

Informazioni tecniche

Proline Promass 80I, 83I

Sistema di misura della portata massica Coriolis Sistema a tubo singolo "Installa e dimentica": Misura della viscosità in linea – facile da pulire – igienico – non altera il prodotto misurato – materiali resistenti agli agenti chimici

Applicazione

Il principio di misura Coriolis non dipende dalle caratteristiche fisiche del fluido, come viscosità e densità.

- Misura estremamente accurata di liquidi e gas come oli, lubrificanti, carburanti, gas liquefatti, agenti pulenti e solventi, fluidi sterili (plasma), alimentari e vernici
- Temperature del fluido fino a +150 °C (+302 °F)
- Pressioni di processo fino a 100 bar (1450 psi)
- Misura della portata massica fino a 180 t/h (6615 lb/min)

Approvazioni per uso in area pericolosa:

■ ATEX, FM, CSA, TIIS, IECEx, NEPSI

Approvazioni per l'industria alimentare e le applicazioni igieniche:

■ 3A, EHEDG

Interfacce per l'integrazione in tutti i maggiori sistemi di controllo di processo:

 HART, PROFIBUS PA/DP, FOUNDATION Fieldbus, MODBUS

Requisiti principali di sicurezza:

Contenitore secondario fino a 40 bar (580 psi),
 Direttiva per i dispositivi in pressione (PED), SIL-2

Caratteristiche e vantaggi

I misuratori Promass misurano simultaneamente diverse variabili di processo (massa/densità/temperatura/viscosità) in varie condizioni di processo e in tempo reale.

Il concetto di trasmettitore unico Proline include:

- dispositivo e concetto operativo modulari per un maggior grado di efficienza
- opzioni software per funzioni di dosaggio e misure di concentrazione per un'ampia gamma di applicazioni
- funzioni diagnostiche e salvataggio dati per una maggiore qualità del processo

I **sensori Promass**, sperimentati e impiegati in più di 100000 applicazioni, offrono:

- misura di portata multivariabile in esecuzione compatta
- resistenza alle vibrazioni grazie al sistema di misura bilanciato a tubo singolo
- efficiente protezione dalle forze presenti nelle tubazioni degli impianti grazie alla robusta esecuzione meccanica
- facilità di montaggio senza dover considerare i tratti rettilinei in entrata e in uscita

Indice

Funzionamento e struttura del sistema
Principio di misura
Sistema di misura
Ingresso6
Variabile misurata
Campo di misura
Campo di portata consentito
Segnale di ingresso
Uscita
Segnale di uscita
Segnale d'allarme
Carico
Гaglio di bassa portata9
solamento galvanico9
Uscita in commutazione
Alimentazione
Collegamento elettrico del misuratore
Collegamento elettrico, assegnazione dei morsetti
Collegamento elettrico Versione separata
Fensione di alimentazione
ingressi cavo
Specifiche del cavo per la versione separata
Potenza assorbita
Mancanza dell'alimentazione
Equalizzazione di potenziale
Caratteristiche prestazionali
Caratteristiche prestazionali
Condizioni operative di riferimento
Condizioni operative di riferimento14Errore di misura max14Ripetibilità15nfluenza della temperatura del fluido15
Condizioni operative di riferimento

Costruzione meccanica	24
Struttura, dimensioni	
Peso	47
Materiali	47
Curve di carico dei materiali	48
Connessioni al processo	50
Interfaccia utente	<i>E</i> 1
Elementi per la visualizzazione	
Elementi operativi	
Gruppi linguistici	
Configurazione remota	51
Certificati e approvazioni	52
Marchio CE	
Marchio C-Tick	
Approvazione Ex	
Compatibilità sanitaria	
Certificazione FOUNDATION Fieldbus	52
Certificazione PROFIBUS DP/PA	52
Certificazione MODBUS	
Altre norme e direttive	52
Direttiva per i dispositivi in pressione	52
Sicurezza funzionale	53
Informazioni per l'ordine	53
Accessori	53
Documentazione	53
Marchi registrati	54

Funzionamento e struttura del sistema

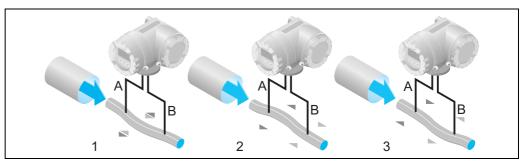
Principio di misura

Il principio di misura è basato sulla generazione controllata di forze di Coriolis. Queste forze sono sempre presenti quando sono sovrapposti movimenti di traslazione e rotazione.

 $F_C = 2 \cdot \Delta m \ (v \cdot \omega)$

 F_C = forza di Coriolis

 $\Delta m = massa in movimento$


 ω = velocità angolare

v = velocità radiale in un sistema rotante o oscillante

L'ampiezza delle forze di Coriolis dipende dalla massa in movimento Δm , dalla sua velocità v nel sistema e, quindi, dalla portata massica. Invece di una velocità angolare costante ω , il sensore Promass utilizza un'oscillazione.

Ciò causa l'oscillazione del tubo attraverso il quale scorre il fluido. Le forze di Coriolis prodotte nei tubi di misura provocano uno sfasamento nelle oscillazioni dei tubi (vedere illustrazione):

- In caso di portata zero, cioè quando il fluido è fermo, l'oscillazione misurata ai punti A e B presenta la stessa fase, perciò non esiste differenza di fase (1).
- La portata massica causa decelerazione dell'oscillazione all'ingresso del tubo (2) ed accelerazione all'uscita (3).

a0003383

La differenza di fase (A-B) aumenta con l'aumentare della portata massica. Sensori elettrodinamici registrano le oscillazioni del tubo in ingresso ed in uscita.

L'equilibrio del sistema, necessario per una misura corretta, viene creato attraverso l'oscillazione in controfase di una massa oscillante disposta eccentricamente. Il sistema brevettato TMB^{TM} (Torsion Mode Balanced System) assicura misure perfette, anche in condizioni ambientali e di processo variabili.

Di conseguenza, lo strumento è facile da installare quanto i comuni sistemi a tubo doppio. Non sono perciò necessari accorgimenti di installazione particolari né all'ingresso né all'uscita del sensore.

Il principio di misura è indipendente dalla temperatura, pressione, viscosità, conducibilità e profilo di fluido.

Misura di densità

Il misuratore oscilla continuamente alla sua frequenza di risonanza. Una variazione della massa e quindi della densità del sistema di oscillazione (compresi tubo di misura e fluido) determina una corrispondente e automatica regolazione nella frequenza di oscillazione. La frequenza di risonanza è quindi funzione della densità del fluido. Il microprocessore utilizza questa relazione per ottenere un segnale di densità.

Misura temperatura

La temperatura del misuratore è misurata al fine di calcolare il fattore di compensazione dovuto a effetti termici. Il segnale corrisponde alla temperatura di processo ed è disponibile anche come uscita analogica.

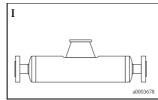
Sistema di misura

Il sistema di misura è composto da un trasmettitore ed un sensore. Sono disponibili due versioni:

- Versione compatta: trasmettitore e sensore formano un'unica unità meccanica.
- Versione separata: trasmettitore e sensore sono installati separatamente.

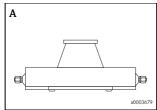
Trasmettitore

Promass 80

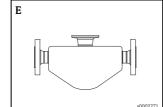

- Display a cristalli liquidi a due righe
- Programmazione mediante pulsanti

Promass 83

- Display a cristalli liquidi a quattro righe
- Funzionamento con "Touch Control"
- Quick Setup specifico per l'applicazione
- Misura della portata massica, della portata volumetrica, della densità, della temperatura, come anche delle variabili calcolate (ad es. concentrazioni di fluido)

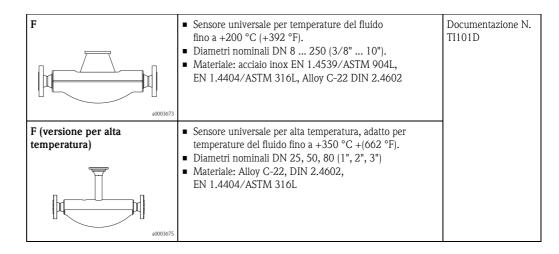

Sensore

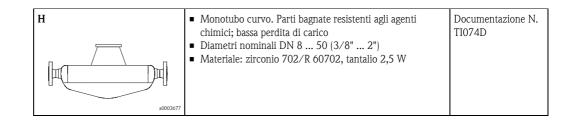
- Strumento a tubo singolo diritto. Minimo stress per il fluido, costruzione igienica, bassa perdita di carico
- Diametri nominali DN 8 ... 80 (3/8" ... 3")
- Materiale: titanio, Ti grado 2, Ti grado 9

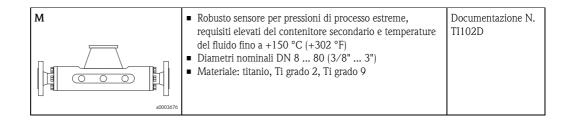

Documentazione N. TI075D

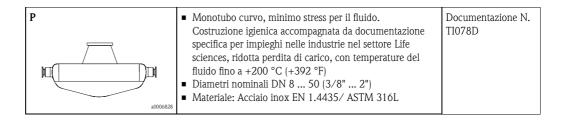
Nella documentazione separata sono descritti altri sensori

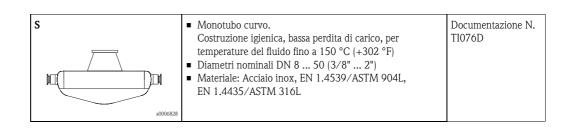
- Sistema a tubo singolo per la misura precisa di portate molto piccole
- Diametri nominali DN 1 ... 4 (1/24" ... 1/8").
- Materiale: Acciaio inox EN 1.4539/ASTM 904L, EN 1.4404/ASTM 316L, Alloy C-22 DIN 2.4602 (connessione al processo)


Documentazione N. TI054D




- Sensore per uso generico, un'alternativa ideale ai misuratori di portata volumetrici.
- \blacksquare Diametri nominali DN 8 ... 80 (3/8" ... 3")
- Materiale: acciaio inox EN 1.4539/ASTM 904L, EN 1.4404/ASTM 316L


Documentazione N. TI061D


4

Ingresso

Variabile misurata

- Portata massica (proporzionale alla differenza di fase fra i due sensori montati sul tubo di misura per registrare lo sfasamento nell'oscillazione)
- Densità del fluido (proporzionale alla frequenza di risonanza del tubo di misura)
- Temperatura del fluido (misurata con sensori di temperatura)

Campo di misura

Campi di misura per liquidi

D	N	Campo per valori fondoscala (liquidi) $\dot{\mathbf{m}}_{\min(F)}\dot{\mathbf{m}}_{\max(F)}$		
[mm]	[pollici]	[kg/h]	[lb/min]	
8	3/8"	02000 kg/h	073.5 lb/min	
15	1/2"	06500 kg/h	0238 lb/min	
15 FB	1/2" FB	018000 kg/h	0660 lb/min	
25	1"	018000 kg/h	0660 lb/min	
25 FB	1" FB	045000 kg/h	01 650 lb/min	
40	1 1/2"	045000 kg/h	01 650 lb/min	
40 FB	1 ½" FB	070000 kg/h	02570 lb/min	
50	2"	070000 kg/h	02570 lb/min	
50 FB	2" FB	0180000 kg/h	06600 lb/min	
80	3"	0180000 kg/h	06600 lb/min	

FB = Full bore (passaggio pieno)

Campi di misura per gas

I valori di fondoscala dipendono dalla densità del gas. Usare la formula seguente per calcolare i valori di fondoscala:

 $m_{\text{max}(G)} = m_{\text{max}(F)} \boldsymbol{\cdot} \rho_{(G)} \div x$

 $m_{max(G)} = valore fondoscala max. per gas [kg/h]$

 $m_{max(F)}$ = valore fondoscala max. per i liquidi [kg/h]

 $\rho_{(G)}$ = densità del gas in [kg/m³] alle condizioni operative

D	N	Х	D	N	Х
[mm]	[pollici]	Λ	[mm]	[pollici]	Λ
8	3/8"	60	40	1 1/2"	90
15	1/2"	80	40 FB	1½" FB	90
15 FB	½" FB	90	50	2"	90
25	1"	90	50 FB	2" FB	110
25 FB	1" FB	90	80	3"	110

FB = Full bore (passaggio pieno)

In questo caso, $m_{max(G)}$ non può mai essere maggiore di $m_{max(F)}$

Esempio di calcolo per gas:

- Tipo di sensore: Promass I, DN 50
- Gas: densità dell'aria 60,3 kg/m³ (a 20 °C e 50 bar)
- Campo di misura: 70.000 kg/h
- x = 90 (per Promass I, DN 50)

Massimo valore fondoscala possibile:

 $m_{max(G)} = m_{max(F)} \cdot \rho_{(G)} \div x = 70\,000 \text{ kg/h} \cdot 60,3 \text{ kg/m}^3 \div 90 \text{ kg/m}^3 = 46900 \text{ kg/h}$

Valori fondoscala consigliati

V. informazioni riportate al capitolo "Limiti di portata" $\rightarrow \, \stackrel{ ext{\cong}}{ ext{\cong}} \, 22 \, \text{e segg.}$

Campo di portata consentito

Maggiore di 1000: 1. Portate superiori al valore di fondoscala preimpostato non sovraccaricano l'amplificatore, quindi i valori del totalizzatore vengono registrati correttamente.

Segnale di ingresso

Ingresso di stato (ingresso ausiliario)

 $U = 3...30 \text{ V c.c.}, R_i = 5 \text{ k}\Omega$, isolato galvanicamente.

Configurabile per: azzeramento totalizzatore, ritorno a zero positivo, reset messaggi d'errore, regolazione dello zero, avvio/arresto dosaggio (opzionale).

Ingresso di stato (Ingresso ausiliario) con PROFIBUS DP

U = 3...30 V c.c., $R_i = 3 \text{ k}\Omega$, isolato galvanicamente.

Livello di commutazione: ±3...±30 V c.c., indipendentemente dalla polarità.

Configurabile per: ritorno a zero positivo, reset dei messaggi di errore, avvio della regolazione dello zero, avvio/arresto del dosaggio (opzionale), azzeramento del totalizzatore del batch (opzionale).

Ingresso di stato (Ingresso ausiliario) con MODBUS RS485

 $U = 3...30 \text{ V c.c.}, R_i = 3 \text{ k}\Omega$, isolato galvanicamente.

Livello di commutazione: ±3...±30 V c.c., indipendentemente dalla polarità.

