diagram](A8002147)

- ① = Open collector
- ② = External power supply
- ③ = Line monitoring off
- ④ = Line monitoring on (default)

Note!

For continuous currents up to 25 mA (\(I_{\text{max}} = 250 \text{ mA} / 20 \text{ ms}\)).

(continued on next page)
Function description

OUTPUTS ➔ PULSE/FREQUENCY OUTPUT (1 to 2) ➔ CONFIGURATION (PULSE)

<table>
<thead>
<tr>
<th>OUTPUT SIGNAL</th>
<th>Example for output configuration PASSIVE-POSITIVE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(continued)</td>
<td>Output configuration with an external pull-up resistance.</td>
</tr>
<tr>
<td></td>
<td>In the quiescent state (at zero flow), the output signal level at the terminals is 0 V.</td>
</tr>
<tr>
<td></td>
<td>In the operating status (flow present), the output signal level changes from 0 V to a positive voltage level.</td>
</tr>
</tbody>
</table>

![Diagram](a0004687)

1 = **Open collector**
2 = **Pull-Up-Resistance**
3 = **Transistor activation in POSITIVE quiescent state (at zero flow)**
4 = **Output signal level in quiescent state (at zero flow)**

Example for output configuration PASSIVE-POSITIVE:

Output configuration with an external pull-down resistance.

In the quiescent state (at zero flow), a positive voltage level is measured via the pull-down resistance.

![Diagram](a0004689)

1 = **Open collector**
2 = **Pull-Down-Resistance**
3 = **Transistor activation in POSITIVE quiescent state (at zero flow)**
4 = **Output signal level in quiescent state (at zero flow)**

In the operating status (flow present), the output signal level changes from a positive voltage level to 0 V.

![Diagram](a0001981)
OUTPUT SIGNAL
(continued)

Example for output configuration PASSIVE-NEGATIVE:
Output configuration with an external pull-up resistance.
In the quiescent state (at zero flow), the output signal level at the terminals is at a positive voltage level.

In the operating status (flow present), the output signal level changes from a positive voltage level to 0 V.

FAILSAFE MODE
(4227)

For safety reasons it is advisable to ensure that the pulse output assumes a predefined state in the event of a fault. The setting you select here affects only the pulse output. It has no effect on other outputs and the display (e.g., totalizers).

Options:
- FALLBACK VALUE
 Output is 0 pulse.
- ACTUAL VALUE
 Measured value output is based on the current flow measurement. The fault is ignored.
- MAX. PULSE RATE
 Outputs the maximum pulse rate \(f = 1/(2xT) \)

Factory setting: FALLBACK VALUE

Note:
- This function cannot be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
- This function is not available unless the PULSE option was selected in the MODE OF OPERATION(4200) function.
- If the selection MAX. PULSE RATE is made under pulse output 1 and the OPERATION MODE of pulse output 2 is set to DOUBLE PULS 90° or DOUBLE PULS 180°, the failsafe mode of pulse output 2 is automatically FALLBACK VALUE.
ASSIGN STATUS (4241)

<table>
<thead>
<tr>
<th>Function Description</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use this function to assign a switching function to the status output.</td>
<td>Options:</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>ON</td>
<td>ON (operation)</td>
</tr>
<tr>
<td>FAULT MESSAGE</td>
<td>FAULT MESSAGE</td>
</tr>
<tr>
<td>NOTICE MESSAGE</td>
<td>NOTICE MESSAGE</td>
</tr>
<tr>
<td>FAULT MESSAGE or NOTICE MESSAGE</td>
<td>FAULT MESSAGE or NOTICE MESSAGE</td>
</tr>
<tr>
<td>EMPTY PIPE DETECTION (only with active function)</td>
<td>EMPTY PIPE DETECTION (only with active function)</td>
</tr>
<tr>
<td>FLOW DIRECTION</td>
<td>FLOW DIRECTION</td>
</tr>
<tr>
<td>LIMIT MASS FLOW</td>
<td>LIMIT MASS FLOW</td>
</tr>
<tr>
<td>LIMIT VOLUME FLOW</td>
<td>LIMIT VOLUME FLOW</td>
</tr>
<tr>
<td>CORRECTED VOLUME FLOW LIMIT VALUE</td>
<td>CORRECTED VOLUME FLOW LIMIT VALUE</td>
</tr>
<tr>
<td>DENSITY LIMIT VALUE</td>
<td>DENSITY LIMIT VALUE</td>
</tr>
<tr>
<td>REFERENCE DENSITY LIMIT VALUE</td>
<td>REFERENCE DENSITY LIMIT VALUE</td>
</tr>
<tr>
<td>TEMPERATURE LIMIT VALUE</td>
<td>TEMPERATURE LIMIT VALUE</td>
</tr>
<tr>
<td>TOTALIZER 1 LIMIT VALUE</td>
<td>TOTALIZER 1 LIMIT VALUE</td>
</tr>
<tr>
<td>TOTALIZER 2 LIMIT VALUE</td>
<td>TOTALIZER 2 LIMIT VALUE</td>
</tr>
<tr>
<td>TOTALIZER 3 LIMIT VALUE</td>
<td>TOTALIZER 3 LIMIT VALUE</td>
</tr>
</tbody>
</table>

Factory setting:
- FAULT MESSAGE

Note:
- This function **cannot** be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
- This function is not available unless the STATUS option was selected in the MODE OF OPERATION (4200) function.
- The behavior of the status output is a normally closed behavior, in other words the output is closed (transistor conductive) when normal, error-free measuring is in progress. "normal, error-free" operation: Flow direction = forwards; limit values = not exceeded; no empty or partially filled measuring tube (EPD/OED); no fault or notice message present.
- If you select OFF, the only function shown in the CONFIGURATION function group is this function, in other words ASSIGN STATUS (4241).
- Switching response like status output, s. Page 97

ON-VALUE (4242)

<table>
<thead>
<tr>
<th>Function Description</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use this function to assign a value to the switch-on point (activation of the status output).</td>
<td>User input: 5-digit floating-point number [unit]</td>
</tr>
<tr>
<td>The value can be higher or lower than the switch-off point. Positive or negative values are permissible, depending on the measured variable in question (e.g. mass flow, totalizer reading).</td>
<td></td>
</tr>
</tbody>
</table>

User input:
- 5-digit floating-point number [unit]

Factory setting:
- 0 [kg/h] or 2 [kg/l] or 200 [°C]

Note:
- This function **cannot** be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
- This function is not available unless STATUS was selected in the MODE OF OPERATION function (4200) and LIMIT VALUE or FLOW DIRECTION was selected in the ASSIGN STATUS function (4241).
- If SYMMETRY is selected in the function MEASURING MODE (4246) and values with different signs are entered for the switch-on and switch-off points, the notice message "INPUT RANGE EXCEEDED" appears.
- Only the switch-on point is available for flow direction output (no switch-off point). If you enter a value not equal to the zero flow (e.g. 5), the difference between the zero flow and the value entered corresponds to half the switchover hysteresis.
Function description

OUTPUTS ➞ PULSE/FREQUENCY OUTPUT (1 to 2) ➞ CONFIGURATION (STATUS)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>User input</th>
<th>Factory setting</th>
<th>Note!</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITCH-ON DELAY (4243)</td>
<td>Use this function to define a delay (0 to 100 seconds) for the switch-on (i.e. signal changes from "not conductive" to "conductive") of the status output. The delay starts when the limit value is reached. The status output does switch when the delay has timed out and the switch on condition has been valid over the delay time.</td>
<td>Fixed-point number 0.0 to 100.0 s</td>
<td>0.0 s</td>
<td>- This function cannot be changed if:
- The measuring device has been configured in accordance with NTEP or MC approval.
- The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
- This function is not available unless STATUS was selected in the MODE OF OPERATION function (4200) and LIMIT VALUE or FLOW DIRECTION was selected in the ASSIGN STATUS function (4241).</td>
</tr>
<tr>
<td>OFF VALUE (4244)</td>
<td>Use this function to assign a value to the switch-off point (deactivation of the status output). The value can be higher or lower than the switch-on point. Positive and negative values are permissible, depending on the measured variable in question (e.g. mass flow, totalizer reading).</td>
<td>5-digit floating-point number [unit]</td>
<td>0 [kg/h] or 2 [kg/l] or 200 [°C]</td>
<td>- This function cannot be changed if:
- The measuring device has been configured in accordance with NTEP or MC approval.
- The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
- This function is not available unless STATUS was selected in the MODE OF OPERATION function (4200) and a LIMIT VALUE was selected in the ASSIGN STATUS function (4241).
- The associated unit is taken from the function UNIT VOLUME FLOW (0402) or UNIT MASS FLOW (0400).
- If SYMMETRY is selected in the function MEASURING MODE (4246) and values with different signs are entered for the switch-on and switch-off points, the notice message "INPUT RANGE EXCEEDED" appears.</td>
</tr>
</tbody>
</table>
Function description

<table>
<thead>
<tr>
<th>Function description</th>
<th>Outputs</th>
<th>Pulse/Frequency Output (1 to 2)</th>
<th>Configuration (Status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITCH-OFF DELAY (4245)</td>
<td>Use this function to define a delay (0 to 100 seconds) for the switch-off (i.e. signal changes from "conductive" to "not conductive") of the status output. The delay starts when the limit value is reached. The status output does switch when the delay has timed out and the switch off condition has been valid over the delay time.</td>
<td>Detailed description of the function's purpose.</td>
<td>User input: Fixed-point number 0.0 to 100.0 s</td>
</tr>
</tbody>
</table>

Note! This function **cannot** be changed if:
- The measuring device has been configured in accordance with NTEP or MC approval.
- The measuring device has been configured in accordance with PTB, NMi, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
- This function is not available unless the STATUS option was selected in the MODE OF OPERATION (4200) function.

| **MEASURING MODE** (4246) | Use this function to define the measuring mode for the status output. | Options: STANDARD - The status output signal switches at the defined switch points. SYMMETRY - The status output signal switches at the defined switch points, irrespective of the sign. If you define a switch point with a positive sign, the status output signal switches as soon as the value is reached in the negative direction (negative sign), (see illustration). | Factory setting: STANDARD |

Example for the SYMMETRY measuring mode:
Switch-on point $Q = 4$, Switch-off point $Q = 10$

Illustration of the measuring mode, showing the switch points and the status output signals.

Note! This function **cannot** be changed if:
- The measuring device has been configured in accordance with NTEP or MC approval.
- The measuring device has been configured in accordance with PTB, NMi, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
- This function is not available unless STATUS was selected in the MODE OF OPERATION function (4200) and the status output was assigned a limit value.
- SYMMETRY cannot be selected unless the values in the ON-VALUE (4242) and OFF VALUE (4244) functions have the same sign or one of the values is zero.
- If the values have different signs, SYMMETRY cannot be selected and an "ASSIGNMENT NOT POSSIBLE" message is displayed.
Function description

OUTPUTS ➔ PULSE/FREQUENCY OUTPUT (1 to 2) ➔ CONFIGURATION (STATUS)

<table>
<thead>
<tr>
<th>TIME CONSTANT (4247)</th>
<th></th>
</tr>
</thead>
</table>
| Entering a time constant defines how the measuring signal reacts to severely fluctuating measured variables, either very quickly (enter a low time constant) or with damping (enter a high time constant). Damping acts on the measuring signal before the switch status changes, and consequently before switch-on or switch-off delay is activated. The purpose of damping, therefore, is to prevent the status output changing state continuously in response to fluctuations in flow.

User input:
Fixed-point number 0.00 to 100.00 s

Factory setting:
0.00 s

Note!

- This function **cannot** be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMi, METAS or BEV approval and YES has been selected for the available functions Z001 to Z002 in the CUSTODY TRANSFER block.
- This function is not available unless the STATUS option was selected in the MODE OF OPERATION(4200) function.
8.2.2 Function group OPERATION

<table>
<thead>
<tr>
<th>OUTPUTS</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURRENT OUTPUT 1</td>
<td>EAA</td>
</tr>
<tr>
<td>CURRENT OUTPUT 2</td>
<td>EAB</td>
</tr>
<tr>
<td>PULSE/FREQ. OUTPUT 1</td>
<td>ECA</td>
</tr>
<tr>
<td>PULSE/FREQ. OUTPUT 2</td>
<td>ECB</td>
</tr>
</tbody>
</table>

Function description

ACTUAL FREQUENCY

Use this function to view the computed actual value of the output frequency.

Display:

0 to 12500 Hz

Note!

This function is not available unless the PULSE option was selected in the MODE OF OPERATION function.

SIMULATION FREQUENCY

Activates simulation of the frequency output.

Options:

OFF
ON

Factory setting:

OFF

Note!

- This function cannot be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMi, METAS or BEV approval and YES has been selected for the available function Z001 or Z002 in the CUSTODY TRANSFER block.
- This function is available only if the FREQUENCY setting was selected in the OPERATION MODE function.
- The "SIMULATION FREQUENCY OUTPUT" message indicates that simulation is active.
- The measuring device continues to measure while simulation is in progress, i.e. the current measured values are output correctly via the other outputs.

Caution!

The setting is not saved in the event of a power failure.
Function description

<table>
<thead>
<tr>
<th>OUTPUTS ➔ PULSE/FREQUENCY OUTPUT (1 to 2) ➔ OPERATION (FREQUENCY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE SIMULATION FREQUENCY (4303)</td>
</tr>
<tr>
<td>□</td>
</tr>
</tbody>
</table>

Define a selectable frequency value (e.g. 500 Hz) which should be output at the frequency output (with maximum pulse frequency or shortened minimum pulse width). This value is used to test downstream devices and the measuring device itself.

User input:
0 to 12500 Hz

Factory setting:
0 Hz

⚠️ **Note!**
- This function *cannot* be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for the available function Z001 or Z002 in the CUSTODY TRANSFER block.
- This function is not available unless FREQUENCY was selected in the MODE OF OPERATION function (4200) and the SIMULATION FREQUENCY function (4302) is active (= ON).