Configurabile per: reset totalizzatore/i, ritorno a zero positivo, reset messaggi di errore, avvio regolazione dello

Ingresso in corrente (solo per Promass 83)

Modalità attiva / passiva impostabile, isolato galvanicamente, risoluzione: $2 \mu A$

- Attiva: 4...20 mA, $R_L < 700 \Omega$, $U_{out} = 24 \text{ V c.c.}$, a prova di cortocircuito
- Passivo: 0/4...20 mA, $R_i = 150 \Omega$, $U_{\text{max}} = 30 \text{ V c.c.}$

Uscita

Segnale di uscita

Promass 80

Uscita in corrente

Modalità attiva / passiva selezionabile, isolata galvanicamente, costante di tempo selezionabile (0.05...100 s), valore di fondoscala selezionabile, coefficiente di temperatura: tipicamente 0.005% v.f.s./°C, risoluzione: $0.5 \mu A$

- Attiva: 0/4...20 mA, $R_I < 700 \Omega$ (per HART: $R_I \ge 250 \Omega$)
- Passivo: da 4 a 20 mA; Tensione di alimentazione U_s 18...30 V c.c.; $R_i \ge 150 \Omega$

Uscita impulsi/frequenza

Passiva, open collector, 30 V c.c., 250 mA, isolata galvanicamente.

- Uscita in frequenza: frequenza del campo di misura 2...1000 Hz ($f_{max} = 1250 \text{ Hz}$), rapporto on/off 1:1, larghezza impulso max. 2 s
- Uscita impulsiva: valore e polarità d'impulso selezionabili, larghezza impulso configurabile (0,5...2000 ms)

Interfaccia PROFIBUS PA:

- PROFIBUS-PA secondo EN 50170 Volume 2, IEC 61158-2 (MBP), isolata galvanicamente
- Profilo versione 3.0
- Consumo di corrente: 11 mA
- Tensione di alimentazione consentita: 9 ... 32 V
- Connessione bus con protezione integrata contro l'inversione di polarità
- Errore in corrente FDE (Fault Disconnection Electronic): 0 mA
- Velocità di trasmissione dati: 31,25 kBit/s
- Codifica del segnale: Manchester II
- Blocchi funzione: 4 x Ingresso analogico, 2 x Totalizzatore
- Dati in uscita: portata massica, portata volumetrica, densità, temperatura, totalizzatore
- Dati in ingresso: ritorno a zero positivo (ON/OFF), regolazione dello zero, modalità di misura, controllo totalizzatore
- L'indirizzo bus può essere configurato mediante microinterruttori o display locale (opzionale)

Promass 83

Uscita in corrente

Modalità attiva / passiva selezionabile, isolata galvanicamente, costante di tempo selezionabile (0.05...100 s), valore di fondoscala selezionabile, coefficiente di temperatura: tipicamente 0.005% v.f.s./°C, risoluzione: $0.5~\mu$ A

- Attiva: 0/4...20 mA, $R_I < 700 \Omega$ (per HART: $R_I \ge 250 \Omega$)
- Passivo: da 4 a 20 mA; Tensione di alimentazione U_S 18...30 V c.c.; $R_i \ge 150 \Omega$

Uscita impulsi/frequenza

Attiva/passiva impostabile, isolata galvanicamente

- Attiva: 24 V c.c., 25 mA (250 mA max. durata 20 ms), $R_L > 100 \Omega$
- Passiva: open collector, 30 V c.c., 250 mA
- Uscita in frequenza: frequenza del campo di misura 2...10000 Hz ($f_{max} = 12500 \text{ Hz}$), rapporto on/off 1:1, larghezza impulso max. 2 s
- Uscita impulsi: valore e polarità d'impulso selezionabili, larghezza impulso configurabile (0,05...2000 ms)

Interfaccia PROFIBUS DP

- PROFIBUS DP secondo EN 50170 Volume 2
- Profilo versione 3.0
- Velocità di trasmissione dati: 9,6 kBaud...12 MBaud
- Riconoscimento automatico della velocità di trasmissione dati
- Codifica del segnale: codice NRZ
- Blocchi funzioni: 6 x Ingresso analogico, 3 x Totalizzatore
- Dati in uscita: Portata massica, portata volumetrica, portata volumetrica compensata, densità, densità di riferimento, temperatura, totalizzatori 1...3
- Dati in ingresso: ritorno a zero positivo (ON/OFF), regolazione dello zero, modalità di misura, controllo totalizzatore
- L'indirizzo bus può essere configurato mediante microinterruttori o display locale (opzionale)
- Combinazione disponibile in uscita \rightarrow 🖹 11

Interfaccia PROFIBUS PA

- PROFIBUS-PA secondo EN 50170 Volume 2, IEC 61158-2 (MBP), isolata galvanicamente
- Velocità di trasmissione dati: 31,25 kBit/s
- Consumo di corrente: 11 mA
- Tensione d'alimentazione consentita: 9...32 V
- Connessione bus con protezione integrata contro l'inversione di polarità
- Errore in corrente FDE (Fault Disconnection Electronic): 0 mA
- Codifica del segnale: Manchester II
- Blocchi funzioni: 6 x Ingresso analogico, 3 x Totalizzatore
- Dati in uscita: Portata massica, portata volumetrica, portata volumetrica compensata, densità, densità di riferimento, temperatura, totalizzatori 1...3
- Dati in ingresso: ritorno a zero positivo (ON/OFF), regolazione dello zero, modalità di misura, controllo totalizzatore
- L'indirizzo bus può essere configurato mediante microinterruttori o display locale (opzionale)
- Combinazione disponibile in uscita → 11

Interfaccia MODBUS

- Tipo di dispositivo MODBUS: slave
- Range di indirizzi: 1 ... 247
- Codici delle funzioni supportate: 03, 04, 06, 08, 16, 23
- Trasmissione radio: supportata con i codici funzione 06, 16, 23
- Interfaccia fisica: RS485 secondo lo standard EIA/TIA-485
- Baud rate supportato: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 Baud
- Modalità di trasmissione: RTU o ASCII
- Tempi di risposta:

Accesso diretto ai dati = tipicamente 25...50 ms

Scansione automatica della memoria (campo dati) = tipicamente 3...5 ms

■ Combinazioni di uscite possibili→ 🖹 11

Interfaccia FOUNDATION Fieldbus

- FOUNDATION Fieldbus H1, IEC 61158-2, isolata galvanicamente
- Velocità di trasmissione dati: 31,25 kBit/s
- Consumo di corrente: 12 mA
- Tensione di alimentazione consentita: 9 ... 32 V
- Errore in corrente FDE (Fault Disconnection Electronic): 0 mA
- Connessione bus con protezione integrata contro l'inversione di polarità
- Codifica del segnale: Manchester II
- ITK Versione 5.01
- Blocchi funzione:
 - 8 ingressi analogici (tempo di esecuzione: ogni 18 ms)
 - 1 uscita digitale (18 ms)
 - 1 PID (25 ms)
 - 1 aritmetica (20 ms)
 - 1 selettore di ingresso (20 ms)
 - 1 caratterizzazione del segnale (20 ms)
 - 1 integratore (18 ms)
- Numero di VCR: 38
- Numero di oggetti di collegamento in VFD: 40
- Dati in uscita: Portata massica, portata volumetrica, portata volumetrica compensata, densità, densità di riferimento, temperatura, totalizzatori 1...3
- Dati in ingresso: ritorno a zero positivo (ON/OFF), regolazione dello zero, modalità di misura, azzeramento totalizzatore
- È supportata la funzione Link Master (LM)

Segnale d'allarme

Uscita in corrente

Modalità di sicurezza impostabile (ad es. secondo raccomandazioni NAMUR NE 43)

Uscita impulsi/frequenza

Modalità di sicurezza impostabile

Uscita di stato (Promass 80)

"Non conduce" in caso di errore o di mancanza di rete

Uscita a relè (Promass 83)

"Diseccitata" in caso di errore o di mancanza di rete

Carico

V. "Segnale di uscita"

Taglio di bassa portata

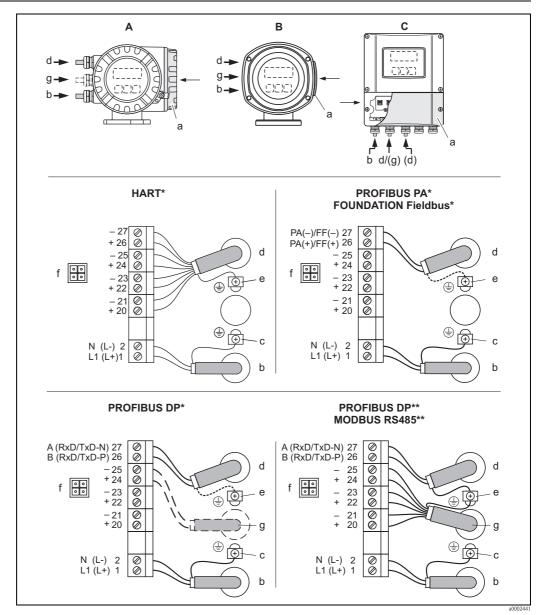
Sono selezionabili i valori di taglio di bassa portata.

Isolamento galvanico

Tutti i circuiti in ingresso, uscita e di alimentazione sono isolati galvanicamente fra loro.

Uscita in commutazione

Uscita di stato (Promass 80)


- Open collector
- 30 V c.c./250 mA max.
- Isolata galvanicamente
- Impostabile per: messaggi di errore, controllo di tubo vuoto (EPD), direzione del flusso, valori soglia

Uscita a relè (Promass 83)

- 30 V / 0,5 A c.a max..; 60 V / 0,1 A c.c.
- Isolata galvanicamente
- Disponibili contatti normalmente chiusi (NC o break) o normalmente aperti (NA o make) (impostazione di fabbrica: relè 1 = NA, relè 2 = NC)

Alimentazione

Collegamento elettrico del misuratore

Collegamento del trasmettitore, sezione del cavo: 2,5 mm max.²

- A Vista A (custodia da campo)
- B Vista B (custodia da campo in acciaio inox)
- C Vista C (custodia da parete)
- *) Scheda di comunicazione fissa
- **) Scheda di comunicazione flessibile
- a Coperchio del vano connessioni
- b Cavo di alimentazione: 85...260 V c.a., 20...55 V c.a., 16...62 V c.c. Morsetto n. 1: L1 per c.a., L+ per c.c. Morsetto n. 2: N per c.a., L- per c.c.
- c Morsetto per messa a terra
- d Cavo del segnale: V. Assegnazione dei morsetti → 🖹 11 Cavo Fieldbus:

Morsetto n. 26: DP (B) / PA (+) / FF (+) / MODBUS RS485 (B) / (PA, FF: con protezione contro l'inversione di polarità) Morsetto n. 27: DP (A) / PA (-) / FF (-) / MODBUS RS485 (A) / (PA, FF: con protezione contro l'inversione di polarità)

- e Morsetto di terra per lo schermo del cavo del segnale / cavo Fieldbus / linea RS485
- f Connettore di servizio per collegare l'interfaccia FXA 193 (Fieldcheck, FieldCare)
- Cavo del segnale: V. Assegnazione dei morsetti → \(\beta\) 11 Cavo per terminazione esterna (solo per PROFIBUS DP con scheda di comunicazione ad assegnazione permanente):

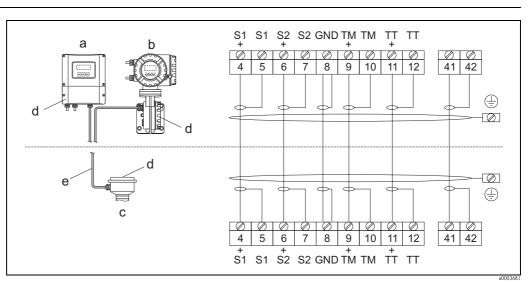
Morsetto N. 24: +5 V

Morsetto N. 25: DGND

Collegamento elettrico, assegnazione dei morsetti

Promass 80

	Morsetto N. (ingressi/uscite)			
Versione ordine	20 (+) / 21 (-)	22 (+) / 23 (-)	24 (+) / 25 (-)	26 (+) / 27 (-)
80***_*******A	_	_	Uscita in frequenza	Uscita in corrente, HART
80***_*******D	Ingresso di stato	Uscita di stato	Uscita in frequenza	Uscita in corrente, HART
80***-*********************************	-	-	-	PROFIBUS PA
80***_********	-	-	Uscita in frequenza Ex i, passiva	Uscita in corrente Ex i attiva, HART
80***_*******T	_	-	Uscita in frequenza Ex i, passiva	Uscita in corrente Ex i passiva, HART
80***_******	Ingresso di stato	Uscita in frequenza	Uscita in corrente 2	Uscita in corrente 1, HART


Promass 83

Gli ingressi e le uscite sulla scheda di comunicazione possono essere definita in modo permanente (fisse), oppure lasciate variabili (flessibili), a seconda della versione ordinata (v. tabella). I ricambi di detti moduli, che possono essere sostituiti, sono considerati come accessori.

	Morsetto N. (ingressi/uscite)				
Versione ordine	20 (+) / 21 (-)	22 (+) / 23 (-)	24 (+) / 25 (-)	26 (+) / 27 (-)	
Scheda di comunicazione fissa (assegnazione permanente)					
83***_********A	-	-	Uscita in frequenza	Uscita in corrente, HART	
83***_********B	Uscita a relè	Uscita a relè	Uscita in frequenza	Uscita in corrente, HART	
83***_********F	-	-	-	PROFIBUS PA, Ex i	
83***_*********G	-	-	-	FOUNDATION Fieldbus Ex i	
83***_*************H	-	-	-	PROFIBUS PA	
83***_**********	-	-	+5 V (terminazione esterna)	PROFIBUS DP	
83***_*******	-	-	-	Foundation Fieldbus	
83***_***********	-	-	Ingresso di stato	MODBUS RS485	
83***_********R	-	-	Uscita in corrente 2 Ex i, attiva	Uscita in corrente 1 Ex i attiva, HART	
83***_******	-	-	Uscita in frequenza Ex i, passiva	Uscita in corrente Ex i attiva, HART	
83***_********T	-	-	Uscita in frequenza Ex i, passiva	Uscita in corrente Ex i passiva, HART	
83***_**********U	-	-	Uscita in corrente 2 Ex i, passiva	Uscita in corrente 1 Ex i passiva, HART	
Schede di comunicazione j	flessibili	l .	1		
83***_*********C	Uscita a relè 2	Uscita a relè 1	Uscita in frequenza	Uscita in corrente, HART	
83***_********D	Ingresso di stato	Uscita a relè	Uscita in frequenza	Uscita in corrente, HART	
83***_******	Ingresso di stato	Uscita a relè	Uscita in corrente 2	Uscita in corrente 1, HART	
83***_********L	Ingresso di stato	Uscita a relè 2	Uscita a relè 1	Uscita in corrente, HART	
83***_********M	Ingresso di stato	Uscita in frequenza 2	Uscita in frequenza 1	Uscita in corrente, HART	

	Morsetto N. (ingressi/uscite)			
Versione ordine	20 (+) / 21 (-)	22 (+) / 23 (-)	24 (+) / 25 (-)	26 (+) / 27 (-)
83***-********N	Uscita in corrente	Uscita in frequenza	Ingresso di stato	MODBUS RS485
83***-********P	Uscita in corrente	Uscita in frequenza	Ingresso di stato	PROFIBUS DP
83***-********V	Uscita a relè 2	Uscita a relè 1	Ingresso di stato	PROFIBUS DP
83***_********W	Uscita a relè	Uscita in corrente 3	Uscita in corrente 2	Uscita in corrente 1, HART
83***_*********0	Ingresso di stato	Uscita in corrente 3	Uscita in corrente 2	Uscita in corrente 1, HART
83***_*********2	Uscita a relè	Uscita in corrente 2	Uscita in frequenza	Uscita in corrente 1, HART
83***_*********3	Ingresso in corrente	Uscita a relè	Uscita in corrente 2	Uscita in corrente 1, HART
83***_********4	Ingresso in corrente	Uscita a relè	Uscita in frequenza	Uscita in corrente, HART
83***-*******	Ingresso di stato	Ingresso in corrente	Uscita in frequenza	Uscita in corrente, HART
83***_********	Ingresso di stato	Ingresso in corrente	Uscita in corrente 2	Uscita in corrente 1, HART
83***-********7	Uscita a relè 2	Uscita a relè 1	Ingresso di stato	MODBUS RS485

Collegamento elettrico Versione separata

Connessione della versione separata

- Custodia da parete: area sicura e ATEX II3G / Zona $2 \rightarrow vedere$ "Documentazione Ex" separata
- Custodia da parete: ATEX II2G / Zona 1 /FM/CSA → vedere "Documentazione Ex" separata
- Custodia di connessione sensore С
- d Coperchio vano connessioni o custodia di connessione
- Cavo di collegamento

Morsetto N.: 4/5 = grigio; 6/7 = verde; 8 = giallo; 9/10 = rosa; 11/12 = bianco; 41/42 = marrone

Tensione di alimentazione

85...260 V c.a., 45...65 Hz 20...55 V c.a., 45...65 Hz 16...62 V c.c.

Ingressi cavo

Cavi di alimentazione e di segnale (ingressi/uscite)

- Ingresso cavo M20 x 1,5 (8...12 mm) (0,31...0,47")
- Filettatura per ingressi cavi, ½" NPT, G ½"

- Cavo di collegamento per versione separata
 Ingresso cavo M20 x 1,5 (8...12 mm) (0,31...0,47")
 Filettatura per ingressi cavi, ½" NPT, G ½"

Specifiche del cavo per la versione separata

- 6 x 0,38 mm² cavo in PVC con schermo comune e schermatura individuale dei conduttori
- Resistenza conduttore: $\leq 50 \Omega/\text{km} (\leq 0.015 \Omega/\text{ft})$
- Capacitanza: cavo/schermo: ≤ 420 pF/m (≤128 pF/ft)
- Lunghezza del cavo: max. 20 m (65 ft)
- Temperatura operativa: max. +105 °C (+221 °F)

Utilizzo in ambienti soggetti a forti interferenze elettriche:

Il misuratore è conforme ai requisiti generali di sicurezza previsti dalla norma EN 61010, ai requisiti di compatibilità elettromagnetica della direttiva ICE/EN 61326, e ai requisiti delle raccomandazioni NAMUR NE 21/43.

Potenza assorbita

c.a.: <15 VA (sensore incluso) c.c.: <15 W (sensore incluso)

Corrente di spunto (all'accensione):

- 13,5 A max. (< 50 ms) a 24 V c.c.
- 3 A max. (< 5 ms) a 260 V c.a.

Mancanza dell'alimentazione

Promass 80

Durata min. di 1 ciclo in corrente:

- In caso di mancanza rete i dati del sistema di misura sono salvati nella memoria EEPROM
- HistoROM/S-DAT: chip di memoria intercambiabile per i dati specifici del sensore (diametro nominale, numero di serie, fattore di taratura, punto di zero, ecc.)

Promass 83

Autonomia min. di 1 ciclo di alimentazione:

- In caso di mancanza di alimentazione, i dati di misura del sistema sono salvati nelle memorie EEPROM e T-DAT.
- HistoROM/S-DAT: chip di memoria intercambiabile per i dati specifici del sensore (diametro nominale, numero di serie, fattore di taratura, punto di zero, ecc.)

Equalizzazione di potenziale

Per l'equalizzazione del potenziale non sono richieste misure particolari. In caso di misuratori per impiego in area pericolosa, rispettare le relative direttive riportate nella documentazione Ex specifica.

Caratteristiche prestazionali

Condizioni operative di riferimento

- Limiti di errore secondo ISO/DIS 11631
- Acqua, tipicamente 20 ... 30 °C (68 ... 86 °F); 2...4 bar (30...60 psi)
- Dati secondo il protocollo di taratura ±5 °C (±9 °F) e ±2 bar (±30 psi)
- Accuratezza basata su sistemi di taratura accreditati secondo ISO 17025

Errore di misura max.

I seguenti valori sono riferiti all'uscita impulsi/frequenza. L'errore di misura presente all'uscita in corrente è tipicamente ± 5 μ A. Principi di calcolo $\rightarrow \equiv 16$.

v.i.: valore istantaneo

Portata massica e portata volumetrica (liquidi)

Promass 83I:

■ ±0,10% v.i.

Promass 80I:

■ ±0,15% v.i.

Portata massica (gas)

Promass 83I, 80I: $\pm 0,50\%$ v.i.

Densità (liquidi)

- ±0,0005 g/cc (in condizioni di riferimento)
- $\pm 0,0005$ g/cc (dopo la taratura della densità in campo in condizioni di processo)
- ±0,004 g/cc (dopo la taratura speciale della densità)
- ±0,02 g/cc (sull'intero campo di misura del sensore)

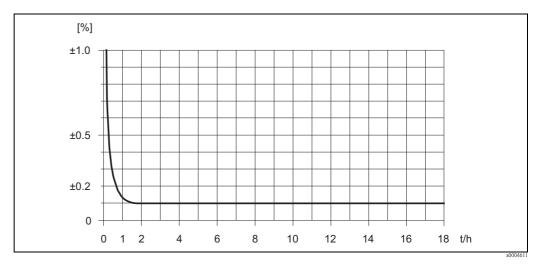
1 g/c.c. = 1 kg/l

Taratura speciale della densità (opzionale):

- Campo di taratura: 0,8 ... 1,8 g/cc, +5 ... +80 °C (+41 ... +176 °F)
- Campo di funzionamento: 0,0 ... 5,0 g/cc, -50 ... +150 °C (-58 ... +302 °F)

Temperatura

 $\pm 0.5 \text{ °C} \pm 0.005 \cdot \text{T °C}$ ($\pm 1 \text{ °F} \pm 0.003 \cdot (\text{T} - 32) \text{ °F}$)


T = temperatura fluido

Stabilità punto di zero

DN		Stabilità punto di zero		
[mm]	[pollici]	[kg/h] o [1/h]	[lb/min]	
8	3/8"	0,150	0.0055	
15	1/2"	0,488	0.0179	
15 FB	½" FB	1,350	0.0496	
25	1"	1,350	0.0496	
25 FB	1" FB	3,375	0.124	
40	1 1/2"	3,375	0.124	
40 FB	1½" FB	5,250	0.193	
50	2"	5,250	0.193	
50 FB	2" FB	13.50	0.496	
80	3"	13,50	0.496	

FB = Full bore (passaggio pieno)

Esempio di errore di misura max.

Errore di misura max. in % v.i. (esempio: Promass 83I / DN 25)

Valori portata (esempio)

Elementi fondamentali della struttura $\rightarrow 16$

Turn down	Portata		Max. errore di misura
	[kg/h] o [l/h]	[lb/min]	[% v.i.]
250: 1	72	2,646	1,875
100: 1	180	6,615	0,750
25: 1	720	26,46	0,188
10: 1	1800	66,15	0,100
2: 1	9000	330,75	0,100

v.i.: valore istantaneo

Ripetibilità

Elementi fondamentali della struttura $\rightarrow 16$.

v.i.: valore istantaneo

Portata massica e portata volumetrica (liquidi)

Promass 80I, 83I: ±0,05% v.i.

Portata massica (gas)

Promass 80I, 83I: ±0,25% v.i.

Densità (liquidi)

 $\pm 0,00025~\mathrm{g/cc}$

1 g/cc = 1 kg/l

Temperatura

 $\pm 0.25~^{\circ}\text{C} \pm 0.0025 \cdot \text{T}~^{\circ}\text{C}$ ($\pm 1~^{\circ}\text{F} \pm 0.003 \cdot (\text{T} - 32)~^{\circ}\text{F}$)

T = temperatura fluido

Influenza della temperatura del fluido

Se la temperatura per la regolazione dello zero e quella di processo sono diverse, l'errore di misura tipico del sensore Promass è $\pm 0,0002\%$ del valore fondoscala / °C ($\pm 0,0001\%$ del valore fondoscala / °F).

Influenza della pressione del fluido

La tabella seguente mostra gli effetti dovuti a una differenza tra pressione di taratura e pressione di processo sulla precisione della portata massica.

D	N	Promass I
[mm]	[pollici]	[% v.i./bar]
8	3/8"	0,006
15	1/2"	0,004
15 FB	½" FB	0,006
25	1"	0,006
25 FB	1" FB	Nessuna influenza
40	1 1/2"	Nessuna influenza
40 FB	1½" FB	-0,003
50	2"	-0,003
50 FB	2" FB	0,003
80	3"	0,003

v.i. = valore istantaneo; FB = Full bore (passaggio pieno)

Principi di calcolo

In base alla portata:

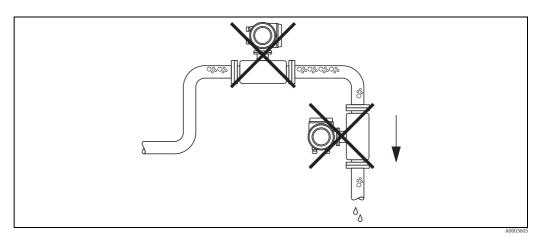
- Portata ≥ Stabilità punto di zero ÷ (Accuratezza di base ÷ 100)
 - $-\,$ Max. errore di misura: \pm Accuratezza di base in % v.i.
 - Ripetibilità: ± ½ · Accuratezza di base in % v.i.
- Portata < stabilità del punto di zero ÷ (accuratezza di base ÷ 100)
 - Max. errore di misura: ± (stabilità punto di zero ÷ valore misurato) · 100% v.i.
 - Ripetibilità: $\pm \frac{1}{2} \cdot \text{(stabilità punto di zero} \div \text{valore misurato)} \cdot 100\% \text{ v.i.}$

v.i.: valore istantaneo

Accuratezza di base per	Promass 83I	Promass 80I
Portata massica liquidi	0,10	0,15
Portata volumetrica liquidi	0,10	0,15
Portata massica gas	0,50	0,50

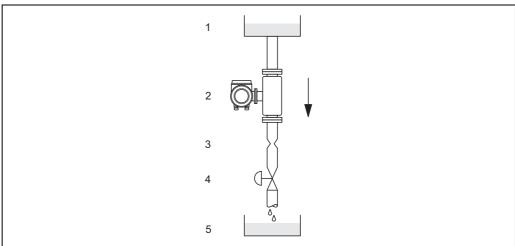
Condizioni operative: installazione

Istruzioni per l'installazione


Considerare con attenzione le seguenti note:

- Non sono necessari speciali accorgimenti come supporti. Eventuali forze esterne vengono assorbite dalla costruzione dello strumento, ad esempio il contenitore secondario.
- L'alta frequenza di oscillazione dei tubi di misura assicura che il funzionamento sia corretto ed il sistema non sia influenzato dalle vibrazioni delle tubazioni.
- Non sono necessarie speciali precauzioni anche in presenza di elementi che creano turbolenza (valvole, gomiti, elementi a T, ecc.), tranne se si verificano cavitazioni.
- Per ragioni meccaniche e per proteggere il tubo, con i sensori più pesanti è consigliato l'uso di un supporto.

Posizione di montaggio


Infiltrazioni di aria e bolle di gas nel misuratore possono determinare un aumento degli errori di misura. **Di conseguenza, evitare** le seguenti posizioni di montaggio durante l'installazione nelle tubazioni:

- Punto più alto della tubazione. Rischio di accumuli d'aria.
- Direttamente a monte di una bocca di scarico libera in una tubazione verticale.

Posizione di montaggio

Indipendentemente da quanto sopra specificato, con la soluzione sotto descritta è possibile effettuare l'installazione anche su una tubazione verticale a scarico libero. Restrizioni del tubo oppure l'uso di un orifizio con sezione inferiore al diametro nominale, impediscono che il sensore si svuoti durante la misura.

Installazione su tubo a scarico libero (es. per applicazioni di dosaggio)

- 1 Serbatoio di alimentazione
- 2 Sensore
- 3 Orifizio, restrizione tubo (vedere tabella alla pagina seguente)
- 4 Valvola
- 5 Recipiente

Endress+Hauser 17

A00035

DN		Ø Orifizio, re	strizione tubo
[mm]	[pollici]	mm	pollici
8	3/8"	6	0,24
15	1/2"	10	0,39
15 FB	½" FB	15	0,59
25	1"	14	0,55
25 FB	1" FB	24	0,94
40	11/2"	22	0,87
40 FB	1½" FB	35	1,38
50	2"	28	1,10
50 FB	2" FB	54	2,13
80	3"	50	1,97

FB = Full bore (passaggio pieno)

Orientamento

Verificare che la direzione della freccia riportata sulla targhetta del sensore coincida con quella del flusso (direzione del fluido attraverso il tubo).

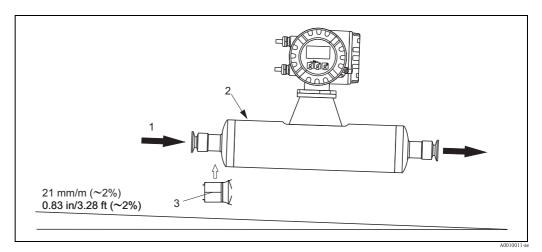
Verticale (vista V)

 \dot{E} l'orientamento ideale con una direzione di flusso ascendente. Se il fluido è fermo, i solidi presenti si depositano ed i gas abbandonano il tubo di misura. Il tubo di misura può essere completamente drenato e protetto da eventuali depositi.

Orizzontale (viste H1, H2, H3)

Il trasmettitore può essere installato su una tubazione orizzontale con qualsiasi orientamento. Rispettare le Istruzioni speciali per l'installazione $\rightarrow \stackrel{\text{\tiny le}}{=} 19$.

Orientamento:	Verticale	Orizzontale, Trasmettitore posto sopra la tubazione	Orizzontale, Trasmettitore posto sotto la tubazione	Orizzontale, Testa del trasmettitore in posizione laterale
	anna572	20004570	20004580	40007558
	Vista V	Vista H1	Vista H2	Vista H3
Standard, Versione compatta	~	''	~~	~~
Standard, Versione separata	VV	1	VV	VV

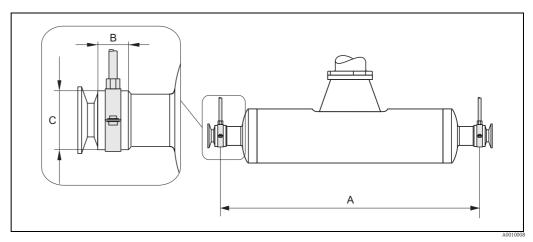

 $\checkmark\checkmark$ = orientamento consigliato; \checkmark = orientamento consigliato in alcune condizioni; \mathbf{X} = orientamento non consentito

1 = Per assicurarsi di non superare la temperatura ambiente massima consentita per il trasmettitore, per fluidi a bassa temperatura, è consigliabile l'orientamento orizzontale con il trasmettitore posto sopra la tubazione (Vista H1) o l'orientamento verticale (Vista V).