⚠️ **Caution!**
The setting is not saved in the event of a power failure.
Function description

<table>
<thead>
<tr>
<th>OUTPUTS ➔ PULSE/FREQUENCY OUTPUT (1 to 2) ➔ OPERATION (PULSE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMULATION PULSE (4322)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Activates simulation of the pulse output.</td>
</tr>
<tr>
<td>Options:</td>
</tr>
<tr>
<td>OFF</td>
</tr>
<tr>
<td>COUNTDOWN The pulses specified in the VALUE SIMULATION PULSE function are output.</td>
</tr>
<tr>
<td>CONTINUOUSLY Pulses are continuously output with the pulse width specified in the PULSE WIDTH function. Simulation is started once the CONTINUOUSLY option is confirmed with the <code>F</code> key.</td>
</tr>
</tbody>
</table>

⚠️ Note! Simulation is started by confirming the CONTINUOUSLY option with the `F` key. The simulation can be switched off again via the SIMULATION PULSE function.

Factory setting: OFF

⚠️ Note! This function **cannot** be changed if:
- The measuring device has been configured in accordance with NTEP or MC approval.
- The measuring device has been configured in accordance with PTB, NMi, METAS or BEV approval and YES has been selected for the available function Z001 or Z002 in the CUSTODY TRANSFER block.
- This function is not available unless the PULSE option was selected in the MODE OF OPERATION (4200) function.
- The notice message #631 "SIM. PULSE" indicates that simulation is active.
- The on/off ratio is 1:1 for both types of simulation.
- The measuring device continues to measure while simulation is in progress, i.e. the current measured values are output correctly via the other outputs.

ℹ️ Caution! The setting is not saved in the event of a power failure.
Function description

OUTPUTS ➔ PULSE/FREQUENCY OUTPUT (1 to 2) ➔ OPERATION (PULSE)

<table>
<thead>
<tr>
<th>VALUE SIMULATION PULSE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4323)</td>
<td>Specify the number of pulses (e.g. 50) to be output during the simulation. This value is used to test downstream devices and the measuring device itself. The pulses are output with the pulse width specified in the PULSE WIDTH function. The on/off ratio is 1:1. Simulation is started once the specified value is confirmed with the F key. The display remains at 0 if the specified pulses have been output.</td>
</tr>
<tr>
<td>User input:</td>
<td>0 to 10,000</td>
</tr>
<tr>
<td>Factory setting:</td>
<td>0</td>
</tr>
</tbody>
</table>

Note!
- This function **cannot** be changed if:
 - The measuring device has been configured in accordance with NTEP or MC approval.
 - The measuring device has been configured in accordance with PTB, NMi, METAS or BEV approval and YES has been selected for the available function Z001 or Z002 in the CUSTODY TRANSFER block.
- This function is not available unless the COUNTDOWN setting was selected in the function SIMULATION PULSE.
- Simulation is started by confirming the simulation value with the **F** key. The simulation can be switched off again via the SIMULATION PULSE function.

Caution!
The setting is not saved in the event of a power failure.
Function description

OUTPUTS ➞ PULSE/FREQUENCY OUTPUT (1 to 2) ➞ OPERATION (STATUS)

ACTUAL STATUS (4341)	Use this function to check the current status of the status output.
Display:	NOT CONDUCTIVE
Conductive:	
Note:	This function is not available unless the STATUS option was selected in the MODE OF OPERATION (4200) function.

SIMULATION SWITCH POINT (4342)	Use this function to activate simulation of the status output.
Options:	OFF, ON
Factory setting:	OFF
Note:	This function **cannot** be changed if:
	- The measuring device has been configured in accordance with NTEP or MC approval.
	- The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for the available functions 2001 to 2002 in the CUSTODY TRANSFER block.
	This function is not available unless the STATUS option was selected in the MODE OF OPERATION (4200) function.
	The "SIMULATION STATUS OUTPUT" message indicates that simulation is active.
	The measuring device continues to measure while simulation is in progress, i.e. the current measured values are output correctly via the other outputs.
Caution:	The setting is not saved in the event of a power failure.

VALUE SIMULATION SWITCH POINT (4343)	Use this function to define the switching response of the status output during the simulation. This value is used to test downstream devices and the measuring device itself.
Options:	NOT CONDUCTIVE
Conductive:	
Factory setting:	NOT CONDUCTIVE
Note:	This function **cannot** be changed if:
	- The measuring device has been configured in accordance with NTEP or MC approval.
	- The measuring device has been configured in accordance with PTB, NMI, METAS or BEV approval and YES has been selected for the available functions 2001 to 2002 in the CUSTODY TRANSFER block.
	This function is not available unless STATUS was selected in the MODE OF OPERATION function (4200) and the SIMULATION SWITCH POINT function (4342) is active (= ON).
Caution:	The setting is not saved in the event of a power failure.
Function group INFORMATION

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>CURRENT OUTPUT 1 EAA ➞ CURRENT OUTPUT 2 EAB ➞</td>
</tr>
<tr>
<td></td>
<td>PULSE/FREQ. OUTPUT 1 ECA ➞ CONFIGURATION 420 ➞</td>
</tr>
<tr>
<td></td>
<td>OPERATION 430 ➞ INFORMATION 438</td>
</tr>
<tr>
<td></td>
<td>PULSE/FREQ. OUTPUT 2 ECB ➞ CONFIGURATION 420 ➞</td>
</tr>
<tr>
<td></td>
<td>OPERATION 430 ➞ INFORMATION 438</td>
</tr>
</tbody>
</table>

Function description

<table>
<thead>
<tr>
<th>TERMINAL NUMBER</th>
<th>(4380) Use this function to view the numbers of the terminals (in the connection compartment) and the polarity used by the pulse/frequency output.</th>
</tr>
</thead>
</table>
8.3 Group RELAY OUTPUT

8.3.1 Function group CONFIGURATION

<table>
<thead>
<tr>
<th>OUTPUTS</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURRENT OUTPUT 1</td>
<td>EAA</td>
</tr>
<tr>
<td>CURRENT OUTPUT 2</td>
<td>EAB</td>
</tr>
<tr>
<td>PULSE/FREQ. OUTPUT 1</td>
<td>ECA</td>
</tr>
<tr>
<td>PULSE/FREQ. OUTPUT 2</td>
<td>ECB</td>
</tr>
<tr>
<td>RELAY OUTPUT 1</td>
<td>EGA</td>
</tr>
</tbody>
</table>

Function description

ASSIGN RELAY (4700)

Use this function to assign a switching function to the relay output.

Options (standard):
- OFF
- ON (operation)
- FAULT MESSAGE
- NOTICE MESSAGE
- FAULT MESSAGE or NOTICE MESSAGE
- EPD (Empty pipe detection, only if active)
- FLOW DIRECTION
- LIMIT MASS FLOW
- LIMIT VOLUME FLOW
- CORRECTED VOLUME FLOW LIMIT VALUE
- DENSITY LIMIT VALUE
- REFERENCE DENSITY LIMIT VALUE
- TEMPERATURE LIMIT VALUE
- LIMIT TOTALIZER 1 to 3

Factory setting:
- FAULT MESSAGE

Note!
- It is very important to read and comply with the information on the switching characteristics of the relay output, (see Page 96).
- It is advisable to configure at least one relay output as a fault output and define the outputs’ failsafe mode.
- The relay output is configured as a normally open (NO or make) contact by default. It can be reconfigured as a normally closed (NC or break) contact by means of a jumper on the relay module (see Operating Instructions Proline Promass 84, BA109D).
- If you select OFF or ON, the only function shown in the CONFIGURATION function group is this function ASSIGN RELAY (4700).
Function description

OUTPUTS → RELAY OUTPUT → CONFIGURATION

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON-VALUE</td>
<td>This function is not available unless LIMIT VALUE or FLOW DIRECTION was selected in the ASSIGN RELAY function (4700). Use this function to assign a value to the switch-on point (relay output pulls up). The value can be higher or lower than the switch-off point. Positive or negative values are permissible, depending on the measured variable in question (e.g. mass flow, totalizer reading).

User input: 5-digit floating-point number [unit]
Factory setting: 0 [kg/h] or 2 [kg/l] or 200 [°C]</td>
</tr>
<tr>
<td>SWITCH-ON DELAY</td>
<td>This function is not available unless LIMIT VALUE or FLOW DIRECTION was selected in the ASSIGN RELAY function (4700). Use this function to define a delay (0 to 100 seconds) for pull-up (i.e. signal changes from 0 to 1) of the relay output. The delay starts when the limit value is reached. The relay output does switch when the delay has timed out and the switch on condition has been valid over the delay time.

User input: fixed-point number 0.0 to 100.0 s
Factory setting: 0.0 s</td>
</tr>
<tr>
<td>OFF VALUE</td>
<td>This function is not available unless a number was selected in the ASSIGN RELAY function (4700). Use this function to assign a value to the switch-off point (relay drops out). The value can be higher or lower than the switch-on point. Positive or negative values are permissible, depending on the measured variable in question (e.g. mass flow, totalizer reading).

User input: 5-digit floating-point number [unit]
Factory setting: 0 [kg/h] or 2 [kg/l] or 200 [°C]</td>
</tr>
</tbody>
</table>

Note:
- The appropriate unit is taken from the function UNIT MASS FLOW (0400) or UNIT VOLUME FLOW (0402).
- Only the switch-on point is available for flow direction output (no switch-off point). If you enter a value not equal to the zero flow (e.g. 5), the difference between the zero flow and the value entered corresponds to half the switchover hysteresis.
- If SYMMETRY is selected in the function MEASURING MODE (4705) and values with different signs are entered for the switch-on and switch-off points, the notice message "INPUT RANGE EXCEEDED" appears.
Function description

OUTPUTS → RELAY OUTPUT → CONFIGURATION

SWITCH-OFF DELAY (4704)

Note!
This function is not available unless a number was selected in the ASSIGN RELAY function (4700).

Use this function to define a delay (0 to 100 seconds) for dropout (i.e. signal changes from 1 to 0) of the relay output. The delay starts when the limit value is reached. The relay output does switch when the delay has timed out and the switch off condition has been valid over the delay time.

User input:
fixed-point number 0.0 to 100.0 s

Factory setting:
0.0 s

MEASURING MODE (4705)

Note!
This function is not visible unless a limit value was assigned to the relay output.

Use this function to define the measuring mode for the relay output.

Options:

- **STANDARD**
 The relay output signal switches at the defined switch points.

- **SYMMETRY**
 The relay output signal switches at the defined switch points, irrespective of the sign. If you define a switch point with a positive sign, the relay output switches as soon as the value is reached in the negative direction (negative sign), (see illustration).

Factory setting:
STANDARD

Example for the SYMMETRY measuring mode:

<table>
<thead>
<tr>
<th>Switch-on point Q = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch-off point Q = 10</td>
</tr>
</tbody>
</table>

➀ = Relay energized
➁ = Relay de-energized

Note!
- SYMMETRY cannot be selected unless the values in the ON-VALUE (4701) and OFF VALUE (4703) functions have the same sign or one of the values is zero.
- If the values have different signs, SYMMETRY cannot be selected and an "ASSIGNMENT NOT POSSIBLE" message is displayed.
TIME CONSTANT
(4706)

Entering a time constant defines how the measuring signal reacts to severely fluctuating measured variables, either very quickly (enter a low time constant) or with damping (enter a high time constant). Damping acts on the measuring signal before the switch status changes, and consequently before switch-on or switch-off delay is activated. The purpose of damping, therefore, is to prevent the relay output changing state continuously in response to fluctuations in flow.

User input:
fixed-point number: 0.00 to 100.00 s

Factory setting:
0.00 s
8.3.2 Function group OPERATION

<table>
<thead>
<tr>
<th>OUT袖ES</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURRENT OUTPUT 1</td>
<td>EAA</td>
</tr>
<tr>
<td>CURRENT OUTPUT 2</td>
<td>EAB</td>
</tr>
<tr>
<td>CURRENT OUTPUT 3</td>
<td>EAC</td>
</tr>
<tr>
<td>PULSE/FREQ. OUTPUT 1</td>
<td>ECA</td>
</tr>
<tr>
<td>PULSE/FREQ. OUTPUT 2</td>
<td>ECB</td>
</tr>
<tr>
<td>RELAY OUTPUT 1</td>
<td>EGA</td>
</tr>
<tr>
<td>RELAY OUTPUT 2</td>
<td>EGB</td>
</tr>
</tbody>
</table>

Function description

ACTUAL STATUS RELAY (4740)
Use this function to check the current status of the relay output.

Display:
- MAKE CONTACT OPEN
- MAKE CONTACT CLOSED
- BREAK CONTACT OPEN
- BREAK CONTACT CLOSED

⚠️ **Note!**
A jumper on the contact side defines the relay output as a normally open (NO or make) or normally closed (NC or break) contact (see Operating Instruction Proline Promass 84, BA109D).

SIMULATION SWITCH POINT (4741)
Use this function to activate simulation of the relay output.

Options:
- OFF
- ON

Factory setting:
- OFF

⚠️ **Note!**
- The "SIMULATION RELAY" message indicates that simulation is active.
- The measuring device continues to measure while simulation is in progress, i.e. the current measured values are output correctly via the other outputs.

⚠️ **Caution!**
The setting is not saved in the event of a power failure.
Function description

OUTPUTS → RELAY OUTPUT (1 to 2) → OPERATION

<table>
<thead>
<tr>
<th>VALUE SIMULATION SWITCH POINT (4742)</th>
</tr>
</thead>
</table>
| ✉️ Note!
The function is not visible unless the function SIMULATION SWITCH POINT (4741) is active (= ON).
Use this function to define the status of the relay output during the simulation. This value is used to test downstream devices and the measuring device itself. Depending on the relay configuration (as make or break contact) the following selections are available.
Options:
Relay output configured as normally open (make) contact:
MAKE CONTACT OPEN
MAKE CONTACT CLOSED
Relay output configured as normally closed (break) contact:
BREAK CONTACT OPEN
BREAK CONTACT CLOSED

⚠️ Caution!
The setting is not saved in the event of a power failure.