Istruzioni speciali per l'installazione

Connessioni Tri-Clamp eccentriche

Le connessioni Tri-Clamp eccentriche servono per garantire il completo svuotamento del tubo se il sensore è installato in una linea orizzontale. Se le linee hanno una specifica direzione e pendenza, si può sfruttare la gravità per ottenere un drenaggio completo. Il sensore deve essere installato in posizione corretta (con l'elettronica rivolta verso l'alto), così da garantire il totale svuotamento anche in posizione orizzontale. Dei contrassegni presenti sul sensore indicano la posizione di montaggio corretta per ottimizzare il drenaggio.



Quando le linee hanno una specifica direzione e pendenza: come da direttive sanitarie (21 mm/m (0.83 in/3.28 ft) o 2% circa). La gravità può essere sfruttata per ottenere il completo svuotamento.

- 1 La freccia indica la direzione di flusso (direzione del fluido attraverso il tubo).
- 2 L'etichetta indica l'orientamento dell'installazione per il drenaggio orizzontale.
- 3 Sul lato inferiore della connessione al processo è tracciata una riga. Indica il punto più basso della connessione al processo eccentrica.

Connessioni igieniche (collare di montaggio con rivestimento tra clamp e misuratore)

In genere, non è necessario sostenere il sensore per garantire le prestazioni operative. In caso fosse necessario occorre seguire le seguenti raccomandazioni.

Montaggio con collare

D	DN		A	I	3	(C
[mm]	[pollici]	mm	pollici	mm	pollici	mm	pollici
8	3/8"	373	14.69	20	0.79	40	1.57
15	1/2"	409	16.10	20	0.79	40	1.57
15 FB	½" FB	539	21.22	30	1.18	44,5	1.75
25	1"	539	21.22	30	1.18	44,5	1.75
25 FB	1" FB	668	26.30	28	1,10	60	2.36
40	1 1/2"	668	26.30	28	1,10	60	2.36
40 FB	1½" FB	780	30.71	35	1.38	80	3,15
50	2"	780	30.71	35	1.38	80	3,15
50 FB	2" FB	1152	45.35	57	2.24	90	3.54
80	3"	1152	45.35	57	2.24	90	3.54

FB = Full bore (passaggio pieno)

Riscaldamento

Alcuni fluidi richiedono misure atte ad evitare la dispersione di calore nel sensore. Il riscaldamento può essere di tipo elettrico, ad es. elementi riscaldati, o tramite le linee di acqua calda o di vapore (serpentine in rame) o camice riscaldanti.

Pericolo!

- Rischio di surriscaldamento dell'elettronica. Assicurarsi che non venga superata la temperatura ambiente massima consentita per il trasmettitore. Verificare, quindi, che l'adattatore tra sensore e trasmettitore e custodia di collegamento della versione separata non sia coperto dal materiale isolante. Fare attenzione, poiché potrebbe essere richiesto un orientamento specifico a seconda della temperatura del fluido → 🖹 18.
- In caso sia impiegato un sistema di riscaldamento elettrico a tracciatura, regolato mediante sistemi controllati da SCR ecc., l'effetto sui valori misurati non può essere eliminato a causa dei campi magnetici (ad es. con valori superiori a quelli approvati dallo standard EN (seno 30 A/m)). In questo caso, il sensore deve essere schermato magneticamente.

Il contenitore secondario può essere schermato con fogli di lamiera o lamierini magnetici, senza orientamento preferenziale (ad es. V330-35A) e con le seguenti proprietà:

- Permeabilità magnetica relativa $\mu_r \ge 300$
- Spessore della piastra d ≥ 0,35 mm (0.014")
- Informazioni sui campi di temperatura consentiti \rightarrow 🖹 22

Per i sensori sono disponibili speciali camicie riscaldanti fra gli accessori Endress+Hauser, che è possibile ordinare separatamente.

Regolazione dello zero

Con la pratica è stato dimostrato che la regolazione dello zero è necessaria solo in casi particolari:

- Quando è necessaria la massima accuratezza di misura e le portate sono molto basse.
- In condizioni operative o di processo estreme (ad es. con temperature di processo molto elevate o fluidi molto viscosi)

Tratti rettilinei in entrata e in uscita

Non vi sono requisiti particolari accorgimenti per l'installazione in relazione ai tratti rettilinei in entrata e in uscita.

Lunghezza del cavo di collegamento

20 metri max. (65 piedi), versione separata

Pressione di sistema

È importante assicurarsi che non si verifichino fenomeni di cavitazione, poiché ciò potrebbe influenzare l'oscillazione del misuratore. Non sono previsti requisiti speciali per i fluidi con caratteristiche simili a quelle dell'acqua in condizioni normali.

In caso di liquidi con punto di ebollizione basso, (idrocarburi, solventi, gas liquefatti) o su linee di aspirazione, è importante assicurarsi che la pressione non scenda al di sotto della tensione di vapore e che il liquido non cominci a bollire. È importante assicurarsi anche che i gas che si formano naturalmente in alcuni liquidi non sprigionino gas. Quando la pressione del sistema è sufficientemente alta, è possibile prevenire tali effetti.

Di conseguenza, sono preferibili le seguenti posizioni di installazione:

- A valle delle pompe (nessun rischio di vuoto parziale)
- Nel punto più basso di una tubazione verticale.

Condizioni operative: ambiente

Campo di temperatura ambiente

Sensore, trasmettitore:

- Standard: -20...+60 °C (-4 ... +140 °F)
- Disponibile in opzioni: -40 ... +60 °C (-40 ... +140 °F)

Nota!

- Montare in un luogo ombreggiato. Evitare la luce solare diretta, specialmente in regioni dal clima caldo.
- La temperatura ambiente inferiore a −20 °C (−4 °F) può compromettere la leggibilità del display.

Temperatura di immagazzinamento	–40 +80 °C (–40 +175 °F), preferibilmente +20 °C (+68 °F)
Grado di protezione	Standard: IP 67 (NEMA 4X) per trasmettitore e sensore
Resistenza agli urti	Secondo IEC 68-2-31
Resistenza alle vibrazioni	Accelerazione max. 1 g, 10150 Hz, secondo IEC 68-2-6
Compatibilità elettromagnetica (EMC)	Secondo le raccomandazioni IEC/EN 61326 e NAMUR NE 21

Condizioni operative: processo

Campo di temperatura del fluido

Sensore

-50 ... +150 °C (−58 ... +302 °F)

Campo di pressione del fluido (pressione nominale)

Flange

- secondo DIN PN 40...100
- secondo ASME B16.5 Cl 150, Cl 300, Cl 600
- JIS 10K, 20K, 40K, 63K

Campo di pressione del contenitore secondario

40 bar (580 psi)

Attenzione!

Nel caso sussista il pericolo di rottura del tubo di misura a causa delle caratteristiche di processo, ad es. con fluidi di processo corrosivi, si consiglia di usare dei sensori il cui contenitore secondario sia dotato di speciali attacchi per il monitoraggio di pressione (disponibili come opzione). Con l'aiuto di queste connessioni, il fluido raccolto nel contenitore secondario può uscire nell'eventualità di un danno al tubo. Ciò è particolarmente importante in applicazioni con gas ad alta pressione. Queste connessioni possono essere utilizzate anche per la circolazione e/o il rilevamento di gas. Dimensioni $\rightarrow \stackrel{\square}{=} 24$

Limiti di portata

Selezionare il diametro nominale, ottimizzando il campo di portata richiesto e la perdita di carico ammessa. Vedere la sezione "Campo di misura" per un elenco dei valori fondoscala massimi possibili.

- Il minimo valore di fondoscala raccomandato è approssimativamente 1/20 del max. valore di fondo scala.
- In molte applicazioni, il 20...50% del valore massimo di fondoscala è considerato ideale.
- Per le sostanze abrasive, ad es. fluidi con solidi sospesi (velocità di deflusso < 1 m/s (<3 ft/s)), impostare un valore fondoscala più basso.
- Per la misura di gas applicare le seguenti regole.
 - La velocità di deflusso non dovrebbe superare la metà della velocità del suono (0,5 mach).
 - La portata massica massima dipende dalla densità del gas: formula ightarrow $\stackrel{1}{ ilde{ ilde{\Box}}}$ 6

Perdita di carico

La perdita di carico dipende dalle caratteristiche del fluido e dal campo di portata. Le seguenti formule possono essere usate per calcolare approssimativamente la perdita di carico:

Numero di Reynolds	$Re = \frac{4 \cdot \dot{m}}{\pi \cdot d \cdot v \cdot \rho}$ according to the second	03381					
Re ≥ 2300 *	$\Delta p = K \cdot v^{0.25} \cdot \dot{\mathbf{m}}^{1.75} \cdot \rho^{-0.75} + \frac{K3 \cdot \dot{\mathbf{m}}^2}{\rho}$	14631					
	V2 ±2						
Re < 2300	$\Delta p = K1 \cdot v \cdot \dot{\mathbf{m}} + \frac{K3 \cdot \dot{\mathbf{m}}^2}{\rho}$						
	a000-	4633					
$\Delta p = perdita di carico [mbar]$	$ ho = densità del fluido [kg/m_3]$						
v = viscosità cinematica [m2/s]	d = diametro interno dei tubi di misura [m]						
$\dot{\mathbf{m}}$ = portata massica [kg/s]	KK3 = costanti (dipendente dal diametro nominale)						
* Per calcolare la perdita di carico nei gas applicare sempre la formula per Re ≥ 2300 .							

Coefficienti	di	perdita	di	carico
--------------	----	---------	----	--------

D	N	d[m]	K	K1	К3
[mm]	[pollici]				
8	3/8"	8,55 · 10 ⁻³	8,1 · 10 ⁶	3,9 ·10 ⁷	129,95 · 10 ⁴
15	1/2"	11,38 · 10 ⁻³	2,3 · 10 ⁶	1,3 · 10 ⁷	23,33 · 10 ⁴
15 FB	½" FB	17,07 · 10 ⁻³	4,1 · 10 ⁵	3,3 · 10 ⁶	0,01 · 10 ⁴
25	1"	17,07 · 10 ⁻³	4,1 · 10 ⁵	3,3 · 10 ⁶	5,89 · 10 ⁴
25 FB	1" FB	26,40 · 10 ⁻³	7,8 · 10 ⁴	8,5 · 10 ⁵	0,11 · 104
40	1 1/2"	26,40 · 10 ⁻³	7,8 · 10 ⁴	8,5 · 10 ⁵	1,19 · 10 ⁴
40 FB	1½" FB	35,62 · 10 ⁻³	1,3 · 10 ⁴	2,0 · 10 ⁵	0,08 · 10 ⁴
50	2"	35,62 · 10 ⁻³	1,3 · 10 ⁴	2,0 · 10 ⁵	0,25 · 10 ⁴
50 FB	2" FB	54,8 · 10 ⁻³	2,3 · 10 ³	5,5 · 10 ⁴	1,0 · 10 ²
80	3"	54,8 · 10 ⁻³	2,3 · 10 ³	5,5 · 10 ⁴	$3,5 \cdot 10^2$

I dati di perdita di carico tengono conto dell'accoppiamento tra il tubo di misura e la tubazione FB = Full bore (passaggio pieno)

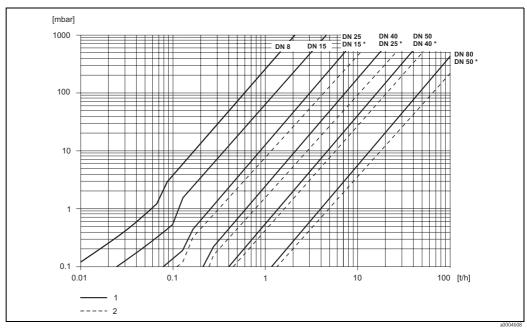


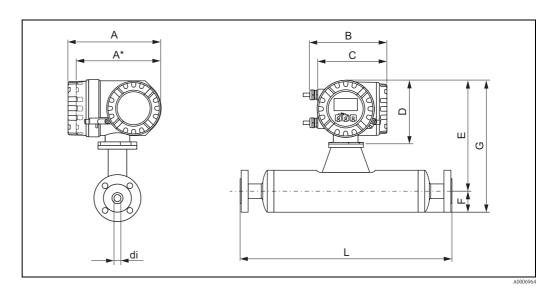
Diagramma della perdita di carico con acqua

- 1 Versioni standard
- 2 Versioni a passaggio pieno (*)

Perdita di carico (unità ingegneristiche US)

La perdita di carico dipende dalle caratteristiche del fluido e dal diametro nominale. Per determinare la perdita di carico in unità ingegneristiche US contattare Endress+Hauser per richiedere il software Applicator per PC. Il software Applicator contiene tutti i dati dello strumento necessari per ottimizzare la progettazione del sistema di misura. Il software è utilizzato per l'esecuzione dei seguenti calcoli:

- Diametro nominale del sensore con caratteristiche del fluido quali ad esempio viscosità, densità, ecc.
- Perdita di carico a valle del punto di misura.
- Conversione della portata massica in portata volumetrica, ecc.
- Visualizzazione simultanea di vari formati del misuratore.
- Determinazione dei campi di misura.


Il software Applicator può essere eseguito su qualsiasi PC compatibile con IBM su cui sia installato il sistema operativo Windows.

Costruzione meccanica

Struttura, dimensioni

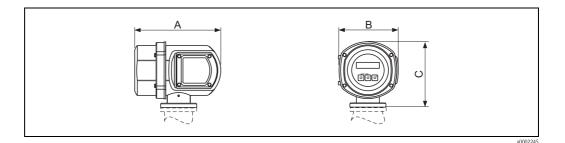
Dimensioni:	
Versione compatta della custodia da campo, in alluminio pressofuso con verniciatura a polvere	→ 🖹 25
Trasmettitore in versione compatta, acciaio inox	→ 🖹 26
Trasmettitore in versione separata, custodia di connessione (II2G/Zona 1)	→ 🖹 26
Trasmettitore versione separata, custodia da parete (area sicura e II3G/zona 2)	→ 🖹 27
Sensore in versione separata, custodia di connessione	→ 🖹 28
Connessioni al processo in unità ingegneristiche SI	
Connessioni flangiate EN (DIN)	→ 🖹 29
Connessioni flangiate ASME B16.5	→ 🖹 31
Connessioni flangiate JIS	→ 🖹 32
Tri-Clamp	→ 🖹 34
Tri-Clamp eccentrico	→ 🖹 35
DIN 11851 (connessione igienica filettata)	→ 🖹 36
DIN 11864-1 Form A (connessione igienica filettata)	→ 🖹 37
DIN 11864-2 Form A (flangia piana con incameratura)	→ 🖹 38
ISO 2853 (connessione igienica filettata)	→ 🖹 39
SMS 1145 (connessione igienica filettata)	→ 🖹 40
Connessioni al processo in unità ingegneristiche US	
Connessioni flangiate ASME B16.5	→ 🖹 41
Tri-Clamp	→ 🖹 43
Tri-Clamp eccentrico	→ 🖹 44
SMS 1145 (connessione igienica filettata)	→ 🖹 45
Attacchi di pressurizzazione / monitoraggio del contenitore secondario	→ 🖹 46

Versione compatta della custodia da campo, in alluminio pressofuso con verniciatura a polvere

Dimensioni in unità ingegneristiche SI

DN	A	A*	В	С	D	Е	F	G	L	di
8 1)	227	207	187	168	160	291	59	350	2)	2)
15	227	207	187	168	160	291	59	350	2)	2)
15 FB	227	207	187	168	160	291	59	350	2)	2)
25	227	207	187	168	160	291	59	350	2)	2)
25 FB	227	207	187	168	160	305	72	377	2)	2)
40	227	207	187	168	160	305	72	377	2)	2)
40 FB	227	207	187	168	160	320	86	406	2)	2)
50	227	207	187	168	160	320	86	406	2)	2)
50 FB	227	207	187	168	160	349	110	458,1	2)	2)
80	227	207	187	168	160	349	110	458,1	2)	2)

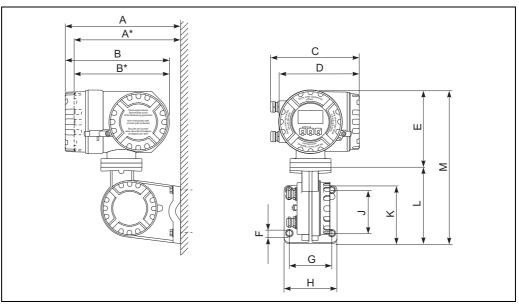
Dimensioni in unità ingegneristiche US


DN	A	A*	В	С	D	Е	F	G	L	di
3/8" 1)	9,08	8,28	7,48	6,72	6,40	11,46	2,32	13,78	2)	2)
1/2"	9,08	8,28	7,48	6,72	6,40	11,46	2,32	13,78	2)	2)
½" FB	9,08	8,28	7,48	6,72	6,40	11,46	2,32	13,78	2)	2)
1"	9,08	8,28	7,48	6,72	6,40	11,46	2,32	13,78	2)	2)
1" FB	9,08	8,28	7,48	6,72	6,40	12,01	2,83	14,84	2)	2)
1 1/2"	9,08	8,28	7,48	6,72	6,40	12,01	2,83	14,84	2)	2)
1½" FB	9,08	8,28	7,48	6,72	6,40	12,60	3,39	15,98	2)	2)
2"	9,08	8,28	7,48	6,72	6,40	12,60	3,39	15,98	2)	2)
2" FB	9,08	8,28	7,48	6,72	6,40	13,74	4,33	18,04	2)	2)
3"	9,08	8,28	7,48	6,72	6,40	13,74	4,33	18,04	2)	2)
1)				2)						

 $^{^{1)}}$ Versione standard DN 3/8" con flange DN $^{1}\!/\!{2}$ "; $^{2)}$ dipende dalla rispettiva connessione al processo

 $^{^{1)}}$ Versione standard DN 8 con flange DN 15; $^{2)}$ dipende dalla rispettiva connessione al processo FB = Full bore (passaggio pieno); * versione cieca (senza display locale); tutte le dimensioni sono espresse in [mm]

FB = Full bore (passaggio pieno); * versione cieca (senza display locale); tutte le dimensioni sono espresse in [mm]


Trasmettitore in versione compatta, acciaio inox

Dimensioni in unità ingegneristiche US e SI

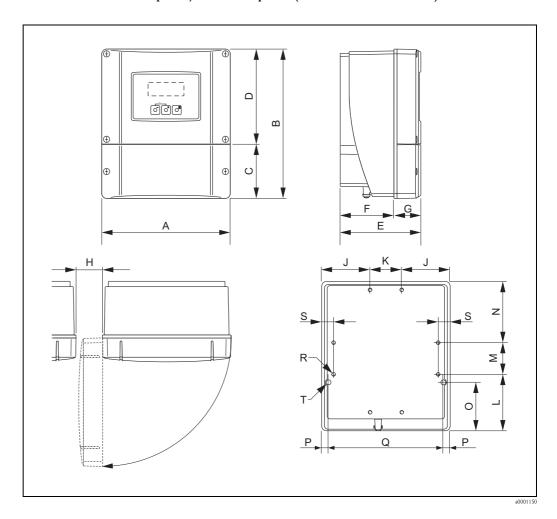
	A	A	I	3	С		
	[mm]	[pollici]	[mm]	[pollici]	[mm] [pollici]		
•	225	8.86	153	6.02	168	6.61	

Trasmettitore in versione separata, custodia di connessione (II2G/Zona 1)

a000212

Dimensioni in unità ingegneristiche SI

Α	A*	В	B*	С	D	Е	FØ	G	Н	J	K	L	М
265	242	240	217	206	186	178	8,6 (M8)	100	130	100	144	170	348


^{*} Versione cieca (senza display locale) Tutte le dimensioni sono espresse in [mm]

Dimensioni in unità ingegneristiche US

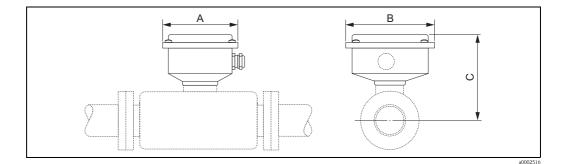
А	A*	В	В*	С	D	Е	FØ	G	Н	J	K	L	M
10.4	9.53	9.45	8.54	8.11	7.32	7.01	0.34 (M8)	3.94	5.12	3.94	5.67	6.69	13.7

^{*} Versione cieca (senza display locale) Tutte le dimensioni sono espresse in [pollici]

Trasmettitore versione separata, custodia da parete (area sicura e II3G/zona 2)

Dimensioni in unità ingegneristiche SI

A	В	С	D	Е	F	G	Н	J
215	250	90,5	159,5	135	90	45	>50	81
K	L	M	N	0	Р	α	R	S
53	95	53	102	81,5	11,5	192	8 × M5	20


Tutte le dimensioni sono espresse in [mm]

Dimensioni in unità ingegneristiche US

A	В	С	D	Е	F	G	Н	J
8.46	9.84	3.56	6.27	5.31	3.54	1.77	>1.97	3.18
K	L	М	N	0	Р	α	R	S
2.08	3.74	2.08	4.01	3.20	0.45	7.55	8 × M5	0.79

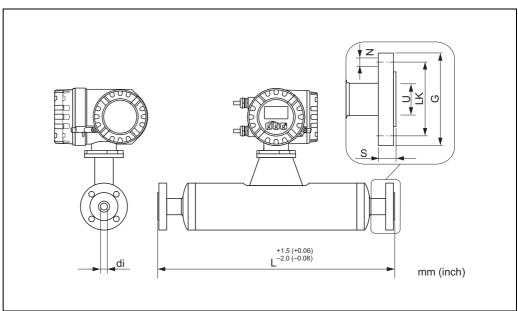
Tutte le dimensioni sono espresse in [pollici]

Sensore in versione separata, custodia di connessione

Dimensioni in unità ingegneristiche SI

DN	A	В	С
8	118,5	137,5	138
15	118,5	137,5	138
15 FB	118,5	137,5	138
25	118,5	137,5	138
25 FB	118,5	137,5	152
40	118,5	137,5	152
40 FB	118,5	137,5	167
50	118,5	137,5	167
50 FB	118,5	137,5	196
80	118,5	137,5	196

Tutte le dimensioni sono espresse in [mm]


Dimensioni in unità ingegneristiche US

DN	A	В	С
3/8"	4.67	5.41	5.43
1/2"	4.67	5.41	5.43
½" FB	4.67	5.41	5.43
1"	4.67	5.41	5.43
1" FB	4.67	5.41	5.98
1½"	4.67	5.41	5.98
1½" FB	4.67	5.41	6.57
2"	4.67	5.41	6.57
2" FB	4.67	5.41	7.72
3"	4.67	5.41	7.72

Tutte le dimensioni sono espresse in [pollici]

Connessioni al processo in unità ingegneristiche SI

Connessioni flangiate EN (DIN), ASME B16.5, JIS

a0002212

Connessioni flangiate EN (DIN)

Flangia secon	ndo EN 1092-	1 (DIN 2501)	/ PN 40: 1.430	1/304, parti ba	ignate dal fluido	o: titanio				
Rugosità delle flange (superficie di contatto): EN 1092-1 Form B1 (DIN 2526 Form C), Ra 3,212,5 μm										
DN	G	L	N	S	LK	U	di			
8 1)	95	402	4 x Ø14	20	65	17,30	8,55			
15	95	438	4 x Ø14	20	65	17,30	11,38			
15 FB	95	572	4 x Ø14	19	65	17,07	17,07			
25	115	578	4 x Ø14	23	85	28,50	17,07			
25 FB	115	700	4 x Ø14	22	85	25,60	26.40			
40	150	708	4 x Ø18	26	110	43,10	26,40			
40 FB	150	819	4 x Ø18	24	110	35,62	35,62			
50	165	827	4 x Ø18	28	125	54,50	35,62			
50 FB	165	1210	4 x Ø18	40	125	54,8	54,8			
80	200	1210	8 x Ø18	37	160	82,5	54,8			
			8 x Ø18			82,5	54,8			

 $^{^{1)}\,\}mbox{Versione}$ standard DN 8 con flangia DN 15; FB = versione a passaggio pieno

Tutte le dimensioni sono espresse in [mm]

Flangia secon	Flangia secondo EN 1092-1 EN 1092-1 (DIN 2501) / PN 63: 1.4301/304, parti bagnate dal fluido: titanio									
Rugosità delle flange (superficie di contatto): EN 1092-1 Form B2 (DIN 2526 Form E), Ra 0,83,2 μm										
DN	DN G L N S LK U di									
50	180	832	4 x Ø22	34	135	54,5	35,62			
50 FB	180	1210	4 x Ø22	45	135	54,8	54,8			
80	215	1210	8 x Ø22	41	170	81,7	54,8			

 $FB = versione \ a \ passaggio \ pieno \ di \ Promass \ I \\ Tutte \ le \ dimensioni \ sono \ espresse \ in \ [mm]$

Flangia secon	ndo EN 1092-	1(DIN 2501)	/ PN 100: 1.430	01/304, parti b	agnate dal fluid	o: titanio				
Rugosità delle flange (superficie di contatto): EN 1092-1 Form B2 (DIN 2526 Form E), Ra 0,83,2 μm										
DN	G	L	N	S	LK	U	di			
8 1)	105	402	4 x Ø14	25	75	17,30	8,55			
15	105	438	4 x Ø14	25	75	17,30	11,38			
15 FB	105	578	4 x Ø14	26	75	17,07	17,07			
25	140	578	4 x Ø18	29	100	28,50	17,07			
25 FB	140	706	4 x Ø18	31	100	25,60	25,60			
40	170	708	4 x Ø22	32	125	42,50	25,60			
40 FB	170	825	4 x Ø22	33	125	35,62	35,62			
50	195	832	4 x Ø26	36	145	53,90	35,62			
50 FB	195	1210	4 x Ø26	48	145	54,8	54,8			
80	230	1236	8 x Ø26	58	180	80,9	54,8			

 $^{^{1)}}$ Versione standard DN 8 con flangia DN 15; FB = versione a passaggio pieno Tutte le dimensioni sono espresse in [mm]

Connessioni flangiate ASME B16.5

Flangia seco	ndo ASME B1	6.5 / Cl 150:	: 1.4301/304, parti	bagnate dal flu	iido: titanio						
Rugosità delle flange (superficie di contatto): Ra 3,26,3 μm											
DN	G	L	N	S	LK	U	di				
8 1)	88,9	402	4 x Ø15,7	20	60,5	15,70	8,55				
15	88,9	438	4 x Ø15,7	20	60,5	15,70	11,38				
15 FB	88,9	572	4 x Ø15,7	19	60,5	17,07	17,07				
25	108,0	578	4 x Ø15,7	23	79,2	26,70	17,07				
25 FB	108,0	700	4 x Ø15,7	22	79,2	25,60	25,60				
40	127,0	708	4 x Ø15,7	26	98,6	40,90	25,60				
40 FB	127,0	819	4 x Ø15,7	24	98,6	35,62	35,62				
50	152,4	827	4 x Ø19,1	28	120,7	52,60	35,62				
50 FB	152,4	1210	4 x Ø19,1	40	120,7	54,8	54,8				
80	190,5	1210	4 x Ø19,1	37	152,4	78	54,8				

¹⁾ Versione standard DN 8 con flangia DN 15; FB = versione a passaggio pieno; tutte le dimensioni sono espresse in [mm]

Flangia seco	ndo ASME B	16.5 / Cl 300	: 1.4301/304, part	i bagnate dal fl	uido: titanio		
Rugosità delle	e flange (superfi	icie di contatto): Ra 3,26,3 μm				
DN	G	L	N	S	LK	U	di
8 1)	95,3	402	4 x Ø15,7	20	66,5	15,70	8,55
15	95,3	438	4 x Ø15,7	20	66,5	15,70	11,38
15 FB	95,3	572	4 x Ø15,7	19	66,5	17,07	17,07
25	124,0	578	4 x Ø19,1	23	88,9	26,70	17,07
25 FB	124,0	700	4 x Ø19,1	22	88,9	25,60	25,60
40	155,4	708	4 x Ø22,4	26	114,3	40,90	25,60
40 FB	155,4	819	4 x Ø22,4	24	114,3	35,62	35,62
50	165,1	827	8 x Ø19,1	28	127,0	52,60	35,62
50 FB	165,1	1210	8 x Ø19,1	43	127	54,8	54,8
80	209,5	1210	8 x Ø22,3	42	168,1	78	54,8

 $^{^{1)}}$ Versione standard DN 8 con flangia DN 15; FB = versione a passaggio pieno; tutte le dimensioni sono espresse in [mm]

Flangia seco	ndo ASME B1	6.5 / Cl 600:	: 1.4301/304, parti	bagnate dal flu	iido: titanio						
Rugosità delle flange (superficie di contatto): Ra 3,26,3 μm											
DN	G	L	N	S	LK	U	di				
8 1)	95,3	402	4 x Ø15,7	20	66,5	13,80	8,55				
15	95,3	438	4 x Ø15,7	20	66,5	13,80	11,38				
15 FB	95,3	578	4 x Ø15,7	22	66,5	17,07	17,07				
25	124,0	578	4 x Ø19,1	23	88,9	24,40	17,07				
25 FB	124,0	706	4 x Ø19,1	25	88,9	25,60	25,60				
40	155,4	708	4 x Ø22,4	28	114,3	38,10	25,60				
40 FB	155,4	825	4 x Ø22,4	29	114,3	35,62	35,62				
50	165,1	832	8 x Ø19,1	33	127,0	49,30	35,62				
50 FB	165,1	1210	8 x Ø19,1	46	127	54,8	54,8				
80	209,5	1222	8 x Ø22,3	53	168,1	73,7	54,8				