8.3.3 Function group INFORMATION

<table>
<thead>
<tr>
<th>OUTPUTS</th>
<th>E</th>
<th>CURRENT OUTPUT</th>
<th>EAA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PULSE/FREQ. OUTPUT 1</td>
<td>ECA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PULSE/FREQ. OUTPUT 2</td>
<td>ECB</td>
</tr>
<tr>
<td>RELAY OUTPUT 1</td>
<td>EGA</td>
<td>CONFIGURATION</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPERATION</td>
<td>474</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INFORMATION</td>
<td>478</td>
</tr>
<tr>
<td>RELAY OUTPUT 2</td>
<td>EGB</td>
<td>CONFIGURATION</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPERATION</td>
<td>474</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INFORMATION</td>
<td>478</td>
</tr>
</tbody>
</table>

Function description

OUTPUTS → RELAY OUTPUT [1 to 2] → INFORMATION

<table>
<thead>
<tr>
<th>TERMINAL NUMBER (4780)</th>
<th>Use this function to view the numbers of the terminals (in the connection compartment) and the polarity used by the relay output.</th>
</tr>
</thead>
</table>
8.4 Behavior of status output

General
If you have configured the status output signal for LIMIT VALUE or FLOW DIRECTION, you can define the requisite switch points in the ON-VALUE and OFF-VALUE functions. When the measured variable in question reaches one of these predefined values, the status output switches as shown in the illustrations below.

Status output configured for flow direction (Fig. 4)
The value you entered in the function ON-VALUE defines the switch point for the positive and negative directions of flow. If, for example, the switch point you define is $1 \text{ m}^3/\text{h}$, the status output does not switch off until $-1 \text{ m}^3/\text{h}$ (non-conductive) and switches on again at $+1 \text{ m}^3/\text{h}$. Set the switch point to 0 if your process calls for direct switchover (no switching hysteresis). If low flow cut off is used, it is advisable to set hysteresis to a value higher than or equal to the low flow cut off rate.

![Fig. 4: Switching behavior of the status output for flow direction](image)

Status output configured for limit value (Fig. 5)
The status output signal switches as soon as the measured variable undershoots or overshoots a defined switch point.

Application: Monitoring flow or process-related boundary conditions.

![Fig. 5: Switching behavior of the status output for limit value](image)

1. $\text{ON} < \text{OFF VALUE}$ (maximum safety)
2. $\text{ON} \geq \text{OFF VALUE}$ (minimum safety)
3. Status output switched off (non-conductive)
8.5 Status output switching behavior

<table>
<thead>
<tr>
<th>Function</th>
<th>State</th>
<th>Open collector behavior (Transistor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON (operation)</td>
<td>System in measuring mode</td>
<td>Conductive</td>
</tr>
<tr>
<td></td>
<td>System not in measuring mode (power supply failed)</td>
<td>Non-conductive</td>
</tr>
<tr>
<td>Fault message</td>
<td>System OK</td>
<td>Conductive</td>
</tr>
<tr>
<td></td>
<td>(System or process error) Fault → Failsafe mode, outputs/inputs and totalizers</td>
<td>Non-conductive</td>
</tr>
<tr>
<td>Notice message</td>
<td>System OK</td>
<td>Conductive</td>
</tr>
<tr>
<td></td>
<td>(System or process error) Fault → Continuation of measuring</td>
<td>Non-conductive</td>
</tr>
<tr>
<td>Fault message or Notice message</td>
<td>System OK</td>
<td>Conductive</td>
</tr>
<tr>
<td></td>
<td>(System or process error) Fault → Response to error or Note → Continuation of measuring</td>
<td>Non-conductive</td>
</tr>
<tr>
<td>Function</td>
<td>State</td>
<td>Open collector behavior (Transistor)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Empty pipe detection (EPD)</td>
<td>Measuring tube full</td>
<td>Conductive</td>
</tr>
<tr>
<td></td>
<td>Measuring tube partially filled /empty measuring tube</td>
<td>Non-conductive</td>
</tr>
<tr>
<td>Flow direction</td>
<td>forward</td>
<td>Conductive</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>Non-conductive</td>
</tr>
<tr>
<td>Limit value</td>
<td>Limit value not overshot or undershot</td>
<td>Conductive</td>
</tr>
<tr>
<td></td>
<td>Mass flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volume flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corrected volume flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Density</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reference density</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Totalizer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limit value overshot or undershot</td>
<td>Non-conductive</td>
</tr>
</tbody>
</table>

* Terminal numbers in accordance with the function TERMINAL NO. (4380) on Page 88.
9 Block INPUTS
9.1 Group STATUS INPUT

9.1.1 Function group CONFIGURATION

<table>
<thead>
<tr>
<th>Inputs</th>
<th>F</th>
<th>Status Input</th>
<th>FAA</th>
<th>Configuration</th>
<th>500</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Function description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSIGN STATUS INPUT</td>
<td>Use this function to assign a switching function to the status input.</td>
</tr>
<tr>
<td>(5000)</td>
<td>Options:</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>RESET TOTALIZER 1</td>
</tr>
<tr>
<td></td>
<td>RESET TOTALIZER 2</td>
</tr>
<tr>
<td></td>
<td>RESET TOTALIZER 3</td>
</tr>
<tr>
<td></td>
<td>RESET ALL TOTALIZERS</td>
</tr>
<tr>
<td></td>
<td>POSITIVE ZERO RETURN</td>
</tr>
<tr>
<td></td>
<td>RESET FAULT MESSAGE</td>
</tr>
<tr>
<td></td>
<td>ZERO POINT ADJUSTMENT</td>
</tr>
<tr>
<td></td>
<td>Factory setting:</td>
</tr>
<tr>
<td></td>
<td>RESET FAULT MESSAGE</td>
</tr>
<tr>
<td></td>
<td>Caution!</td>
</tr>
<tr>
<td></td>
<td>POSITIVE ZERO RETURN is active as long as the level is available at the status input (continuous signal). All other assignments react to a change in level (pulse) at the status input.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active Level</th>
<th>(5001)</th>
<th>Use this function to define whether the assigned function (see function ASSIGN STATUS INPUT(5000)) is released when the signal level is present (HIGH) or not present (LOW).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options:</td>
<td></td>
<td>HIGH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOW</td>
</tr>
<tr>
<td>Factory setting:</td>
<td>HIGH</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minimum Pulse Width</th>
<th>(5002)</th>
<th>Use this function to define a minimum pulse width which the input pulse must achieve in order to trigger the selected switching function, (see function ASSIGN STATUS INPUT(5000)).</th>
</tr>
</thead>
<tbody>
<tr>
<td>User input:</td>
<td></td>
<td>20 to 100 ms</td>
</tr>
<tr>
<td>Factory setting:</td>
<td></td>
<td>50 ms</td>
</tr>
</tbody>
</table>
9.1.2 Function group OPERATION

<table>
<thead>
<tr>
<th>Function group</th>
<th>Status Input FAA</th>
<th>Configuration 500</th>
<th>Operation 504</th>
</tr>
</thead>
</table>

Function description

- **ACTUAL STATUS INPUT (5040)**
 - Use this function to view the current level of the status input.
 - Display:
 - HIGH
 - LOW

- **SIMULATION STATUS INPUT (5041)**
 - Use this function to simulate the status input, in other words to trigger the function assigned to the status input (ASSIGN STATUS INPUT (5000) → Page 100).
 - Options:
 - OFF
 - ON
 - Factory setting:
 - OFF
 - **Note!**
 - The "SIMULATION STATUS INPUT" notice message indicates that simulation is active.
 - The measuring device continues to measure while simulation is in progress, i.e. the current measured values are output correctly via the other outputs.
 - **Caution!**
 - The setting is not saved in the event of a power failure.

- **VALUE SIMULATION STATUS INPUT (5042)**
 - Use this function to define the level to be assumed at the status output during the simulation. This value is used to test downstream devices and the measuring device itself.
 - Options:
 - HIGH
 - LOW
 - Factory setting:
 - LOW
 - **Note!**
 - The function is not visible unless the function SIMULATION STATUS INPUT (5041) is active (= ON).
 - **Caution!**
 - The setting is not saved in the event of a power failure.
9.1.3 Function group INFORMATION

- **INPUTS** \(F \) \(\Rightarrow \) **STATUS INPUT** \(\text{FAA} \) \(\Rightarrow \) **CONFIGURATION** 500
 - \(\downarrow \) **OPERATION** 504
 - \(\downarrow \) **INFORMATION** 508

Function description

- **TERMINAL NUMBER** (5080)

 Use this function to view the numbers of the terminals (in the connection compartment) and the polarity used by the status input.
BASIC FUNCTION (G)

Groups
- HART (GAA) P. 104
- PROCESS PARAMETER (GAP) P. 106
- SYSTEM PARAMETER (GAP) P. 115
- SENSOR DATA (GNA) P. 116

Function groups
- CONFIGURATION
- INFORMATION
- ADJUSTMENT
- PRESSURE CORRECTION
- INSTALL. DIR. SENSOR
- K-FACTOR
- FLOW COEFF.
- DENSITY COEFF.
- ADDIT. COEFF.

Functions
- TAG NAME
- TAG DESCRIPTION
- BUS ADDRESS
- HART PROTOCOL
- WRITE PROTECTION
- ADDRESS
- MANUFACTURER ID
- DEVICE ID
- DEVICE REVISION
- ASSIGN LF CUT OFF
- ZERO POINT
- DENSITY ADJUST MODE
- ZERO POINT
- INSTALLATION DIR.
- FLOW DAMPING
- DENSITY DAMPING
- ZERO POINT
- INSTALL. SENSOR
- X-FACTOR
- INSTALL. D. TEMP.
- INSTALL. D. TEMP.
- DENSITY COEFF.
- ADDIT. COEFF.
- MIN. FLUID TEMP.
- MAX. FLUID TEMP.
- MAX. CARRIER TEMP.
- MIN. CARRIER TEMP.
- REFERENCE PARAMETER
- FIXED REF.
- EXPANS. COEFF.
- CORR. VOL.
- EPD VALUE HIGH
- DENSITY SET VALUE
- MEASURE FLUID 1
- MEASURE FLUID 2
- MEASURE FLUID 2
- MEASURE FLUID 2
- MEASURE REFERENCE TEMP.
- RESTORE ORG.
- EMPTY PIPE DETECT.
- EMPTY PIPE DET.
- FIXED REF.
- DENSITY
- DENSITY SET VALUE
- MEASURE FLUID 1
- MEASURE FLUID 2
- MEASURE FLUID 2
- MEASURE REFERENCE TEMP.
- RESTORE ORG.
- EMPTY PIPE DETECT.
- EMPTY PIPE DET.
- FIXED REF.
- DENSITY
- DENSITY SET VALUE
- MEASURE FLUID 1
- MEASURE FLUID 2
- MEASURE FLUID 2
- MEASURE REFERENCE TEMP.
- RESTORE ORG.
- EMPTY PIPE DETECT.
- EMPTY PIPE DET.
- FIXED REF.
- DENSITY
- DENSITY SET VALUE
- MEASURE FLUID 1
- MEASURE FLUID 2
- MEASURE FLUID 2
- MEASURE REFERENCE TEMP.
- RESTORE ORG.
- EMPTY PIPE DETECT.
- EMPTY PIPE DET.
- FIXED REF.
- DENSITY
- DENSITY SET VALUE
- MEASURE FLUID 1
- MEASURE FLUID 2
- MEASURE FLUID 2
- MEASURE REFERENCE TEMP.
- RESTORE ORG.
- EMPTY PIPE DETECT.
- EMPTY PIPE DET.
- FIXED REF.
- DENSITY
- DENSITY SET VALUE
- MEASURE FLUID 1
- MEASURE FLUID 2
- MEASURE FLUID 2
- MEASURE REFERENCE TEMP.
- RESTORE ORG.
- EMPTY PIPE DETECT.
- EMPTY PIPE DET.
- FIXED REF.
- DENSITY
- DENSITY SET VALUE
- MEASURE FLUID 1
- MEASURE FLUID 2
- MEASURE FLUID 2
- MEASURE REFERENCE TEMP.
- RESTORE ORG.
- EMPTY PIPE DETECT.
- EMPTY PIPE DET.
- FIXED REF.
- DENSITY
- DENSITY SET VALUE
- MEASURE FLUID 1
- MEASURE FLUID 2
- MEASURE FLUID 2
- MEASURE REFERENCE TEMP.
- RESTORE ORG.
- EMPTY PIPE DETECT.
- EMPTY PIPE DET.
- FIXED REF.
- DENSITY
- DENSITY SET VALUE
- MEASURE FLUID 1
- MEASURE FLUID 2
- MEASURE FLUID 2
- MEASURE REFERENCE TEMP.
- RESTORE ORG.
- EMPTY PIPE DETECT.
- EMPTY PIPE DET.
- FIXED REF.
- DENSITY
- DENSITY SET VALUE
- MEASURE FLUID 1
- MEASURE FLUID 2
- MEASURE FLUID 2
- MEASURE REFERENCE TEMP.
- RESTORE ORG.
- EMPTY PIPE DETECT.
- EMPTY PIPE DET.
- FIXED REF.
- DENSITY
- DENSITY SET VALUE
- MEASURE FLUID 1
- MEASURE FLUID 2
- MEASURE FLUID 2
- MEASURE REFERENCE TEMP.
- RESTORE ORG.
- EMPTY PIPE DETECT.
- EMPTY PIPE DET.
- FIXED REF.
- DENSITY
- DENSITY SET VALUE
- MEASURE FLUID 1
- MEASURE FLUID 2
- MEASURE FLUID 2
- MEASURE REFERENCE TEMP.
10.1 Group HART

10.1.1 Function group CONFIGURATION

<table>
<thead>
<tr>
<th>BASIC FUNCTION</th>
<th>HART</th>
<th>GAA</th>
<th>CONFIGURATION 600</th>
</tr>
</thead>
</table>

Function description

TAG NAME (6000)

(only for NTEP, MC)

Use this function to enter a tag name for the measuring device. You can edit and read this tag name via the local display or the HART protocol.