 $^{^{1)}}$ Versione standard DN 8 con flangia DN 15; FB = versione a passaggio pieno; tutte le dimensioni sono espresse in [mm]

Connessioni flangiate JIS

Flangia secon	Flangia secondo JIS B2220 / 10K: 1.4301/304, parti bagnate dal fluido: titanio									
Rugosità delle flange (superficie di contatto): Ra 3,26,3 μm										
DN	DN G L N S LK U di									
50	155	827	4 x Ø19	28	120	50	35,62			
50 FB	50 FB 195 1210 4 x Ø26 48 145 54,8 54,8									
80	200	1210	8 x Ø18	37	160	82,5	54,8			

FB = Full bore (passaggio pieno) Tutte le dimensioni sono espresse in [mm]

Flangia JIS B	2220 / 20K: 1	.4301/304, pa	rti bagnate dal flu	ıido: titanio						
Rugosità delle flange (superficie di contatto): Ra 3,26,3 μm										
DN	G	L	N	S	LK	U	di			
8 1)	95	402	4 x Ø15	20	70	15,00	8,55			
15	95	438	4 x Ø15	20	70	15,00	11,38			
15 FB	95	572	4 x Ø15	19	70	17,07	17,07			
25	125	578	4 x Ø19	23	90	25,00	17,07			
25 FB	125	700	4 x Ø19	22	90	25,60	25,60			
40	140	708	4 x Ø19	26	105	40,00	25,60			
40 FB	140	819	4 x Ø19	24	105	35,62	35,62			
50	155	827	8 x Ø19	28	120	50,00	35,62			
50 FB	155	1210	8 x Ø19	42	120	54,8	54,8			
80	200	1210	8 x Ø23	36	160	80	54,8			

 $\label{eq:conflang} Versione \ standard \ DN \ 8 \ conflangia \ DN \ 15; \ FB = versione \ a \ passaggio \ pieno; \ Tutte \ le \ dimensioni \ sono \ espresse \ in \ [mm]$

Flangia JIS B	Flangia JIS B2220 / 40K: 1.4301/304, parti bagnate dal fluido: titanio									
Rugosità delle	Rugosità delle flange (superficie di contatto): Ra 3,26,3 μm									
DN	G	L	N	S	LK	U	di			
8 1)	115	402	4 x Ø19	25	80	15,00	8,55			
15	115	438	4 x Ø19	25	80	15,00	11,38			
15 FB	115	578	4 x Ø19	26	80	17,07	17,07			
25	130	578	4 x Ø19	27	95	25,00	17,07			
25 FB	130	706	4 x Ø19	29	95	25,60	25,60			
40	160	708	4 x Ø23	30	120	38,00	25,60			
40 FB	160	825	4 x Ø23	31	120	35,62	35,62			
50	165	827	8 x Ø19	32	130	50,00	35,62			
50 FB	165	1210	8 x Ø19	43	130	54,8	54,8			
80	210	1210	8 x Ø23	46	170	75	54,8			

Versione standard DN 8 con flange DN 15; FB = versione a passaggio pieno; Tutte le dimensioni sono espresse in [mm]

Flangia JIS B	Flangia JIS B2220 / 63K: 1.4301/304, parti bagnate dal fluido: titanio								
Rugosità delle	Rugosità delle flange (superficie di contatto): Ra 3,26,3 μm								
DN	G	L	N	S	LK	U	di		
8 1)	120	402	4 x Ø19	28	85	12,00	8,55		
15	120	438	4 x Ø19	28	85	12,80	11,38		
15 FB	120	578	4 x Ø19	29	85	17,07	17,07		
25	140	578	4 x Ø23	30	100	22,00	17,07		
25 FB	140	706	4 x Ø23	32	100	25,60	25,60		
40	175	708	4 x Ø25	36	130	35,00	25,60		
40 FB	175	825	4 x Ø25	37	130	35,62	35,62		
50	185	832	8 x Ø23	40	145	48,00	35,62		
50 FB	185	1210	8 x Ø23	47	145	54,8	54,8		
80	230	1226	8 x Ø25	55	185	73	54,8		

Versione standard DN 8 con flange DN 15; FB = versione a passaggio pieno; Tutte le dimensioni sono espresse in [mm]

Tri-Clamp

Tri-Clamp / versione 3A ¹⁾ : titanio							
DN	Clamp	G	L	U	di		
8	1"	50,4	427	22,1	8,55		
15	1"	50,4	463	22,1	11,38		
15 FB	V. connessione Tri-Clamp 3/4"						
25	1"	50,4	603	22,1	17,07		
25 FB	1"	50,4	730	22,1	25,60		
40	1 ½"	50,4	731	34,8	25,60		
40 FB	1 ½"	50,4	849	34,8	35,62		
50	2"	63,9	850	47,5	35,62		
50 FB	2 ½"	77,4	1268	60,3	54,8		
80	3"	90,9	1268	72,9	54,8		

 $^{^{1)}}$ Versione 3A (Ra \leq 0,8 $\mu m/grit$ 150. Opzione: Ra \leq 0,4 $\mu m,$ 240 grit) FB = Full bore (passaggio pieno); tutte le dimensioni sono espresse in [mm]

Tri-clamp 3/4" / versione 3A ¹⁾ : titanio							
DN	Clamp	G	L	U	di		
8	3/4"	25,0	426	16,0	8,55		
15	3/4"	25,0	462	16,0	11,38		
15 FB	3/4"	25,0	602	16,0	17,07		

 $^{^{1)}}$ Versione 3A (Ra \leq 0,8 $\mu m/grit$ 150. Opzione: Ra \leq 0,4 $\mu m,$ 240 grit) FB = Full bore (a passaggio pieno); Tutte le dimensioni sono espresse in [mm]

Tri-clamp 1/2" / versione 3A ¹⁾ : titanio							
DN	Clamp	G	L	U	di		
8	1/2"	25,0	426	9,5	8,55		
15	1/2"	25,0	462	9,5	11,38		

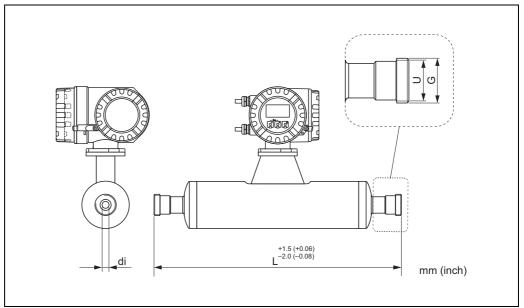
 $^{^{1)}}$ Versione 3A (Ra \leq 0,8 $\mu m/grit$ 150. Opzione: Ra \leq 0,4 μm , 240 grit) Tutte le dimensioni sono espresse in [mm]

34

Tri-Clamp eccentrico

ററ			

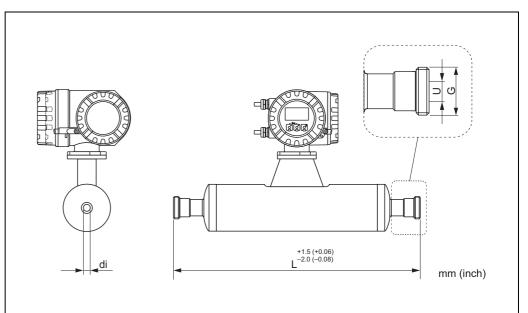
Connessioni Tri-Clamp eccentriche: titanio							
DN	Clamp	G	L	U	di		
8	1/2"	25,0	427	9,5	8,5		
15	3/4"	25,0	463	15,75	11,3		
15 FB	1"	50,4	603	22,1	17		
25	1"	50,4	603	22,1	17		
25 FB	11/2"	50,4	730	34,8	26,4		
40	11/2"	50,4	730	34,8	26,4		
40 FB	2"	63,9	849	47,5	35,6		
50	2"	63,9	849	47,5	35,6		
50 FB	2 ½"	77,4	1268	60,3	54,8		
50 FB	3"	82,572	1268	72,9	54,8		
80	2 ½"	77,4	1268	60,3	54,8		
80	3"	82,572	1268	72,9	54,8		


Versioni disponibili: $Ra_{max}=0.8~\mu m$ o $Ra_{max}=0.4~\mu m$ elettropulite FB = Full bore (passaggio pieno); tutte le dimensioni sono espresse in [mm]

Nota!

Per maggiori informazioni v. "Connessioni Tri-Clamp eccentriche" $\rightarrow \stackrel{ ext{\cong}}{} 19$

DIN 11851 (connessione igienica filettata)

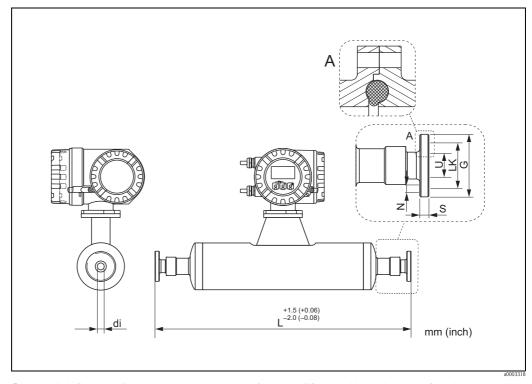

Connessione igienica filettata DIN 11851 / versione 3A ¹⁾ : titanio							
DN	G	L	U	di			
8	Rd 34 x 1/8"	427	16	8,55			
15	Rd 34 x 1/8"	463	16	11,38			
15 FB	Rd 34 x 1/8"	602	16	17,07			
25	Rd 52 x 1/6"	603	26	17,07			
25 FB	Rd 52 x 1/6"	736	26	25,60			
40	Rd 65 x 1/6"	731	38	25,60			
40 FB	Rd 65 x 1/6"	855	38	35,62			
50	Rd 78 x 1/6"	856	50	35,62			
50 FB	Rd 78 x 1/6"	1268	50	54,8			
80	Rd 110 x 1/4"	1268	81	54,8			

 $^{1)}$ Versione 3A (Ra \leq 0,8 $\mu m/grit$ 150) FB = Full bore (passaggio pieno); tutte le dimensioni sono espresse in [mm]

Connessione igienica filettata DIN 11851 Rd 28 x 1/8" / versione 3A ¹⁾ : titanio							
DN	G	L	U	di			
8	Rd 28 x 1/8"	426	10	8,55			
15	Rd 28 x 1/8"	462	10	11,38			

 $^{^{-1)}}$ Versione 3A (Ra \leq 0,8 μ m/grit 150) Tutte le dimensioni sono espresse in [mm]

DIN 11864-1 Form A (connessione igienica filettata)



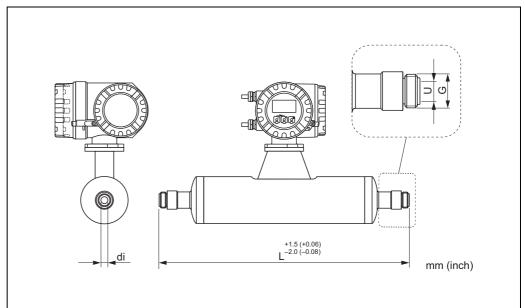
Connessione	Connessione igienica filettata DIN 11864-1 Form A / versione 3A ¹⁾ : titanio						
DN	G	L	U	di			
8 1)	Rd 28 x 1/8"	428	10	8,55			
15	Rd 34 x 1/8"	463	16	11,38			
15 FB	Rd 34 x 1/8"	602	16	17,07			
25	Rd 52 x 1/6"	603	26	17,07			
25 FB	Rd 52 x 1/6"	734	26	25,60			
40	Rd 65 x 1/6"	731	38	25,60			
40 FB	Rd 65 x 1/6"	855	38	35,62			
50	Rd 78 x 1/6"	856	50	35,62			
50 FB	Rd 78 x 1/6"	1268	50	54,8			
80	Rd 110 x 1/4"	1268	81	54,8			

 $^{^{1)}}$ Versione 3A (Ra \leq 0,8 $\mu m/grit$ 150. Opzione: Ra \leq 0,4 μm , 240 grit) $^{2)}$ Standard DN 8 con adattatore filettato DN 10

FB = Full bore (passaggio pieno)
Tutte le dimensioni sono espresse in [mm]

DIN 11864-2 Form A (flangia piana con incameratura)

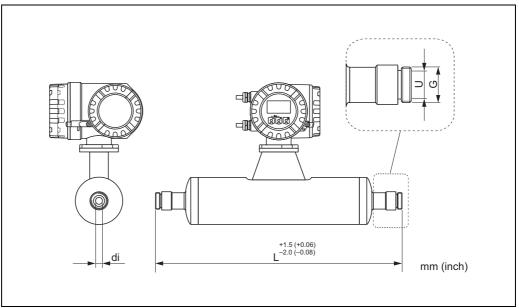
Dettaglio A: la flangia ha l'incameratura di dimensione inferiore per l'O-ring sul lato del sensore. Quando si monta il sensore, la flangia corrispondente deve disporre di un'incameratura adeguata di dimensioni superiori.


DIN 118	DIN 11864-2 Form A (flangia piana con ghiera) / versione 3A ¹⁾ : titanio								
DN	G	L	N	S	LK	U	di		
8 2)	54	449	4 x Ø9	10	37	10	8,55		
15	59	485	4 x Ø9	10	42	16	11,38		
25	70	625	4 x Ø9	10	53	26	17,07		
40	82	753	4 x Ø9	10	65	38	25,60		
50	94	874	4 x Ø9	10	77	50	35,62		
50 FB	94	1278	4 x Ø9	10	77	50	54,8		
80	133	1268	8 x Ø11	12	112	81	54,8		

 $^{^{1)}}$ Versione 3A (Ra \leq 0,8 $\mu m/grit$ 150. Opzione: Ra \leq 0,4 μm , 240 grit) $^{2)}$ Standard DN 8 con adattatore filettato DN 10

FB = Full bore (passaggio pieno)

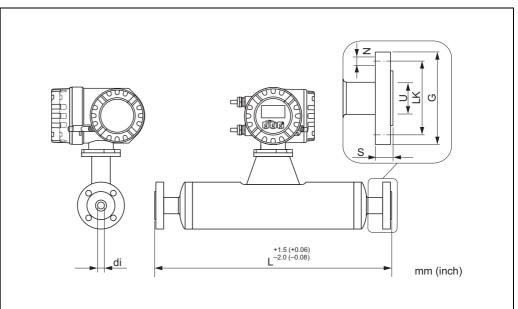
Tutte le dimensioni sono espresse in [mm]


ISO 2853 (connessione igienica filettata)

Connessione	Connessione igienica filettata ISO 2853 / versione 3A ¹⁾ : titanio							
DN	G	L	U	di				
8 2)	37,13	435	22,6	8,55				
15	37,13	471	22,6	11,38				
15 FB	37,13	610	22,6	17,07				
25 FB	37,13	744	22,6	25,60				
40	50,65	737	35,6	25,60				
40 FB	50,65	859	35,6	35,62				
50	64,16	856	48,6	35,62				
50 FB	64,1	1268	48,6	54,8				
80	91,19	1268	72,9	54,8				

 $^{^{1)}}$ Versione 3A (Ra \leq 0,8 $\mu m/grit$ 150. Opzione: Ra \leq 0,4 μm , 240 grit) $^{2)}$ Standard DN 8 con adattatore filettato DN 10 FB = Full bore (passaggio pieno) Tutte le dimensioni sono espresse in [mm]

SMS 1145 (connessione igienica filettata)



Connessione	Connessione igienica filettata SMS 1145 / versione 3 ¹⁾ : titanio						
DN	G	L	U	di			
8	Rd 40 x 1/6"	427	22,5	8,55			
15	Rd 40 x 1/6"	463	22,5	11,38			
25	Rd 40 x 1/6"	603	22,5	17,07			
25 FB	Rd 40 x 1/6"	736	22,5	25,60			
40	Rd 60 x 1/6"	738	35,5	25,60			
40 FB	Rd 60 x 1/6"	857	35,5	35,62			
50	Rd 70 x 1/6"	858	48,5	35,62			
40 FB	Rd 70 x 1/6"	1258	48,5	54,8			
80	Rd 98 x 1/6"	1268	72	54,8			

¹⁾ Versione 3A (Ra ≤ 0,8 µm/grit 150) FB = Full bore (passaggio pieno) Tutte le dimensioni sono espresse in [mm]

Connessioni al processo in unità ingegneristiche US

Connessioni flangiate ASME B16.5

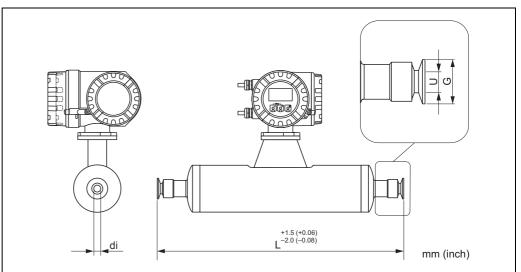
»0002212

Flangia seco	Flangia secondo ASME B16.5 / Cl 150: 1.4301/304, parti bagnate dal fluido: titanio								
Rugosità delle	Rugosità delle flange (superficie di contatto): Ra 3,26,3 μm								
DN	G	L	N	S	LK	U	di		
3/8" 1)	3.50	15.83	4 x Ø0.62	0.79	2.38	0.62	0.34		
1/2"	3.50	17.24	4 x Ø0.62	0.79	2.38	0.62	0.45		
½" FB	3.50	22.52	4 x Ø0.62	0.75	2.38	0.67	0.67		
1"	4.25	22.76	4 x Ø0.62	0.91	3.12	1.05	0.67		
1" FB	4.25	27.56	4 x Ø0.62	0.87	3.12	1.01	1.01		
1 1/2"	5.00	27.87	4 x Ø0.62	1.02	3.88	1.61	1.01		
1½" FB	5.00	32.24	4 x Ø0.62	0.94	3.88	1.40	1.40		
2"	6.00	32.56	4 x Ø0.75	1.10	4.75	2.07	1.40		
2" FB	6.00	47.64	4 x Ø0.75	1.57	4.75	2.16	2.16		
3"	7.50	47.64	4 x Ø0.75	1.46	6.00	3.07	2.16		

 $^{^{1)}}$ Standard DN 3/8" con flangia DN $^{1}\!\!/\!\!2$ "

FB = Full bore (passaggio pieno); tutte le dimensioni sono espresse in [pollici]

Flangia seco	Flangia secondo ASME B16.5 / Cl 300: 1.4301/304, parti bagnate dal fluido: titanio								
Rugosità delle	Rugosità delle flange (superficie di contatto): Ra 3,26,3 μm								
DN	G	L	N	S	LK	U	di		
3/8" 1)	3.75	15.83	4 x Ø0.62	0.79	2.62	0.62	0.34		
1/2"	3.75	17.24	4 x Ø0.62	0.79	2.62	0.62	0.45		
½" FB	3.75	22.52	4 x Ø0.62	0.75	2.62	0.67	0.67		
1"	4.88	22.76	4 x Ø0.75	0.91	3.50	1.05	0.67		
1" FB	4.88	27.56	4 x Ø0.75	0.87	3.50	1.01	1.01		
11/2"	6.12	27.87	4 x Ø0.88	1.02	4.50	1.61	1.01		
1½" FB	6.12	32.24	4 x Ø0.88	0.94	4.50	1.40	1.40		
2"	6.50	32.56	8 x Ø0.75	1.10	5.00	2.07	1.40		
2" FB	6.50	47.64	8 x Ø0.75	1.69	5.00	2.16	2.16		
3"	8.25	47.64	8 x Ø0.88	1.65	6.62	3.07	2.16		


 $^{^{1)}}$ Standard DN 3/8" con flangia DN ½" FB = versione a passaggio pieno di Promass I; tutte le dimensioni sono espresse in [pollici]

Flangia seco	Flangia secondo ASME B16.5 / Cl 600: 1.4301/304, parti bagnate dal fluido: titanio								
Rugosità delle	Rugosità delle flange (superficie di contatto): Ra 3,26,3 μm								
DN	G	L	N	S	LK	U	di		
3/8" 1)	3.75	15.83	4 x Ø15.7	0.79	2.62	0.54	0.34		
1/2"	3.75	17.24	4 x Ø15.7	0.79	2.62	0.54	0.45		
½" FB	3.75	22.76	4 x Ø15.7	0.87	2.62	0.67	0.67		
1"	4.88	22.76	4 x Ø19.1	0.91	3.50	0.96	0.67		
1" FB	4.88	27.80	4 x Ø19.1	0.98	3.50	1.01	1.01		
11/2"	6.12	27.87	4 x Ø22.4	1.10	4.50	1.50	1.01		
1½" FB	6.12	32.48	4 x Ø22.4	1.14	4.50	1.40	1.40		
2"	6.50	32.76	8 x Ø19.1	1.30	5.00	1.94	1.40		
2" FB	6.50	47.64	8 x Ø19.1	1.81	5.00	2.16	2.16		
3"	8.25	48.11	8 x Ø22.3	2.09	6.62	2.90	2.16		

¹⁾ Standard DN 3/8" con flangia DN ½"

FB = versione a passaggio pieno di Promass I; tutte le dimensioni sono espresse in [pollici]

Tri-Clamp

a0002214

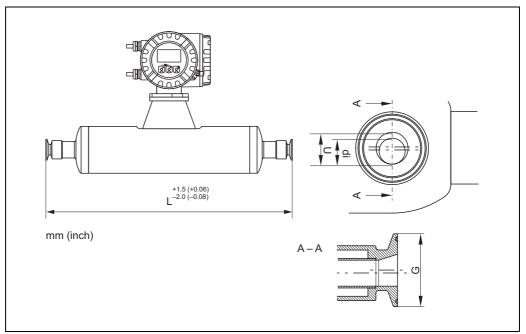
Tri-Clamp	/ versione 3A ¹⁾ : titan	io			
DN	Clamp	G	L	U	di
3/8"	1"	1.98	16.81	0.87	0.34
1/2"	1"	1.98	18.23	0.87	0.45
½" FB	V. connessione Tri-C	Clamp 3/4"			
1"	1"	1.98	23.74	0.87	0.67
1" FB	1"	1.98	28.74	0.87	1.01
11/2"	1 ½"	1.98	28.78	1.37	1.01
1½" FB	1 ½"	1.98	33.43	1.37	1.40
2"	2"	2.52	33.46	1.87	1.40
2" FB	2 1/2"	3.05	49.92	2.37	2.16
3"	3"	3.58	49.92	2.87	2.16

 $^{^{1)}}$ Versione 3A (Ra \leq 0,8 $\mu m/grit$ 150. Opzione: Ra \leq 0,4 $\mu m,$ 240 grit)

FB = versione a passaggio pieno; tutte le dimensioni sono espresse in [pollici]

Tri-clamp 3	Tri-clamp 3/4" / versione 3A ¹⁾ : titanio							
DN	Clamp	G	L	U	di			
3/8"	3/4"	0.98	16.77	0.63	0.34			
1/2"	3/4"	0.98	18.19	0.63	0.45			
½" FB	3/4"	0.98	23.70	0.63	0.67			

 $^{^{1)}}$ Versione 3A (Ra \leq 0,8 $\mu m/grit$ 150. Opzione: Ra \leq 0,4 $\mu m,$ 240 grit)


FB = versione a passaggio pieno; Tutte le dimensioni sono espresse in [pollici]

Tri-clamp 1/2" / versione 3A ¹⁾ : titanio						
DN	Clamp	G	L	U	di	
3/8"	1/2"	0.98	16.77	0.37	0.34	
1/2"	1/2"	0.98	18.19	0.37	0.45	

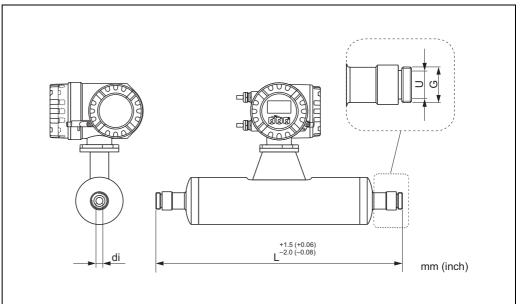
 $^{^{1)}}$ Versione 3A (Ra \leq 0,8 $\mu m/grit$ 150. Opzione: Ra \leq 0,4 $\mu m,$ 240 grit)

Tutte le dimensioni sono espresse in [pollici]

Tri-Clamp eccentrico

Ti-Clamp eccentr	Ti-Clamp eccentrici: titanio						
DN	Clamp	G	L	U	di		
3/8"	1/2"	0.98	16.8	0.37	0.33		
1/2"	3/4"	0.98	18.2	0.62	0.44		
½" FB	1"	1.97	23.7	0.87	0.67		
1"	1"	1.97	23.7	0.87	0.67		
1" FB	11/2"	1.97	28.7	1.37	1.04		
11/2"	11/2"	1.97	28.7	1.37	1.04		
1½" FB	2"	2.52	33.4	1.87	1.40		
2"	2"	2.52	33.4	1.87	1.40		
2" FB	2 ½"	3.05	49.9	2.37	2.16		
2" FB	3"	3.49	49.9	2.87	2.16		
80	2 1/2"	3.05	49.9	2.37	2.16		
80	3"	3.49	49.9	2.87	2.16		

Versioni disponibili: $Ra_{max}=0.8~\mu m$ o $Ra_{max}=0.4~\mu m$ elettropulite FB=Full bore (passaggio pieno); tutte le dimensioni sono espresse in [pollici]



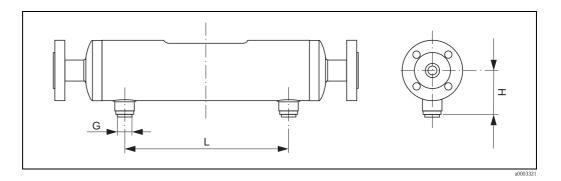
Nota!

Per maggiori informazioni v. "Connessioni Tri-Clamp eccentriche" $\rightarrow \stackrel{ ext{\cong}}{} 19$

44 Endress + Hauser

SMS 1145 (connessione igienica filettata)

Connessione	Connessione igienica filettata SMS 1145 / versione 3A ¹⁾ : titanio							
DN	G	L	U	di				
3/8"	Rd 40 x 1/6"		0.89	0.34				
1/2"	Rd 40 x 1/6"	18.23	0.89	0.45				
½" FB	Rd 40 x 1/6"	23.74	0.89	0.67				
1"	Rd 40 x 1/6"	28.98	0.89	1.01				
1" FB	Rd 60 x 1/6"	29.06	1.40	1.01				
1 ½"	Rd 60 x 1/6"	33.74	1.40	1.40				
1½" FB	Rd 70 x 1/6"	33.78	1.91	1.40				
2"	Rd 70 x 1/6"	49.53	1.91	2.16				
2" FB	Rd 98 x 1/6"	49.92	2.83	2.16				


¹⁾ Versione 3A (Ra ≤ 0,8 µm/grit 150) FB = Full bore (passaggio pieno) Tutte le dimensioni sono espresse in [pollici]

Attacchi di pressurizzazione / monitoraggio del contenitore secondario

Pericolo!

- Il contenitore secondario è riempito con azoto secco (N₂). Non aprire gli attacchi di pressurizzazione a meno che il tubo di contenimento possa essere immediatamente riempito con un gas inerte secco. Per le operazioni di carico utilizzare solo bassa pressione. Massima pressione: 5 bar (72.5 psi).
- Gli attacchi di pressurizzazione o il monitoraggio del contenitore secondario non possono essere combinati con la camicia riscaldante disponibile separatamente.