User input:

max. 8-character text, permissible: A-Z, 0-9, +, –, punctuation marks

Factory setting:

"_ _ _ _ _ _ _ _" (no text)

TAG DESCRIPTION (6001)

(only for NTEP, MC)

Use this function to enter a tag description for the measuring device. You can edit and read this tag name via the local display or the HART protocol.

User input:

max. 16-character text, permissible: A-Z, 0-9, +, –, punctuation marks

Factory setting:

"_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _" (No text)

BUS ADDRESS (6002)

(only for NTEP, MC)

Use this function to define the address for the exchange of data with the HART protocol.

User input:

0 to 15

Factory setting:

0

Note!

- Addresses 1 to 15: a constant 4 mA current is applied.
- This function is not changeable if the measuring device is configured according to the PTB, NMi, METAS or BEV approval and YES has been selected in the available functions Z001 to Z003 in the block CUSTODY TRANSFER.

HART PROTOCOL (6003)

Use this function to display if the HART protocol is active.

Display:

OFF = HART protocol not active
ON = HART protocol active

Note!

The HART protocol can be activated with the selection 4–20 mA HART or 4–20 mA (25 mA) in the function CURRENT SPAN → Page 53.

WRITE PROTECTION (6004)

Use this function to check whether the measuring device can be write-accessed.

Display:

OFF = Data exchange is possible
ON = Data exchange disabled

Factory setting:

OFF

Note!

Write protection is disabled or enabled by means of a jumper on the I/O board. For additional information on write protection, refer to the Operating Instructions for the Promass 84 (BA109D).
10.1.2 Function group INFORMATION

<table>
<thead>
<tr>
<th>Function Group</th>
<th>Basic Function G ⇒ HART GAA ⇒ Configuration 600 ⇒ INFORMATION 604</th>
</tr>
</thead>
</table>

Function description

<table>
<thead>
<tr>
<th>Manufacturer ID (6040)</th>
<th>Use this function to view the manufacturer ID in decimal numerical format.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Display:</td>
</tr>
<tr>
<td></td>
<td>- Endress+Hauser</td>
</tr>
<tr>
<td></td>
<td>- 17 (≈ 11 hex) for Endress+Hauser</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device ID (6041)</th>
<th>Use this function to view the device ID in hexadecimal numerical format.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Display:</td>
</tr>
<tr>
<td></td>
<td>52 (≈ 82 dez) for Promass 84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device Revision (6042)</th>
<th>Displays the device-specific revision of the HART command interface.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Display:</td>
</tr>
<tr>
<td></td>
<td>e.g.: 5</td>
</tr>
</tbody>
</table>
10.2 Group PROCESSPARAMETER

10.2.1 Function group CONFIGURATION

ASSIGN LOW FLOW CUTOFF

Use this function to assign the switch point for low flow cut off rate suppression.

Options:
- OFF
- MASS FLOW
- VOLUME FLOW
- CORRECTED VOLUME FLOW

Factory setting:
- MASS FLOW

ON-VALUE LOW FLOW CUTOFF

Use this function to assign a value to the switch-on point for low flow cut off.

Low flow cut off is active if the value entered is not equal to 0. The sign of the flow value is highlighted on the display to indicate that low flow cut off is active.

User input:
- 5-digit floating-point number, [unit]

Factory setting:
- Depends on nominal diameter

Note! The appropriate unit is taken from the function group SYSTEM UNITS (see Page 15).

OFF-VALUE LOW FLOW CUTOFF

Enter the off-value \(b \) of the low flow cut off.
Enter the switch-off point as a positive hysteresis \(H \) from the switch-on point \(a \).

User input:
- Integer 0 to 100%

Factory setting:
- 50%
The closure of a valve can cause brief but severe movements of the fluid in the piping system, movements which the measuring system registers. The pulses totaled in this way result in a totalizer reading error, particularly in the case of batching processes. For this reason, the measuring device is equipped with pressure shock suppression (= short-term signal suppression) which can eliminate system-related "disruptions".

Note! Note that pressure shock suppression cannot be used unless the low flow cut off is active, (see function ON-VALUE LOW FLOW CUT OFF on Page 106).

Use this function to define the time span for active pressure shock suppression.

Activation of the pressure shock suppression
Pressure shock suppression is activated after the flow falls below the switch-on point of the low flow cut off (see point a in graphic).

While pressure shock suppression is active, the following conditions apply:
- Flow reading on display → 0
- Totalizer reading → the totalizers are pegged at the last correct value.

Deactivation of the pressure shock suppression
The pressure shock suppression is deactivated after the time interval, set in this function, has passed (see point b in graphic).

Note! The actual flow value is displayed and output, when the time interval for the pressure shock suppression has passed and the flow exceeds the switch-off point of the low flow cut off (see point c in graphic).

Function description

<table>
<thead>
<tr>
<th>BASIC FUNCTION</th>
<th>PROCESSPARAMETER</th>
<th>CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESSURE SHOCK SUPPRESSION (6404)</td>
<td>The closure of a valve can cause brief but severe movements of the fluid in the piping system, movements which the measuring system registers. The pulses totaled in this way result in a totalizer reading error, particularly in the case of batching processes. For this reason, the measuring device is equipped with pressure shock suppression (= short-term signal suppression) which can eliminate system-related "disruptions". Note! Note that pressure shock suppression cannot be used unless the low flow cut off is active, (see function ON-VALUE LOW FLOW CUT OFF on Page 106). Use this function to define the time span for active pressure shock suppression. Activation of the pressure shock suppression Pressure shock suppression is activated after the flow falls below the switch-on point of the low flow cut off (see point a in graphic). While pressure shock suppression is active, the following conditions apply: - Flow reading on display → 0 - Totalizer reading → the totalizers are pegged at the last correct value. Deactivation of the pressure shock suppression The pressure shock suppression is deactivated after the time interval, set in this function, has passed (see point b in graphic). Note! The actual flow value is displayed and output, when the time interval for the pressure shock suppression has passed and the flow exceeds the switch-off point of the low flow cut off (see point c in graphic).</td>
<td></td>
</tr>
</tbody>
</table>

User input:
max. 4-digit number, incl. unit: 0.00 to 100.0 s

Factory setting:
0.00 s
Function group EPD PARAMETER

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMPTY PIPE DETECTION (6420)</td>
<td>Use this function to activate the empty pipe detection (EPD). With empty measuring</td>
</tr>
<tr>
<td></td>
<td>tubes the density of the fluid falls below the value specified in the function EPD VALUE LOW.</td>
</tr>
<tr>
<td>Options:</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>Factory setting:</td>
<td></td>
</tr>
<tr>
<td>Liquid: ON</td>
<td></td>
</tr>
<tr>
<td>Gas: OFF</td>
<td></td>
</tr>
<tr>
<td>Caution!</td>
<td></td>
</tr>
<tr>
<td>- Select a correspondingly low EPD response value in the function EPD VALUE LOW, so that the</td>
<td></td>
</tr>
<tr>
<td>difference to the effective density of the fluid is sufficiently large enough. This ensures that</td>
<td></td>
</tr>
<tr>
<td>totally empty measuring tubes and not partially filled ones are detected.</td>
<td></td>
</tr>
<tr>
<td>- For gas measurement we strongly recommend to switch off empty pipe detection.</td>
<td></td>
</tr>
</tbody>
</table>

EPD VALUE LOW (6423)	Note!
	This function is not available unless the ON selection was selected in the EMPTY PIPE DETECTION function.
	Use this function to set a lower threshold for the measured density value, in order to detect possible problems in the process indicated by too low density.
User input:	5-digit floating-point number
Factory setting:	0.2000 kg/l

EPD VALUE HIGH (6424)	Note!
	This function is not available unless the ON selection was selected in the EMPTY PIPE DETECTION function.
	Use this function to set an upper threshold for the measured density value.
User input:	5-digit floating-point number
Factory setting:	6.0000 kg/l

EPD RESPONSE TIME (6425)	Use this function to enter the time span for which the criteria for an empty pipe have to be satisfied
	without interruption before a notice message or fault message is generated.
User input:	Fixed-point number 1.0 to 100 s
Factory setting:	1.0 s
Use this function to activate the empty pipe detection (EPD).

In the event of inhomogeneous fluids or air bubbles, the exciting current of the measuring pipes increases. If the excitation current set in this function is exceeded, error message #700 is output similar to the function EPD VALUE LOW (6423) and EPD VALUE HIGH (6424).

User input:
5-digit floating-point number

Factory setting:
100 mA (deactivated)

Note!
The function is not activated until a value under 100 mA is input. Entering the value 100 mA deactivates the function.
10.2.3 Function group REFERENCE PARAMETER

<table>
<thead>
<tr>
<th>BASIC FUNCTION G ⇒</th>
<th>HART GAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESS PARAMETER GIA ⇒</td>
<td>CONFIGURATION 640</td>
</tr>
<tr>
<td>EPD PARAMETER 642</td>
<td>REFERENCE PARAMETER 646</td>
</tr>
</tbody>
</table>

Function description

CORRECTED VOLUME CALCULATION (6460)
This function is used to set the reference density for calculating the corrected volume flow.

- **Options:**
 - FIXED REFERENCE DENSITY
 - CALCULATED REFERENCE DENSITY
- **Factory setting:**
 - CALCULATED REFERENCE DENSITY

FIXED REFERENCE DENSITY (6461)

- **Note!**
 - This function is not available unless the FIXED REFERENCE DENSITY setting was selected in the CORRECTED VOLUME CALCULATION (6460) function.
 - In this function, a fixed value for the reference density can be entered, with which the corrected volume flow or corrected volume is calculated.

- **User input:**
 - 5-digit floating-point number
- **Factory setting:**
 - 1 kg/Nl

EXPANSION COEFFICIENT (6462)

- **Note!**
 - This function is not available unless the CALCULATED REFERENCE DENSITY setting was selected in the CORRECTED VOLUME CALCULATION function (6460).
 - For temperature-compensated calculations of the reference density an expansion coefficient specific to the fluid is required and can be entered in this function (see (6464) (→ Page 111) function on REFERENCE TEMPERATURE).

- **User input:**
 - 5-digit floating-point number
- **Factory setting:**
 - 0.5000 e⁻³ [1/K]

EXPANSION COEFFICIENT SQUARE (6463)

- **Use this function to enter a square expansion coefficient if the temperature compensation follows a nonlinear behavior (see REFERENCE TEMPERATURE (6464) function on → Page 111).**

- **User input:**
 - 5-digit floating-point number
- **Factory setting:**
 - 0 e⁻⁶ [1/K²]
Note!
This function is not available unless the CALCULATED REFERENCE DENSITY setting was selected in the CORRECTED VOLUME CALCULATION function (6460).

Entering the reference temperature for calculating the corrected volume flow, the corrected volume and the reference density.

User input:
5-digit floating-point number

Factory setting:
20.000 °C

The reference density is calculated as follows:
\[\rho_N = \rho \cdot (1 + \alpha \Delta t + \beta \Delta t^2) \; \text{where} \; \Delta t = t - t_N \]

- \(\rho_N \) = Reference density
- \(\rho \) = Currently measured fluid density (measuring value of the measuring instrument)
- \(t \) = Actual measured temperature of fluid (measuring value of the measuring instrument)
- \(t_N \) = Reference temperature for calculating the reference density (e.g. 20 °C)
- \(\alpha \) = Volumetric expansion coefficient of the fluid, Unit = \([1/K]\); \(K = \) Kelvin
- \(\beta \) = Square vol. expansion coefficient of the fluid, unit \([1/K^2]\)
10.2.4 Function group ADJUSTMENT

<table>
<thead>
<tr>
<th>BASIC FUNCTION G</th>
<th>HART GAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESS PARAMETER GIA</td>
<td>CONFIGURATION 640</td>
</tr>
<tr>
<td>EPD PARAMETER 642</td>
<td>REFERENCE PARAMETER 646</td>
</tr>
<tr>
<td>ADJUSTMENT 648</td>
<td></td>
</tr>
</tbody>
</table>

Function description

<table>
<thead>
<tr>
<th>BASIC FUNCTION ➜ PROCESSPARAMETER ➜ ADJUSTMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZERO POINT ADJUSTMENT (6480)</td>
</tr>
<tr>
<td>![]</td>
</tr>
</tbody>
</table>
| **Options:** | CANCEL
START |
| **Factory setting:** | CANCEL |
| ![] | Caution!
Before carrying this out, please refer to the Operating Instructions of the Promass 84 (BA109D) for a detailed description of the procedure for zero point adjustment. |
| ![] | Note!
- Programming is locked during zero point adjustment.
The message "ZERO ADJUST RUNNING" appears on the display.
- If the zero point adjustment is not possible (e.g. if v > 0.1 m/s) or has been canceled, the alarm message "ZERO ADJUST NOT POSSIBLE" appears on the display.
- If the Promass 84 measuring electronics are fitted with a status input, then the zero point can also be activated by using this input. |
| **DENSITY ADJUST MODE** (6482) |
| ![] | Select whether a 1-point or 2-point density adjustment should be carried out. |
| **Options:** | CANCEL
1-POINT
2-POINT |
| **DENSITY SET VALUE 1** (6483) |
| ![] | Use this function to enter the density setpoint value for the first fluid for which you want to carry out a field density adjustment. |
| **User input:** | 5-digit floating-point number, incl. units |
| ![] | Note!
- The preset density entered here should not vary from the actual fluid density by a more than ±10%.
- The appropriate unit is taken from the function group SYSTEM UNITS (see Page 15). |
| **MEASURE FLUID 1** (6484) |
| ![] | Measure the actual density of the first fluid for the density adjustment. |
| **Options:** | CANCEL
START |
Function description