DN		G	I	-1	L		
[mm]	[pollici]		[mm]	[pollici]	[mm]	[pollici]	
8	3/8"	½" NPT	90,65	3.57	122	4,80	
15	1/2"	½" NPT	90,65	3.57	158	6.22	
15 FB	½" FB	½" NPT	90,65	3.57	158	6.22	
25	1"	½" NPT	90,65	3.57	296	11.66	
25 FB	1" FB	½" NPT	90,65	3.57	296	11.66	
40	1 1/2"	½" NPT	103,35	4.07	392	15.44	
40 FB	1½" FB	½" NPT	103,35	4.07	392	15.44	
50	2"	½" NPT	117,75	4.64	488	19.22	
50 FB	2" FB	½" NPT	145,5	5.73	814	32.40	
80	3"	½" NPT	145,5	5.73	814	32.40	

FB = Full bore (passaggio pieno)

46

Peso

- Versione compatta: v. tabella sottostante
- Versione separata
 - Sensore: v. tabella sottostante
 - Custodia da parete: 5 kg (11 lbs)

Peso in unità ingegneristiche SI

DN [mm]	8	15	15 FB	25	25 FB	40	40 FB	50	50 FB	80
Versione compatta	13	15	21	22	41	42	67	69	120	124
Versione separata	11	13	19	20	39	40	65	67	118	122

 $FB = Full\ bore\ (passaggio\ pieno);\ Tutti\ i\ valori\ (peso)\ si\ riferiscono\ a\ strumenti\ con\ flange\ EN/DIN\ PN\ 40.$ I pesi sono espressi in [kg]

Peso in unità ingegneristiche US

DN [pollici]	3/8"	1/2"	½" FB	1"	1" FB	1½"	1½" FB	2"	2" FB	3"
Versione compatta	29	33	42	44	88	90	143	148	265	273
Versione separata	24	29	37	40	84	86	139	143	260	269

FB = Full bore (passaggio pieno), tutti i valori (peso) si riferiscono a dispositivi con flange EN/DIN PN 40. I pesi sono espressi in [lbs]

Materiali

Custodia del trasmettitore

Versione compatta

- Pressofusione in alluminio con verniciatura a polvere
- Custodia in acciaio inox: acciaio inox 1.4301/ASTM 304
- Materiale finestra: vetro o policarbonato

Versione separata

- Custodia da campo separata: alluminio pressofuso con verniciatura a polvere
- Custodia da parete: alluminio pressofuso con verniciatura a polvere
- Materiale finestra: vetro

Corpo del sensore / contenitore

- Superficie esterna resistente ad acidi e alcali
- Acciaio inox 1.4301/1.4307/304L

Custodia di connessione, sensore (versione separata)

Acciaio inox 1.4301/304

Connessioni al processo

- Acciaio inox 1.4301/304
 - $-\,$ Flange secondo EN 1092-1 (DIN 2501) / ASME B16.5 / JIS B2220
- Titanio grado 2
 - DIN 11864-2 Form A (flangia piana con incameratura)
 - Connessione igienica filettata
 - DIN 11851
 - SMS 1145
 - ISO 2853
 - DIN 11864-1 Forma A
 - Tri-clamp (tubi OD)

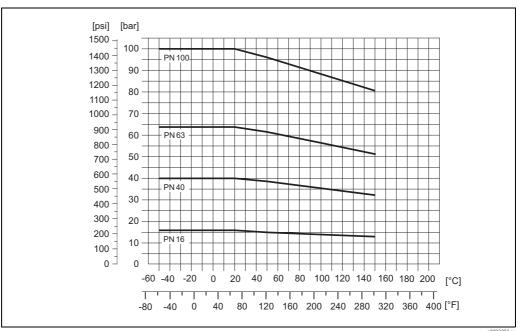
Tubi di misura:

- Titanio grado 9
- Titanio grado 2 (disco flangiato)

Guarnizioni:

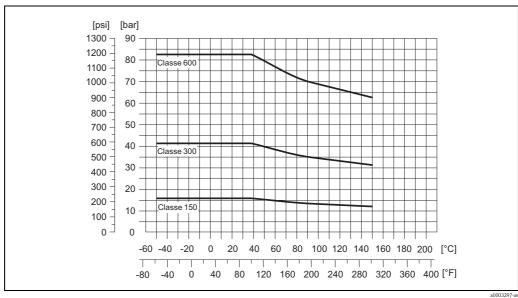
Connessioni al processo saldate senza guarnizioni interne

Curve di carico dei materiali

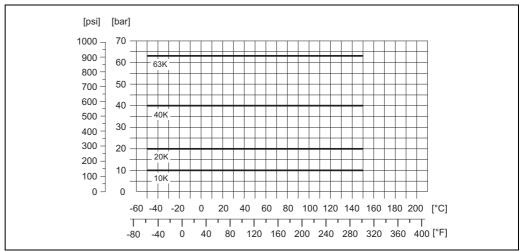


Attenzione!

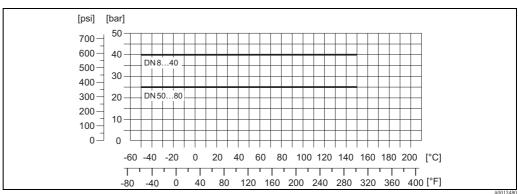
Le curve di carico dei materiali seguenti si riferiscono al sensore completo e non solo all'attacco al processo.


Connessione flangiata secondo EN 1092-1 (DIN 2501)

Materiale della flangia: 1.4301/304 Parti bagnate dal fluido: titanio

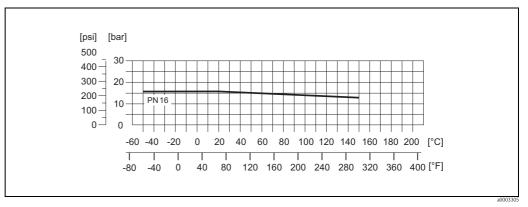

Connessione flangiata secondo ASME B16.5

Materiale della flangia: 1.4301/304 Parti bagnate dal fluido: titanio


Connessione flangiata secondo JIS B2220

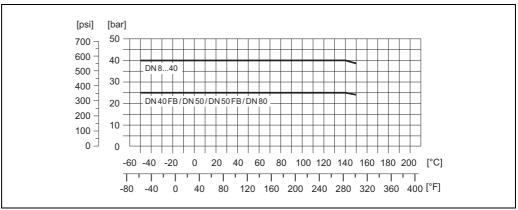
Materiale della flangia: 1.4301/304 Parti bagnate dal fluido: titanio

Connessione al processo secondo DIN 11851

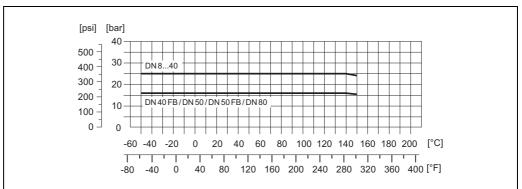

Materiale attacco: titanio

Lo standard DIN 11851 consente applicazioni con temperature fino a +140 °C (+284 °F) se si utilizzano materiali delle guarnizioni adatti. Si prega di tenerne conto durante la scelta delle guarnizioni e dei prodotti correlati, in quanto questi componenti possono comportare dei limiti a livello dei campi di pressione e temperatura.

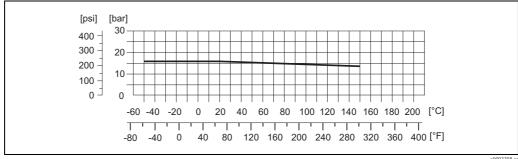
Connessione al processo secondo SMS 1145


Materiale attacco: titanio

Lo standard SMS 1145 consente applicazioni con temperature fino a 6 bar (87 psi) se si utilizzano materiali delle guarnizioni adatti. Si prega di tenerne conto durante la scelta delle guarnizioni e dei prodotti correlati, in quanto questi componenti possono comportare dei limiti a livello dei campi di pressione e temperatura.


Connessione igienica filettata secondo DIN 11864-1 Form A

Materiale attacco: titanio


Connessioni flangiate secondo DIN 11864-2 Form A (flangia piana con incameratura)

Materiale attacco: titanio

Connessione igienica filettata ISO 2853

Materiale attacco: titanio

Connessione al processo Tri-Clamp

Le connessioni clamp sono adatte per una pressione massima di 16 bar (232 psi). Rispettare le soglie operative di clamp e guarnizione utilizzate poiché potrebbero essere inferiori a 16 bar (232 psi). Clamp e guarnizione non fanno parte della fornitura.

Connessioni al processo

Connessioni al processo saldate

- Flange secondo EN 1092-1 (DIN 2501), secondo ASME B16.5, JIS B2220
- Connessioni sanitarie: Tri-Clamp, connessioni igieniche filettate (DIN 11851, SMS 1145, ISO 2853, DIN 11864-1 Form A), DIN 11864-2 Form A (flangia piana con incameratura)

50

Interfaccia utente

Elementi per la visualizzazione

- Display a cristalli liquidi: retroilluminato, a due linee (Promass 80) o a quattro linee (Promass 83) con 16 caratteri per linea
- È possibile selezionare la visualizzazione di differenti valori misurati e delle variabili di stato
- Una temperatura ambiente inferiore a −20 °C (−4 °F) può compromettere la leggibilità del display.

Elementi operativi

Promass 80:

- Funzionamento locale mediante tre pulsanti (-/+/E)
- Menù di configurazione veloce (Quick Setup) per una rapida messa in servizio

Promass 83:

- Funzionamento locale mediante tre tasti ottici (□/±/₺)
- Menù per una veloce messa in servizio (Quick Setup), specifico per l'applicazione

Gruppi linguistici

Gruppi linguistici disponibili per il funzionamento in paesi diversi:

- Europa occidentale e (WEA): Inglese, Tedesco, Spagnolo, Italiano, Francese, Olandese e Portoghese
- Europa orientale/Scandinavia (EES): Inglese, Russo, Polacco, Norvegese, Finlandese, Svedese e Ceco
- Asia meridionale e orientale (SEA): Inglese, giapponese e indonesiano

Solo Promass 83

■ Cina (CN): Inglese, Cinese

Il gruppo linguistico può essere cambiato mediante il software operativo "FieldCare".

Configurazione remota

Promass 80

Funzionamento a distanza mediante HART, PROFIBUS PA

Promass 83

Funzionamento a distanza tramite HART, PROFIBUS PA/DP, FOUNDATION Fieldbus, MODBUS RS485

Certificati e approvazioni

Marchio CE Il sistema di misura è conforme ai requisiti delle Direttive CE. Endress+Hauser conferma il risultato positivo delle prove eseguite sul misuratore apponendo il marchio CE. Marchio C-Tick Il sistema di misura è conforme ai requisiti EMC dell'"Australian Communications and Media Authority (ACMA)". Approvazione Ex Le informazioni sulle versioni Ex attualmente disponibili (ATEX, FM, CSA, IECEx, NEPSI ecc.) sono disponibili presso l'ufficio commerciale Endress+Hauser locale. Tutte le informazioni relative all'uso in aree pericolose sono riportate nella documentazione Ex separata, che può essere fornita su richiesta. Compatibilità sanitaria ■ Approvazione 3A ■ Testato EHEDG Certificazione FOUNDATION Il misuratore di portata ha superato con successo tutte le procedure di controllo ed è stato certificato e registrato **Fieldbus** dalla FOUNDATION Fieldbus. Il dispositivo possiede di conseguenza tutti i requisiti delle seguenti specifiche: ■ Secondo le specifiche FOUNDATION Fieldbus ■ Il misuratore è in accordo a tutte le specifiche FOUNDATION Fieldbus H1. • Kit di controllo dell'interoperabilità (ITK), stato revisione 5.01 (numero di certificazione del misuratore: su richiesta) ■ Il misuratore può funzionare anche con dispositivi certificati di altri produttori ■ Test di Conformità del Livello Fisico secondo FOUNDATION Fieldbus Certificazione Il misuratore di portata ha superato con successo tutte le procedure di controllo ed è stato certificato e registrato PROFIBUS DP/PA dal PNO (associazione degli utenti PROFIBUS). Il dispositivo, quindi, possiede tutti i requisiti delle seguenti specifiche: ■ Certificato secondo PROFIBUS profilo versione 3.0 (numero di certificazione del misuratore: disponibile su richiesta) ■ Il misuratore può funzionare anche con i dispositivi certificati di altri produttori (interoperabilità) Certificazione MODBUS Il misuratore risponde a tutti i requisiti della prova di conformità MODBUS/TCP e possiede il "MODBUS/TCP Conformance Test Policy, Version 2.0". Il misuratore ha superato con successo tutte le prove ed è certificato dal "MODBUS/TCP Conformance Test Laboratory" dell'Università del Michigan. Altre norme e direttive ■ EN 60529 Grado di protezione mediante custodia (codice IP) Requisiti di sicurezza elettrica per apparecchi di misura, controllo e utilizzo in laboratorio. ■ IEC/EN 61326 "Emissioni in Classe A". Compatibilità elettromagnetica (requisiti EMC). ■ NAMUR NE 21 Compatibilità elettromagnetica (EMC) nei processi industriali ed attrezzature di controllo da laboratorio. Livello del segnale standard per le informazioni di guasto dei trasmettitori digitali con segnale di uscita analogico. ■ NAMUR NE 53 Software per dispositivi da campo e di elaborazione del segnale dotati di elettronica digitale Direttiva per i dispositivi in

pressione

I misuratori con diametro nominale inferiore o uguale a DN 25 corrispondono all'Articolo 3(3) della Direttiva CE 97/23/CE (Direttiva per i dispositivi in pressione) e sono stati progettati e fabbricati nel rispetto delle procedure di buona ingegneria. Su richiesta, per i diametri nominali più grandi sono disponibili in opzione altre approvazioni secondo Cat. II/III (in base al fluido e alla pressione di processo).

Sicurezza funzionale

SIL -2: secondo IEC 61508/IEC 61511-1 (FDIS)

Uscita "4-20 mA HART" secondo il seguente codice d'ordine:

Promass 80

Promass80***-********A
Promass80***-********D
Promass80***-*********
Promass80***-*************T
Promass80***-********8

Promass 83

Promass83***-*********A	Promass83***-**********M	Promass83***-*********Ø
Promass83***-*********B	Promass83***-*********R	Promass83***-********2
Promass83***-********************************	Promass83***-*********	Promass83***-*********3
Promass83***-*********D	Promass83***-*********T	Promass83***-********4
Promass83***-************E	Promass83***-********************************	Promass83***-********5
Promass83***-*********L	Promass83***-*********W	Promass83***-*********6

Informazioni per l'ordine

Il servizio di assistenza Endress+Hauser può fornire dettagliate informazioni e consulenza per la definizione del codice d'ordine in base alle specifiche.

Accessori

Sono disponibili vari accessori per trasmettitore e sensore, che possono essere ordinati separatamente a Endress+Hauser.

Documentazione

- Tecnologia per la misura della portata (FA005D)
- Informazioni tecniche
 - Promass 80A, 83A (T054D)
 - Promass 80E, 83E (TI061D)
 - Promass 80F, 83F (TI101D)
 - Promass 80H, 83H (TI074D)
 - Promass 80M, 83M (TI102D)
 - Promass 80P, 83P (TI078D)
 - Promass 80S, 83S (TI076D)
- Istruzioni di funzionamento/Descrizione delle funzioni del dispositivo
 - Promass 80 (BA057D/BA058D)
 - Promass 80 PROFIBUS PA (BA072D/BA073D)
 - Promass 83 HART (BA059D/BA060D)
 - Promass 83 FOUNDATION Fieldbus (BA065D/BA066D)
 - Promass 83 PROFIBUS DP/PA(BA063D/BA064D)
 - Promass 83 MODBUS (BA107D/BA108D)
- Documentazione supplementare per certificazioni Ex: ATEX, FM, CSA, IECEx NEPSI
- Manuale per la sicurezza operativa Promass 80, 83 (SD077D)

Marchi registrati

KALREZ® e VITON®

Marchi registrati da E.I. Du Pont de Nemours & Co., Wilmington, USA

TRI-CLAMP

Marchio registrato della Ladish & Co., Inc., Kenosha, USA

SWAGELOK ®

È un marchio registrato da Swagelok & Co., Solon, USA

HART

Marchio registrato da HART Communication Foundation, Austin, USA

PROFIBUS®

Marchio registrato dall'associazione utenti PROFIBUS, Karlsruhe, Germania

FOUNDATIONTM Fieldbus

Marchio registrato di proprietà di FOUNDATION Fieldbus, Austin, USA

MODBUS[®]

Marchio registrato dall'associazione MODBUS

HistoROMTM, S-DAT[®], T-DATTM, F-CHIP[®], Fieldcheck[®], FieldCare[®], Applicator[®] Marchi registrati o in corso di registrazione da Endress+Hauser Flowtec AG, Reinach, CH

Sede Italiana

Endress+Hauser Italia S.p.A. Società Unipersonale Via Donat Cattin 2/a 20063 Cernusco Sul Naviglio -MI-

Tel. +39 02 92192.1 Fax +39 02 92107153 http://www.it.endress.com info@it.endress.com