BASIC FUNCTION ➞ PROCESSPARAMETER ➞ ADJUSTMENT

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Density Set Value 2** (6485) | Use this function to enter the density setpoint value for the second fluid for which you want to carry out a field density adjustment.
User input:
5-digit floating-point number, incl. units
Note:
- The preset density entered here should not vary from the actual fluid density by more than ±10%.
- The difference between the density setpoint values must be at least 0.2 kg/L.
- The appropriate unit is taken from the function group SYSTEM UNITS (see Page 15). |
| **Measure Fluid 2** (6486) | Measure the actual density of the second fluid for the density adjustment.
Options:
CANCEL
START |
| **Density Adjustment** (6487) | With this function a density adjustment can be carried out on site.
The density adjustment values will thus be recalculated and stored. This ensures that the values dependent on density calculations (e.g. volume flow) are as accurate as possible.
Note:
Before carrying this out, please refer to the Operating Instructions of the Promass 84 (BA109D) for a detailed description of the procedure for density adjustment.
Two types of adjustment are possible:
1-point density adjustment (with one fluid)
This type of density adjustment is necessary under the following conditions:
- The sensor does not accurately measure the density which the operator expects based on laboratory trials.
- The characteristics of the fluid are outside the measuring points set at the factory or reference conditions under which the flowmeter has been calibrated.
- The plant is used solely for measuring a fluid whose density is to be determined very accurately under constant conditions.
2-point density adjustment (with two fluids)
This type of adjustment must always be carried out when the measuring tubes are changed mechanically, e.g. due to:
- Deposits
- Abrasion
- Corrosion
In such cases, the resonant frequency of the measuring tubes has been affected by these factors and is no longer compatible with the calibration data set at the factory.
The 2-point density adjustment takes these mechanically-based changes into account and calculates new, adjusted calibration data.
Options:
CANCEL
MEASURE FLUID 1
MEASURE FLUID 2
DENSITY ADJUSTMENT |
| **Restore Original** (6488) | Restore the original density coefficients determined at the factory.
Options:
NO
YES
Factory setting:
NO |
10.2.5 Function group PRESSURE CORRECTION

| BASIC FUNCTION G ⇒ HART GAA ⇒ PROCESS PARAMETER GIA ⇒ CONFIGURATION 640 ⇒ EPD PARAMETER 642 ⇒ REFERENCE PARAMETER 646 ⇒ ADJUSTMENT 648 ⇒ PRESSURE CORRECTION 650 |

Function description

PRESSURE MODE (6500)

Use this function to configure an automatic pressure correction. In this way, the effect of a pressure deviation between the calibration and process pressures on the measured error for mass flow can be compensated for. For additional information on this topic, refer to the Operating Instructions for the Promass 84 (BA109D) in the chapter on accuracy.

Options:
- OFF
- FIX

User input: 7-digit floating-point number

Factory setting: OFF

Note! This function is not available unless the FIX option was selected in the PRESSURE MODE (6500) function.

PRESSURE (6501)

This function is not available unless the FIX option was selected in the PRESSURE MODE (6500) function.

User input: 7-digit floating-point number

Factory setting: 0 bar g

Note! The appropriate unit is taken from the function group SYSTEM UNITS (see Page 15).
10.3 Group SYSTEM PARAMETERS

10.3.1 Function group CONFIGURATION

BASIC FUNCTION	G	⇒	HART GAA
PROCESS PARAMETER	GIA		
SYSTEM PARAMETER	GLA	⇒	CONFIGURATION 660

Function description

INSTALLATION DIRECTION SENSOR

(6600)
Use this function to reverse the sign of the flow direction, if necessary.

Note!
Ascertain the actual direction of fluid flow with reference to the direction indicated by the arrow on the sensor (nameplate).

Options:
NORMAL (flow as indicated by the arrow)
INVERSE (flow opposite to direction indicated by the arrow)

Factory setting:
NORMAL

DENSITY DAMPING

(6602)
The density filter allows the sensitivity of the density measuring signal to be lowered with respect to variations in the density of the fluid, e.g. with inhomogeneous liquids. The damping acts on all functions and outputs of the measuring device.

User input:
max. 5-digit number, incl. unit: 0.00 to 100.00 s

Factory setting:
0.00 s

FLOW DAMPING

(6603)
Setting the filter depth of the digital filter. The sensitivity of the flow measurement signal can be reduced with respect to interference peaks (e.g. in the event of a high solid content, gas bubbles in the fluid etc.). The reaction time of the measuring device increases with every increase in the filter setting. The damping acts on all functions and outputs of the measuring device.

User input:
0 to 100 s

Factory setting:
Liquid: 0.00 s
Gas: 0.25 s

POSITIVE ZERO RETURN

(6605)
Use this function to interrupt evaluation of measured variables. This is necessary when a piping system is being cleaned, for example. This setting acts on all function and outputs of the measuring device.

Options:
OFF
ON [signal output is set to the ZERO FLOW value, temperature and density are still output]

Factory setting:
OFF
10.4 Group SENSOR DATA

10.4.1 Function group CONFIGURATION

All sensor data (calibration factor, zero point and nominal diameter) are set at the factory and saved on the S-DAT sensor memory chip.

Caution!
Under normal circumstances you should not change the following parameter settings, because changes affect numerous functions of the entire measuring facility in general and the accuracy of the measuring system in particular. For this reason, the functions described below cannot be changed even when you enter your personal code. Contact your Endress+Hauser service organization if you have any questions about these functions.

Note!
The individual values of the functions are also provided on the sensor nameplate.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-FACTOR</td>
<td>This function shows the current calibration factor for the sensor.</td>
</tr>
<tr>
<td>(6800)</td>
<td>Factory setting: Depends on nominal diameter and calibration</td>
</tr>
<tr>
<td>ZERO POINT</td>
<td>This function shows the current zero point correction value for the sensor.</td>
</tr>
<tr>
<td>(6803)</td>
<td>Display: max. 5-digit number: –99999 to +99999</td>
</tr>
<tr>
<td>NOMINAL DIAMETER</td>
<td>This function shows the nominal diameter for the sensor.</td>
</tr>
<tr>
<td>(6804)</td>
<td>Factory setting: Depends on nominal diameter</td>
</tr>
</tbody>
</table>
10.4.2 Function group FLOW COEFFICIENT

All flow coefficients are set at the factory. All the sensor’s parameter settings are saved on the S-DAT memory chip. Contact your Endress+Hauser service organization if you have any questions about these functions.

- **TEMPERATURE COEFFICIENT KM (6840)**: This function shows the temperature coefficient KM.
- **TEMPERATURE COEFFICIENT KM 2 (6841)**: This function shows the temperature coefficient KM 2.
- **TEMPERATURE COEFFICIENT KT (6842)**: This function shows the temperature coefficient KT.
- **CALIBRATION COEFFICIENT KD 1 (6843)**: This function shows the calibration coefficient KD 1.
- **CALIBRATION COEFFICIENT KD 2 (6844)**: This function shows the calibration coefficient KD 2.
10.4.3 Function group DENSITY COEFFICIENT

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENSITY COEFFICIENT C0 (6850)</td>
<td>This function shows the actual density coefficient C0. Caution! A density adjustment can alter the calibration value of this coefficient.</td>
</tr>
<tr>
<td>DENSITY COEFFICIENT C1 (6851)</td>
<td>This function shows the actual density coefficient C1. Caution! A density adjustment can alter the calibration value of this coefficient.</td>
</tr>
<tr>
<td>DENSITY COEFFICIENT C2 (6852)</td>
<td>This function shows the actual density coefficient C2. Caution! A density adjustment can alter the calibration value of this coefficient.</td>
</tr>
<tr>
<td>DENSITY COEFFICIENT C3 (6853)</td>
<td>This function shows the actual density coefficient C3. Caution! A density adjustment can alter the calibration value of this coefficient.</td>
</tr>
<tr>
<td>DENSITY COEFFICIENT C4 (6854)</td>
<td>This function shows the actual density coefficient C4. Caution! A density adjustment can alter the calibration value of this coefficient.</td>
</tr>
<tr>
<td>DENSITY COEFFICIENT C5 (6855)</td>
<td>This function shows the actual density coefficient C5. Caution! A density adjustment can alter the calibration value of this coefficient.</td>
</tr>
</tbody>
</table>

All density coefficients are set at the factory. All the sensor’s parameter settings are saved on the S-DAT memory chip. Contact your Endress+Hauser service organization if you have any questions about these functions.
10.4.4 Function group ADDITIONAL COEFFICIENT

BASIC FUNCTION \Rightarrow HART GAA
⇒ PROCESS PARAMETER GIA
⇒ SYSTEM PARAMETER GLA
⇒ SENSOR DATA GNA
⇒ CONFIGURATION 680
⇒ FLOW COEFF. 684
⇒ DENSITY COEFFICIENT 685
⇒ ADDITIONAL COEFFICIENT 686

Function description

All sensor data are set at the factory. All the sensor’s parameter settings are saved on the S-DAT memory chip.

Caution!
These functions are used for displaying device parameters only and consequently cannot be accessed. Contact your Endress+Hauser service organization if you have any questions about these functions.

<table>
<thead>
<tr>
<th>MINIMUM FLUID TEMPERATURE (6860)</th>
<th>The lowest fluid temperature measured appears on the display.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMUM FLUID TEMPERATURE (6861)</td>
<td>The highest fluid temperature measured appears on the display.</td>
</tr>
<tr>
<td>MINIMUM TEMP. CARRIER TUBE (6862)</td>
<td>The lowest carrier tube temperature measured appears on the display.</td>
</tr>
<tr>
<td>MAXIMUM TEMP. CARRIER TUBE (6863)</td>
<td>The highest carrier tube temperature measured appears on the display.</td>
</tr>
<tr>
<td>Block</td>
<td>Groups</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>SUPERVISION</td>
<td>SYSTEM</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>VERSION-INFO</td>
<td>DEVICE</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Endress+Etterson
11.1 Group SYSTEM

11.1.1 Functions group CONFIGURATION

<table>
<thead>
<tr>
<th>Function description</th>
<th></th>
</tr>
</thead>
</table>
| **ASSIGN SYSTEM ERROR**
(8000) | Use this function to view all system errors. By selecting a certain system error, its error category can be changed in the subsequent ERROR CATEGORY function (8001).

| Options:
CANCELCancel
List of system errors
Note!
- You can exit this function as follows: select “CANCEL” and confirm with .
- For a list of the possible system errors, refer to the Operating Instructions for the Promass 84 (BA109D). |
| **ERROR CATEGORY**
(8001) |
Note!
This function is only available if a system error has been selected in the function ASSIGN SYSTEM ERROR (8000).
Use this function to define whether a system error triggers a notice message or a fault message. If you select FAULT MESSAGES, all outputs respond to an error in accordance with their defined error response patterns.

| Options:
NOTICE MESSAGES (display only)
FAULT MESSAGES (outputs and display)
Note!
Press the key twice to call up the function ASSIGN SYSTEM ERROR (8000). |
| **ASSIGN PROCESS ERROR**
(8002) | Use this function to view all process errors. By selecting an individual process error, its error category can be changed in the subsequent function ERROR CATEGORY (8003).

| Options:
CANCELCancel
List of process errors
Note!
- You can exit this function as follows: select “CANCEL” and confirm with .
- For a list of the possible process errors, refer to the Operating Instructions for the Promass 84 (BA109D). |
Function description

MONITORING ➞ SYSTEM ➞ CONFIGURATION

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Options</th>
<th>Factory setting</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERROR CATEGORY (8003)</td>
<td>Use this function to define whether a process error triggers a notice message or a fault message.</td>
<td>Options:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This function is only available if a system error has been selected in the function ASSIGN PROCESS ERROR (8002).</td>
<td>NOTICE MESSAGES (display only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use this function to define whether a process error triggers a notice message or a fault message.</td>
<td>FAULT MESSAGES (outputs and display)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note! Press the F key twice to call up the function ASSIGN PROCESS ERROR (8002).</td>
<td>Note!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGE FAULTS (8004)</td>
<td>Use this function to define the measuring device's response to fault messages.</td>
<td>Options:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The measuring device resumes normal operation when the fault is rectified.</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The fault message is shown on the local display or via the status input until the message is acknowledged by pressing the F key.</td>
<td>ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Factory setting:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALARM DELAY (8005)</td>
<td>Enter the time span for which the criteria for an error have to be satisfied without interruption before a fault or notice message is generated.</td>
<td>User input:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depending on the setting and type of error, this suppression acts on the display, the current output or the frequency output.</td>
<td>0 to 100 s (in one-second increments)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Factory setting:</td>
<td>0 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caution! If this function is activated, fault and notice messages are delayed by the time corresponding to the setting before being transmitted to the higher-order controller (process controller, etc.). It is therefore imperative to check in advance in order to make sure whether a delay of this nature could affect the safety requirements of the process. If fault and notice messages may not be suppressed, a value of 0 seconds must be entered here.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STORE PERMANENTLY (8007)</td>
<td>Displays whether the automatic, permanent storage of parameter changes in the EEPROM is switched on or off.</td>
<td>Display:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display:</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Factory setting:</td>
<td>ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caution! The selection in the function can be changed by the Endress+Hauser service organization.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If you select OFF, all parameter changes are not stored permanently in the EEPROM. This means that these parameter changes are no longer available after a power failure. In this case, the measuring instrument starts up with the last parameter configurations saved in the EEPROM.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11.1.2 Function group OPERATION

<table>
<thead>
<tr>
<th>Function description</th>
<th>SUPERVISION ➔ SYSTEM ➔ OPERATION</th>
</tr>
</thead>
</table>
| **ACTUAL SYSTEM CONDITION (8040)** | Use this function to check the present system condition.
Display:
“SYSTEM OK” or the fault / notice message with the highest priority. |
| **PREVIOUS SYSTEM CONDITION (8041)** | Use this function to view the fifteen most recent fault and notice messages since measuring last started.
Display:
The 15 most recent fault or notice messages. |
| **SIMULATION FAILSAFE MODE (8042)** | Use this function to set all inputs, outputs and totalizers to their defined failsafe modes, in order to check whether they respond correctly. During this time, the message “SIMULATION FAILSAFE MODE” appears on the display.
Options:
ON
OFF
Factory setting:
OFF |
| **SIMULATION MEASURAND (8043)** | Use this function to set all inputs, outputs and totalizers to their defined flow-response modes, in order to check whether they respond correctly. During this time, the message “SIMULATION MEASURAND” appears on the display.
Options:
OFF
MASS FLOW
VOLUME FLOW
CORRECTED VOLUME FLOW
DENSITY
REFERENCE DENSITY
TEMPERATURE
Factory setting:
OFF |

- Caution!
 - The measuring device cannot be used for measuring while this simulation is in progress.
 - The setting is not saved in the event of a power failure.
Function description

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE SIMULATION MEASURAND (8044)</td>
<td>Note! The function is not visible unless the function SIMULATION MEASURAND (8043) is active. Use this function to define a freely selectable value (e.g. 12 m³/s). This is used to test the associated functions in the device itself and downstream signal loops. User input: 5-digit floating-point number [unit] Factory setting: 0 [unit] Caution! - The setting is not saved in the event of a power failure. - The appropriate unit is taken from the function group SYSTEM UNITS (ACA) (see Page 15).</td>
</tr>
<tr>
<td>SYSTEM RESET (8046)</td>
<td>Use this function to perform a reset of the measuring system. Options: NO, RESTART SYSTEM (restart without interrupting power supply) Factory setting: NO</td>
</tr>
<tr>
<td>OPERATION HOURS (8048)</td>
<td>The hours of operation of the device appear on the display. Display: Depends on the number of hours of operation elapsed: Hours of operation < 10 hours → display format = 00:00:00 (hr:min:sec) Hours of operation 10 to 10,000 hours → display format = 0000:00 (hr:min) Hours of operation > 10,000 hours → display format = 000000 (hr)</td>
</tr>
</tbody>
</table>
11.2 Group VERSION-INFO

11.2.1 Function group DEVICE

SUPERVISION J ⇒ SYSTEM JAA

.VERSION-INFO JCA ⇒ DEVICE 810

Function description

DEVICE SOFTWARE (8100) Displays the current device software version.

11.2.2 Function group SENSOR

SUPERVISION J ⇒ SYSTEM JAA

.VERSION-INFO JCA ⇒ DEVICE 810

.SENSOR 820

Function description

SERIAL NUMBER (8200) Use this function to view the serial number of the sensor.

SENSOR TYPE (8201) Use this function to view the sensor type (e.g. Promass F).

SOFTWARE REVISION NUMBER S-DAT (8205) Use this function to view the software revision number of the software used to create the content of the S-DAT.
11.2.3 Function group AMPLIFIER

<table>
<thead>
<tr>
<th>Function Description</th>
<th>MONITORING ➔ VERSION-INFO ➔ AMPLIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOFTWARE REVISION NUMBER AMPLIFIER (8222)</td>
<td>Use this function to view the software revision number of the amplifier.</td>
</tr>
<tr>
<td>SOFTWARE REVISION NUMBER T-DAT (8225)</td>
<td>Use this function to view the software revision number of the software used to create the content of the T-DAT.</td>
</tr>
<tr>
<td>LANGUAGE GROUP (8226)</td>
<td>Use this function to view the language group. The following language groups can be ordered: WEST EU / USA, EAST EU / SCAND., ASIA, CHINA. Display: available language group</td>
</tr>
</tbody>
</table>

Note:
- The language options of the available language group are displayed in the LANGUAGE (2000) function.
- You can change the language group via the configuration software FieldCare. Please do not hesitate to contact your Endress+Hauser sales office if you have any questions.
11.2.4 Function group F-CHIP

SUPERVISION ➞ **SYSTEM** JAA

VERSION-INFO JCA ➞ **DEVICE** 810

SENSOR 820

AMPLIFIER 822

F-CHIP 824

Function description

SUPERVISION ➔ VERSION-INFO ➔ F-CHIP

STATUS F-CHIP (8240)

Use this function to check whether an F-CHIP is installed and which software options are available.

11.2.5 Function group I/O MODULE

SUPERVISION ➞ **SYSTEM** JAA

VERSION-INFO JCA ➞ **DEVICE** 810

SENSOR 820

AMPLIFIER 822

F-CHIP 824

I/O MODULE 830

Function description

SUPERVISION ➔ VERSION-INFO ➔ I/O MODULE

I/O MODULE TYPE (8300)

Use this function to view the configuration of the I/O module complete with terminal numbers.

SOFTWARE REVISION NUMBER

I/O MODULE (8303)

Use this function to view the software revision number of the I/O module.
11.2.6 Function groups INPUT/OUTPUT 1 to 4

![Diagram](image-url)

Function description

<table>
<thead>
<tr>
<th>SUB-I/O TYPE:</th>
<th>Use this function to view the configuration complete with terminal numbers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = (8320), 2 = (8340), 3 = (8360), 4 = (8380)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOFTWARE REVISION NUMBER</th>
<th>Use this function to view the software revision number of the corresponding submodule.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB-I/O TYPE</td>
<td></td>
</tr>
<tr>
<td>1 = (8323)</td>
<td></td>
</tr>
<tr>
<td>2 = (8343)</td>
<td></td>
</tr>
<tr>
<td>3 = (8363)</td>
<td></td>
</tr>
<tr>
<td>4 = (8383)</td>
<td></td>
</tr>
</tbody>
</table>
12 Factory settings

12.1 SI units (not for USA and Canada)

12.1.1 Low flow cut off, full scale value, pulse value – Liquid

<table>
<thead>
<tr>
<th>Nom. diameter [mm]</th>
<th>Low flow cut off (approx. v = 0.04 m/s)</th>
<th>Full scale value (approx. v = 2 m/s)</th>
<th>Pulse value (approx. 2 pulse/s at 2 m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.08 kg/h</td>
<td>4 kg/h</td>
<td>0.001 kg/p</td>
</tr>
<tr>
<td>2</td>
<td>0.40 kg/h</td>
<td>20 kg/h</td>
<td>0.010 kg/p</td>
</tr>
<tr>
<td>4</td>
<td>1.80 kg/h</td>
<td>90 kg/h</td>
<td>0.010 kg/p</td>
</tr>
<tr>
<td>8</td>
<td>8.00 kg/h</td>
<td>400 kg/h</td>
<td>0.100 kg/p</td>
</tr>
<tr>
<td>15</td>
<td>20.00 kg/h</td>
<td>1300 kg/h</td>
<td>0.100 kg/p</td>
</tr>
<tr>
<td>15 FB</td>
<td>72.00 kg/h</td>
<td>3600 kg/h</td>
<td>1.000 kg/p</td>
</tr>
<tr>
<td>25 FB</td>
<td>72.00 kg/h</td>
<td>3600 kg/h</td>
<td>1.000 kg/p</td>
</tr>
<tr>
<td>25</td>
<td>180.00 kg/h</td>
<td>9000 kg/h</td>
<td>1.000 kg/p</td>
</tr>
<tr>
<td>40</td>
<td>180.00 kg/h</td>
<td>9000 kg/h</td>
<td>1.000 kg/p</td>
</tr>
<tr>
<td>40 FB</td>
<td>300.00 kg/h</td>
<td>15000 kg/h</td>
<td>10.000 kg/p</td>
</tr>
<tr>
<td>50</td>
<td>300.00 kg/h</td>
<td>15000 kg/h</td>
<td>10.000 kg/p</td>
</tr>
<tr>
<td>50 FB</td>
<td>720.00 kg/h</td>
<td>36000 kg/h</td>
<td>10.000 kg/p</td>
</tr>
<tr>
<td>80</td>
<td>720.00 kg/h</td>
<td>36000 kg/h</td>
<td>10.000 kg/p</td>
</tr>
<tr>
<td>100</td>
<td>1200.00 kg/h</td>
<td>60000 kg/h</td>
<td>10.000 kg/p</td>
</tr>
<tr>
<td>150</td>
<td>2600.00 kg/h</td>
<td>130000 kg/h</td>
<td>100.000 kg/p</td>
</tr>
<tr>
<td>250</td>
<td>7200.00 kg/h</td>
<td>360000 kg/h</td>
<td>100.000 kg/p</td>
</tr>
</tbody>
</table>

DN 15, 25, 40, 50 “FB” = Full bore versions Promass I

12.1.2 Low flow cut off, full scale value, pulse value – Gas

<table>
<thead>
<tr>
<th>Nom. diameter [mm]</th>
<th>Low flow cut off (approx. v = 0.01 m/s)</th>
<th>Full scale value (approx. v = 2 m/s)</th>
<th>Pulse value (approx. 2 pulse/s at 2 m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.02 kg/h</td>
<td>4 kg/h</td>
<td>0.001 kg/p</td>
</tr>
<tr>
<td>2</td>
<td>0.10 kg/h</td>
<td>20 kg/h</td>
<td>0.010 kg/p</td>
</tr>
<tr>
<td>4</td>
<td>0.45 kg/h</td>
<td>90 kg/h</td>
<td>0.010 kg/p</td>
</tr>
<tr>
<td>8</td>
<td>2.00 kg/h</td>
<td>400 kg/h</td>
<td>0.100 kg/p</td>
</tr>
<tr>
<td>15</td>
<td>6.50 kg/h</td>
<td>1300 kg/h</td>
<td>0.100 kg/p</td>
</tr>
<tr>
<td>15 FB</td>
<td>18.00 kg/h</td>
<td>3600 kg/h</td>
<td>1.000 kg/p</td>
</tr>
<tr>
<td>25 FB</td>
<td>18.00 kg/h</td>
<td>3600 kg/h</td>
<td>1.000 kg/p</td>
</tr>
<tr>
<td>25</td>
<td>45.00 kg/h</td>
<td>9000 kg/h</td>
<td>1.000 kg/p</td>
</tr>
<tr>
<td>40 FB</td>
<td>45.00 kg/h</td>
<td>9000 kg/h</td>
<td>1.000 kg/p</td>
</tr>
<tr>
<td>40</td>
<td>75.00 kg/h</td>
<td>15000 kg/h</td>
<td>10.000 kg/p</td>
</tr>
<tr>
<td>50</td>
<td>75.00 kg/h</td>
<td>15000 kg/h</td>
<td>10.000 kg/p</td>
</tr>
<tr>
<td>50 FB</td>
<td>180.00 kg/h</td>
<td>36000 kg/h</td>
<td>10.000 kg/p</td>
</tr>
<tr>
<td>80</td>
<td>180.00 kg/h</td>
<td>36000 kg/h</td>
<td>10.000 kg/p</td>
</tr>
<tr>
<td>100</td>
<td>300.00 kg/h</td>
<td>60000 kg/h</td>
<td>10.000 kg/p</td>
</tr>
<tr>
<td>150</td>
<td>650.00 kg/h</td>
<td>130000 kg/h</td>
<td>100.000 kg/p</td>
</tr>
<tr>
<td>250</td>
<td>1800.00 kg/h</td>
<td>360000 kg/h</td>
<td>100.000 kg/p</td>
</tr>
</tbody>
</table>

DN 15, 25, 40, 50 “FB” = Full bore versions Promass I
12.1.3 Language

<table>
<thead>
<tr>
<th>Country</th>
<th>Language</th>
<th>Country</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>English</td>
<td>Malaysia</td>
<td>English</td>
</tr>
<tr>
<td>Belgium</td>
<td>English</td>
<td>Norway</td>
<td>Norsk</td>
</tr>
<tr>
<td>China</td>
<td>Chinese</td>
<td>Poland</td>
<td>Polish</td>
</tr>
<tr>
<td>Denmark</td>
<td>English</td>
<td>Portugal</td>
<td>Portuguese</td>
</tr>
<tr>
<td>Germany</td>
<td>Deutsch</td>
<td>Austria</td>
<td>Deutsch</td>
</tr>
<tr>
<td>England</td>
<td>English</td>
<td>Russia</td>
<td>Russian</td>
</tr>
<tr>
<td>Finland</td>
<td>Suomi</td>
<td>Sweden</td>
<td>Svenska</td>
</tr>
<tr>
<td>France</td>
<td>Francais</td>
<td>Switzerland</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Nederlands</td>
<td>Singapore</td>
<td>English</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>English</td>
<td>Spain</td>
<td>Espanol</td>
</tr>
<tr>
<td>India</td>
<td>English</td>
<td>South Africa</td>
<td>English</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Bahasa Indonesia</td>
<td>Thailand</td>
<td>English</td>
</tr>
<tr>
<td>Instruments International</td>
<td>English</td>
<td>Czech Republic</td>
<td>Czech</td>
</tr>
<tr>
<td>Italy</td>
<td>Italiano</td>
<td>Hungary</td>
<td>English</td>
</tr>
<tr>
<td>Japan</td>
<td>Japanese</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12.1.4 Density, length, temperature

<table>
<thead>
<tr>
<th>Unit</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>kg/l</td>
</tr>
<tr>
<td>Length</td>
<td>mm</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
</tr>
</tbody>
</table>
12.2 US units (only for USA and Canada)

12.2.1 Low flow cut off, full scale value, pulse value – Liquid

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>Low flow cut off (approx. (v = 0.04 \text{ m/s}))</th>
<th>Full scale value (approx. (v = 2 \text{ m/s}))</th>
<th>Pulse value (approx. 2 pulse/s at 2 m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.003 lb/min</td>
<td>0.15 lb/min</td>
<td>0.002 lb/p</td>
</tr>
<tr>
<td>2</td>
<td>0.015 lb/min</td>
<td>0.75 lb/min</td>
<td>0.020 lb/p</td>
</tr>
<tr>
<td>4</td>
<td>0.066 lb/min</td>
<td>3.30 lb/min</td>
<td>0.020 lb/p</td>
</tr>
<tr>
<td>8</td>
<td>0.300 lb/min</td>
<td>15.00 lb/min</td>
<td>0.200 lb/p</td>
</tr>
<tr>
<td>15</td>
<td>1.000 lb/min</td>
<td>50.00 lb/min</td>
<td>0.200 lb/p</td>
</tr>
<tr>
<td>15 FB</td>
<td>2.600 lb/min</td>
<td>130.00 lb/min</td>
<td>2.000 lb/p</td>
</tr>
<tr>
<td>25</td>
<td>2.600 lb/min</td>
<td>130.00 lb/min</td>
<td>2.000 lb/p</td>
</tr>
<tr>
<td>25 FB</td>
<td>6.600 lb/min</td>
<td>330.00 lb/min</td>
<td>2.000 lb/p</td>
</tr>
<tr>
<td>40</td>
<td>6.600 lb/min</td>
<td>330.00 lb/min</td>
<td>2.000 lb/p</td>
</tr>
<tr>
<td>40 FB</td>
<td>11.000 lb/min</td>
<td>550.00 lb/min</td>
<td>20.000 lb/p</td>
</tr>
<tr>
<td>50</td>
<td>11.000 lb/min</td>
<td>550.00 lb/min</td>
<td>20.000 lb/p</td>
</tr>
<tr>
<td>50 FB</td>
<td>26.000 lb/min</td>
<td>1300.00 lb/min</td>
<td>20.000 lb/p</td>
</tr>
<tr>
<td>80</td>
<td>26.000 lb/min</td>
<td>1300.00 lb/min</td>
<td>20.000 lb/p</td>
</tr>
<tr>
<td>100</td>
<td>44.000 lb/min</td>
<td>2200.00 lb/min</td>
<td>20.000 lb/p</td>
</tr>
<tr>
<td>150</td>
<td>95.000 lb/min</td>
<td>4800.00 lb/min</td>
<td>200.000 lb/p</td>
</tr>
<tr>
<td>250</td>
<td>260.00 lb/min</td>
<td>13000.00 lb/min</td>
<td>200.000 lb/p</td>
</tr>
</tbody>
</table>

DN 15, 25, 40, 50 “FB” = Full bore versions Promass I

12.2.2 Low flow cut off, full scale value, pulse value – Gas

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>Low flow cut off (approx. (v = 0.01 \text{ m/s}))</th>
<th>Full scale value (approx. (v = 2 \text{ m/s}))</th>
<th>Pulse value (approx. 2 pulse/s at 2 m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.001 lb/min</td>
<td>0.15 lb/min</td>
<td>0.002 lb/p</td>
</tr>
<tr>
<td>2</td>
<td>0.004 lb/min</td>
<td>0.75 lb/min</td>
<td>0.020 lb/p</td>
</tr>
<tr>
<td>4</td>
<td>0.046 lb/min</td>
<td>3.30 lb/min</td>
<td>0.020 lb/p</td>
</tr>
<tr>
<td>8</td>
<td>0.075 lb/min</td>
<td>15.00 lb/min</td>
<td>0.200 lb/p</td>
</tr>
<tr>
<td>15</td>
<td>0.250 lb/min</td>
<td>50.00 lb/min</td>
<td>0.200 lb/p</td>
</tr>
<tr>
<td>15 FB</td>
<td>0.650 lb/min</td>
<td>130.00 lb/min</td>
<td>2.000 lb/p</td>
</tr>
<tr>
<td>25</td>
<td>0.650 lb/min</td>
<td>130.00 lb/min</td>
<td>2.000 lb/p</td>
</tr>
<tr>
<td>25 FB</td>
<td>1.650 lb/min</td>
<td>330.00 lb/min</td>
<td>2.000 lb/p</td>
</tr>
<tr>
<td>40</td>
<td>1.650 lb/min</td>
<td>330.00 lb/min</td>
<td>2.000 lb/p</td>
</tr>
<tr>
<td>40 FB</td>
<td>2.750 lb/min</td>
<td>550.00 lb/min</td>
<td>20.000 lb/p</td>
</tr>
<tr>
<td>50</td>
<td>2.750 lb/min</td>
<td>550.00 lb/min</td>
<td>20.000 lb/p</td>
</tr>
<tr>
<td>50 FB</td>
<td>6.500 lb/min</td>
<td>1300.00 lb/min</td>
<td>20.000 lb/p</td>
</tr>
<tr>
<td>80</td>
<td>6.500 lb/min</td>
<td>1300.00 lb/min</td>
<td>20.000 lb/p</td>
</tr>
<tr>
<td>100</td>
<td>11.000 lb/min</td>
<td>2200.00 lb/min</td>
<td>20.000 lb/p</td>
</tr>
<tr>
<td>150</td>
<td>23.750 lb/min</td>
<td>4800.00 lb/min</td>
<td>200.000 lb/p</td>
</tr>
<tr>
<td>250</td>
<td>65.000 lb/min</td>
<td>13000.00 lb/min</td>
<td>200.000 lb/p</td>
</tr>
</tbody>
</table>

DN 15, 25, 40, 50 “FB” = Full bore versions Promass I

12.2.3 Language, density, length, temperature

<table>
<thead>
<tr>
<th>Unit</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Density</td>
<td>g/cc</td>
</tr>
<tr>
<td>Length</td>
<td>INCH</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F</td>
</tr>
</tbody>
</table>
Index of function matrix

Blocks
A = MEASURED VARIABLES13
B = QUICK SETUP22
C = USER INTERFACE30
D = TOTALIZER46
E = OUTPUT .. .51
F = INPUT99
G = BASIC FUNCTION 103
J = SUPERVISION ... 120
Z = CUSTODY TRANSFER 11

Groups
AAA = MEASURING VALUES14
AEA = SPECIAL UNITS 15
CAA = CONTROL .. 31
CCA = MAIN LINE .. 35
CEA = ADDITIONAL LINE 38
CGA = INFORMATION LINE 42
DAA = TOTALIZER 1 47
DAB = TOTALIZER 2 47
DAC = TOTALIZER 3 47
DJA = HANDLING TOTALIZER 50
EAA = CURRENT OUTPUT 1 52
ECA = PULSE/FREQUENCY OUTPUT 163
ECB = PULSE/FREQUENCY OUTPUT 263
EGA = RELAY OUTPUT 89
FAA = STATUS INPUT 100
GAA = HART ... 104
GIA = PROCESS PARAMETER 106
GLA = SYSTEM PARAMETER 115
GNA = SENSOR DATA 116
JAA = SYSTEM .. 121
JCA = VERSION INFO 125

Function groups
000 = MAIN VALUES 14
040 = CONFIGURATION 15
042 = ADDITIONAL CONFIGURATION 18
060 = ARBITRARY UNIT 20
200 = BASIC CONFIGURATION 31
202 = UNLOCKING/LOCKING 33
204 = OPERATION ... 34
220 = CONFIGURATION 35
222 = MULTIPLEX .. 37
240 = CONFIGURATION 38
242 = MULTIPLEX .. 40
260 = CONFIGURATION 42
262 = MULTIPLEX .. 44
300 = CONFIGURATION 47
304 = OPERATION ... 49
400 = CONFIGURATION 52
404 = OPERATION ... 52
408 = INFORMATION 61
420 = CONFIGURATION 63
430 = OPERATION ... 83

Functions Z...
Z000 = CUSTODY TRANSFER 11
Z001 = PULS. OUT. 1 C.T. 11
Z002 = PULS. OUT. 2 C.T. 11
Z003 = CURR. OUT. 1 C.T. 12
Z006 = TOTALIZER 1 C.T. 12
Z007 = TOTALIZER 2 C.T. 12
Z008 = TOTALIZER 3 C.T. 12

0...
0000 = MASS FLOW 14
0001 = VOLUME FLOW 14
0004 = CORRECTED VOLUME FLOW 14
0005 = DENSITY ... 14
0006 = REFERENCE DENSITY 14
0008 = TEMPERATURE 14
0400 = UNIT MASS FLOW 15
0401 = UNIT MASS 15
0402 = UNIT VOLUME FLOW 16
0403 = UNIT VOLUME 16
0404 = UNIT CORRECTED VOLUME FLOW 17
0405 = UNIT CORRECTED VOLUME 17
0420 = UNIT DENSITY 18
0421 = UNIT REFERENCE DENSITY 18
0422 = UNIT TEMPERATURE 19
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5040</td>
<td>ACTUAL STATUS INPUT</td>
<td>101</td>
</tr>
<tr>
<td>5041</td>
<td>SIMULATION STATUS INPUT</td>
<td>101</td>
</tr>
<tr>
<td>5042</td>
<td>VALUE SIMULATION STATUS INPUT</td>
<td>101</td>
</tr>
<tr>
<td>5080</td>
<td>TERMINAL NUMBER</td>
<td>102</td>
</tr>
<tr>
<td>6862</td>
<td>MINIMAL TEMP. CARRIER TUBE</td>
<td>119</td>
</tr>
<tr>
<td>6863</td>
<td>MAXIMAL TEMP. CARRIER TUBE</td>
<td>119</td>
</tr>
</tbody>
</table>

8...

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8000</td>
<td>ASSIGN SYSTEM ERROR</td>
<td>121</td>
</tr>
<tr>
<td>8001</td>
<td>ERROR CATEGORY</td>
<td>121</td>
</tr>
<tr>
<td>8002</td>
<td>ASSIGN PROCESS ERROR</td>
<td>121</td>
</tr>
<tr>
<td>8003</td>
<td>ERROR CATEGORY</td>
<td>122</td>
</tr>
<tr>
<td>8004</td>
<td>ACKNOWLEDGE FAULTS</td>
<td>122</td>
</tr>
<tr>
<td>8005</td>
<td>ALARM DELAY</td>
<td>122</td>
</tr>
<tr>
<td>8007</td>
<td>STORE PERMANENTLY</td>
<td>122</td>
</tr>
<tr>
<td>8040</td>
<td>ACTUAL SYSTEM CONDITION</td>
<td>123</td>
</tr>
<tr>
<td>8041</td>
<td>PREVIOUS SYSTEM CONDITION</td>
<td>123</td>
</tr>
<tr>
<td>8042</td>
<td>SIMULATION FAILSAFE MODE</td>
<td>123</td>
</tr>
<tr>
<td>8043</td>
<td>SIMULATION MEASURAND</td>
<td>123</td>
</tr>
<tr>
<td>8044</td>
<td>VALUE SIMULATION MEASURAND</td>
<td>124</td>
</tr>
<tr>
<td>8046</td>
<td>SYSTEM RESET</td>
<td>124</td>
</tr>
<tr>
<td>8048</td>
<td>OPERATION HOURS</td>
<td>124</td>
</tr>
<tr>
<td>8100</td>
<td>DEVICE SOFTWARE</td>
<td>125</td>
</tr>
<tr>
<td>8200</td>
<td>SERIAL NUMBER</td>
<td>125</td>
</tr>
<tr>
<td>8201</td>
<td>SENSOR TYPE</td>
<td>125</td>
</tr>
<tr>
<td>8205</td>
<td>SW REV. NO. S-DAT</td>
<td>126</td>
</tr>
<tr>
<td>8222</td>
<td>SW REV. NO. AMPLIFIER</td>
<td>126</td>
</tr>
<tr>
<td>8225</td>
<td>SOFTWARE REV. NO. T-DAT</td>
<td>126</td>
</tr>
<tr>
<td>8226</td>
<td>LANGUAGE GROUP</td>
<td>126</td>
</tr>
<tr>
<td>8240</td>
<td>STATUS F-CHIP</td>
<td>127</td>
</tr>
<tr>
<td>8300</td>
<td>I/O MODULE TYPE</td>
<td>127</td>
</tr>
<tr>
<td>8303</td>
<td>SW REV. NO. I/O MODULE</td>
<td>127</td>
</tr>
<tr>
<td>8320</td>
<td>SUB-I/O TYPE</td>
<td>128</td>
</tr>
<tr>
<td>8323</td>
<td>SW Rev. No. SUB-I/O TYPE</td>
<td>128</td>
</tr>
<tr>
<td>8340</td>
<td>SUB-I/O TYPE</td>
<td>128</td>
</tr>
<tr>
<td>8343</td>
<td>SW Rev. No. SUB-I/O TYPE</td>
<td>128</td>
</tr>
<tr>
<td>8360</td>
<td>SUB-I/O TYPE</td>
<td>128</td>
</tr>
<tr>
<td>8363</td>
<td>SW Rev. No. SUB-I/O TYPE</td>
<td>128</td>
</tr>
<tr>
<td>8380</td>
<td>SUB-I/O TYPE</td>
<td>128</td>
</tr>
<tr>
<td>8383</td>
<td>SW Rev. No. SUB-I/O TYPE</td>
<td>128</td>
</tr>
</tbody>
</table>

Endress + Hauser
Index

A
Access code .. 33
Acknowledgment faults 122
Active level .. 100
Actual
 Current (current output) 61
 Frequency .. 83
Actual status
 Relay output ... 93
 Status input .. 101
 Switch point (pulse/frequency output) 87
Actual System condition 123
Additional configuration 18
Additional line
 Configuration ... 38
 Multiplex .. 40
Adjustment
 Density .. 113
 Zero point .. 112
Alarm delay ... 122
Amplifier (Version Info) 126
Arbitrary unit ... 20
Assign
 Additional line 38
 Additional line (Multiplex) 40
 Current output 52
 Frequency (Pulse/Freq. output) 64
 Information line 42
 Information line (Multiplex) 44
 Low flow cut off 106
 Main line ... 35
 Main line (Multiplex) 37
 Process error 121
 Pulse .. 73
 Relay (relay output) 89
 Status input 100
 Status (Pulse/Freq. output) 79
 System error 121
 Totalizer .. 47

B
Backlight (user interface) 32
Basic Configuration (user interface) 31
Basic functions 103
Block
 Basic functions 103
 Custody transfer 11
 Display ... 30
 Inputs .. 99
 Measured variables 13
 Outputs .. 51
 Quick Setup 22
 Supervision 120
 Totalizer ... 46
 Bus address 104

C
Calibrate
 Coefficient .. 117
 KD 1 .. 117
 KD 2 .. 117
 Coefficient Calibration
 KD 1 .. 117
 KD 2 .. 117
Density
 C0 to CS ... 118
 Expansion ... 110
 Expansion Square 110
 Temperature .. 117
 KM ... 117
 KM 2 .. 117
 KT ... 117
Commissioning ... 22
Configuration
 Additional line 38
 Current output 52
 HART .. 104
 Information line 42
 Main line ... 35
 Process parameter 106
 Pulse/frequency output 63
 Relay output 89
 Sensor data ... 116
 Status input 100
 System ... 121
 System parameter 115
 System units 15
 Totalizer .. 47
Contrast LCD .. 31
Corrected Volume calculation 110
Corrected volume flow 14
Current output
 Configuration 52
 Information .. 62
 Operation .. 61
Current span
 Current output 53
 Curr. out. 1 C.T. 12
 Custody transfer 11

D
Damping
 Density ... 115
 System ... 115
Define private code 33
Density
 Adjustment .. 113
 Coefficient C0 to CS 118
 Damping .. 115
 Density Adjust mode 112
 Device ID .. 105
Information line	42
Main line	35
Measuring values	14
Operation (user interface)	31
Process parameter	106
Pulse/frequency output	63
Relay output	89
Sensor data	116
Special units	20
Status input	100
System	121
System parameter	115
System units	15
Version Info	125

H

Handling Totalizer | | 50 |

HART

Configuration | | 104 |

Information | | 105 |

HART Protocol | | 104 |

I

Information

Current output | | 62 |

Pulse/Frequency output | | 88 |

Relay output | | 95 |

Status input | | 102 |

Information line

Configuration | | 42 |

Multiplex | | 44 |

Inputs | | 99 |

Input/output 1 to 4 | | 128 |

Installation direction sensor | | 115 |

I/O Module | | 127 |

K

K-Factor | | 116 |

L

Language

Factory setting (country) | | 130 |

Language group (display) | | 126 |

Options | | 31 |

LCD contrast | | 31 |

Low flow cut off

Assign | | 106 |

Off value | | 106 |

On value | | 106 |

M

Main line

Configuration | | 35 |

Multiplex | | 37 |

Manufacturer ID | | 105 |

Mass flow | | 14 |

Maximal

Temperature carrier tube | | 119 |

Temperature measured | | 119 |

Measure Fluid 1 | | 112 |

Measure Fluid 2 | | 113 |

Measured variables | | 11,13 |

Measuring mode

Current output | | 56 |

Frequency (Pulse/Freq. output) | | 67 |

Pulse output | | 75 |

Relay output | | 91 |

Status (Pulse/Freq. output) | | 81 |

Measuring values | | 14 |

Minimal

Temperature carrier tube | | 119 |

Temperature measured | | 119 |

Minimum Pulse width | | 100 |

Multiplex

Additional Pulse width | | 40 |

Information line | | 44 |

Main line | | 37 |

N

Nominal diameter | | 116 |

O

Off value

Low flow cut off | | 106 |

Relay output | | 90 |

Status (Pulse/Freq. output) | | 80 |

On value

Low flow cut off | | 106 |

Relay output | | 90 |

Status (Pulse/Freq. output) | | 79 |

Operation

Basic configuration | | 31 |

Current output | | 61 |

Operation | | 34 |

Pulse/frequency output | | 63,83 |

Relay output | | 93 |

Status input | | 101 |

System | | 123 |

Totalizer | | 49 |

Unlocking/Locking | | 33 |

User interface | | 34 |

Operation hours | | 124 |

Output signal

Frequency output | | 69 |

Pulse output | | 76,77,78 |

Outputs | | 51 |

Overflow

Totalizer | | 49 |

Positive zero return | | 115 |

Pressure | | 114 |

Pressure correction | | 114 |

Pressure Mode | | 114 |

Pressure Shock suppression | | 107 |

Previous system condition | | 123 |

Process parameter

Adjustment | | 112 |

Configuration | | 106 |

EPD parameter | | 108 |
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure correction</td>
<td>114</td>
</tr>
<tr>
<td>Reference parameter</td>
<td>110</td>
</tr>
<tr>
<td>Pulsating flow</td>
<td>22</td>
</tr>
<tr>
<td>Pulse out. 1 C.T.</td>
<td>11</td>
</tr>
<tr>
<td>Pulse out. 2 C.T.</td>
<td>11</td>
</tr>
<tr>
<td>Pulse value</td>
<td>73</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>74</td>
</tr>
<tr>
<td>Pulse/frequency output</td>
<td></td>
</tr>
<tr>
<td>Configuration</td>
<td>63</td>
</tr>
<tr>
<td>Information</td>
<td>88</td>
</tr>
<tr>
<td>Operation</td>
<td>83</td>
</tr>
<tr>
<td>Quick Setup</td>
<td>22</td>
</tr>
<tr>
<td>Commissioning</td>
<td>22</td>
</tr>
<tr>
<td>Gas measurement</td>
<td>22</td>
</tr>
<tr>
<td>Pulsating flow</td>
<td>22</td>
</tr>
<tr>
<td>Reference density</td>
<td>14</td>
</tr>
<tr>
<td>Reference density (fixed)</td>
<td>110</td>
</tr>
<tr>
<td>Reference Temperature</td>
<td>111</td>
</tr>
<tr>
<td>Relay output</td>
<td></td>
</tr>
<tr>
<td>Configuration</td>
<td>89</td>
</tr>
<tr>
<td>Information</td>
<td>95</td>
</tr>
<tr>
<td>Operation</td>
<td>93</td>
</tr>
<tr>
<td>Reset</td>
<td></td>
</tr>
<tr>
<td>All totalizers</td>
<td>50</td>
</tr>
<tr>
<td>System</td>
<td>124</td>
</tr>
<tr>
<td>Totalizer</td>
<td>48</td>
</tr>
<tr>
<td>Restore original</td>
<td>113</td>
</tr>
<tr>
<td>Sensor data</td>
<td></td>
</tr>
<tr>
<td>Additional coefficient</td>
<td>119</td>
</tr>
<tr>
<td>Configuration</td>
<td>116</td>
</tr>
<tr>
<td>Density coefficient</td>
<td>118</td>
</tr>
<tr>
<td>Flow coefficient</td>
<td>117</td>
</tr>
<tr>
<td>Sensor type</td>
<td>125</td>
</tr>
<tr>
<td>Sensor (Version info.)</td>
<td>125</td>
</tr>
<tr>
<td>Serial number sensor</td>
<td>125</td>
</tr>
<tr>
<td>Setpoint</td>
<td></td>
</tr>
<tr>
<td>Density 1</td>
<td>112</td>
</tr>
<tr>
<td>Density 2</td>
<td>113</td>
</tr>
<tr>
<td>Simulation</td>
<td></td>
</tr>
<tr>
<td>Current (current output)</td>
<td>61</td>
</tr>
<tr>
<td>Failsafe mode</td>
<td>123</td>
</tr>
<tr>
<td>Frequency</td>
<td>83</td>
</tr>
<tr>
<td>Measured variable</td>
<td>123</td>
</tr>
<tr>
<td>Status input</td>
<td>101</td>
</tr>
<tr>
<td>Switch point (Relay output)</td>
<td>93</td>
</tr>
<tr>
<td>Simulation Pulse</td>
<td>85</td>
</tr>
<tr>
<td>Software revision number</td>
<td></td>
</tr>
<tr>
<td>Amplifier</td>
<td>126</td>
</tr>
<tr>
<td>I/O Module</td>
<td>127</td>
</tr>
<tr>
<td>S-DAT</td>
<td>125</td>
</tr>
<tr>
<td>T-DAT</td>
<td>126</td>
</tr>
<tr>
<td>Special units</td>
<td></td>
</tr>
<tr>
<td>Arbitary unit</td>
<td>20</td>
</tr>
<tr>
<td>Start value frequency</td>
<td>64</td>
</tr>
<tr>
<td>Status access</td>
<td>33</td>
</tr>
<tr>
<td>Status F-CHIP</td>
<td>127</td>
</tr>
<tr>
<td>Status input</td>
<td></td>
</tr>
<tr>
<td>Configuration</td>
<td>100</td>
</tr>
<tr>
<td>Information</td>
<td>102</td>
</tr>
<tr>
<td>Operation</td>
<td>101</td>
</tr>
<tr>
<td>Store permanently</td>
<td>122</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
</tr>
<tr>
<td>Totalizer</td>
<td>49</td>
</tr>
<tr>
<td>Supervision</td>
<td>120</td>
</tr>
<tr>
<td>Switch-off delay</td>
<td></td>
</tr>
<tr>
<td>Relay output</td>
<td>91</td>
</tr>
<tr>
<td>Status (Pulse/Freq. output)</td>
<td>81</td>
</tr>
<tr>
<td>Switch-on delay</td>
<td></td>
</tr>
<tr>
<td>Relay output</td>
<td>90</td>
</tr>
<tr>
<td>Status (Pulse/Freq. output)</td>
<td>80</td>
</tr>
<tr>
<td>System</td>
<td></td>
</tr>
<tr>
<td>Configuration</td>
<td>121</td>
</tr>
<tr>
<td>Damping</td>
<td>115</td>
</tr>
<tr>
<td>Operation</td>
<td>123</td>
</tr>
<tr>
<td>Operation hours</td>
<td>124</td>
</tr>
<tr>
<td>Reset</td>
<td>124</td>
</tr>
<tr>
<td>System condition</td>
<td></td>
</tr>
<tr>
<td>Actual</td>
<td>123</td>
</tr>
<tr>
<td>Previous</td>
<td>123</td>
</tr>
<tr>
<td>System parameter</td>
<td></td>
</tr>
<tr>
<td>Configuration</td>
<td>115</td>
</tr>
<tr>
<td>System units</td>
<td></td>
</tr>
<tr>
<td>Additional configuration</td>
<td>18</td>
</tr>
<tr>
<td>Configuration</td>
<td>15</td>
</tr>
<tr>
<td>T-DAT Save/Load</td>
<td>23</td>
</tr>
<tr>
<td>Temperature</td>
<td>14</td>
</tr>
<tr>
<td>Coefficient</td>
<td></td>
</tr>
<tr>
<td>KM</td>
<td>117</td>
</tr>
<tr>
<td>KM 2</td>
<td>117</td>
</tr>
<tr>
<td>KT</td>
<td>117</td>
</tr>
<tr>
<td>Terminal number</td>
<td></td>
</tr>
<tr>
<td>Current output</td>
<td>62</td>
</tr>
<tr>
<td>Pulse/Frequency output</td>
<td>88</td>
</tr>
<tr>
<td>Relay output</td>
<td>95</td>
</tr>
<tr>
<td>Status input</td>
<td>102</td>
</tr>
<tr>
<td>Test display</td>
<td>34</td>
</tr>
<tr>
<td>Text</td>
<td></td>
</tr>
<tr>
<td>Arbitrary density</td>
<td>21</td>
</tr>
<tr>
<td>Arbitrary mass</td>
<td>20</td>
</tr>
<tr>
<td>Arbitrary volume</td>
<td>20</td>
</tr>
<tr>
<td>Time constant</td>
<td></td>
</tr>
<tr>
<td>Current output</td>
<td>59</td>
</tr>
<tr>
<td>Frequency output</td>
<td>71</td>
</tr>
<tr>
<td>Relay output</td>
<td>92</td>
</tr>
<tr>
<td>Status (Pulse/Freq. output)</td>
<td>82</td>
</tr>
<tr>
<td>Totalizer</td>
<td>46</td>
</tr>
<tr>
<td>Configuration</td>
<td>47</td>
</tr>
<tr>
<td>Operation</td>
<td>49</td>
</tr>
<tr>
<td>Totalizer Mode</td>
<td>48</td>
</tr>
</tbody>
</table>
Totalizer Reset ..48
Totalizers 1 to 3, custody transfer measurement12
Type
 Input/output 1 to 4128
 I/O Module127
 Sub-input/output 1 to 4128

U
Unit
 Corrected volume17
 Corrected volume flow17
 Density18
 Length19
 Mass15
 Mass flow15
 Pressure19
 Reference density18
 Temperature19
 Totalizer47
 Volume16
 Volume flow16
Unlocking/Locking (user interface)33

V
VALUE f HIGH ...66
Value F Low ..65
Value simulation
 Current (current output)61
 Frequency84
 Measured variable124
 Status input101
 Switch point (pulse/ freq. output) ...87
 Switch point (Relay output)94
Value Simulation Pulse86
Value 0.4 mA54
Value 20 mA56
Version Info
 Amplifier126
 F-CHIP127
 Input/output 1 to 4128
 I/O Module127
 Sensor125
Volume flow14

W
Write protection104

Z
Zero point116
Zero point adjustment112

Numbers
100% Value
 Additional line38
 Additional line [Multiplex]41
 Information line43
 Information line [Multiplex]45
 Main line35
 Main line [Multiplex]37