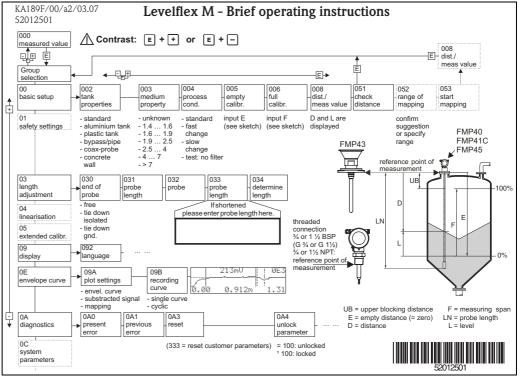


Operating Instructions

Levelflex M FMP43


Guided Level-Radar

Brief Operating Instructions

L00-FMP40xxx-19-00-00-en-012

Note!

These Operating Instructions explains how to install and commission the level transmitter. All the functions that are required for a typical measuring task are taken into account here. In addition, the Levelflex M provides many other functions for optimizing the measuring point and conventing measured values. These functions are not included in these Operating Instructions.

An **overview of all the device functions** can be found on $\rightarrow \stackrel{\triangle}{=} 96$.

The Operating Instructions BA00245F/00/EN "Description of Instrument Functions" provides an **extensive description of all the device functions** which can be found on the enclosed CD-ROM.

The Operating Instructions can also be found on our homepage: www.endress.com

Table of contents

1	Safety instructions 4	7	Maintenance	74
1.1	Designated use	7.1	Exterior cleaning	74
1.2	Installation, commissioning and operation 4	7.2	Repair	
1.3	Operational safety and process safety 4	7.3	Repairs to Ex-approved devices	
1.4	Notes on safety conventions and icons 5	7.4	Replacement	74
2	Identification 6	8	Accessories	75
2.1	Device designation 6	8.1	Weather protection cover	75
2.2	Scope of delivery 8	8.2	Weld-in adapter	
2.3	Certificates and approvals	8.3	Remote display and operation FHX40	
2.4	Registered trademarks 8	8.4	Commubox FXA291	
2	Installation	8.5 8.6	ToF Adapter FXA291	
3	Installation 9	8.7	Calibration kit	
3.1	Incoming acceptance, transport, storage 9	0.7	Sumprumon int	, ,
3.2	Installation conditions	9	Troubleshooting	78
3.3 3.4	Installation instructions15Post-installation check20	9.1	Troubleshooting instructions	
3.5	Cleaning of the probe	9.1	System error messages	
J.J	Greating of the probe	9.3	Application errors	
4	Wiring 24	9.4	Spare Parts	
		9.5	Return	
4.1	Quick wiring guide	9.6	Disposal	84
4.2 4.3	Connecting the measuring unit	9.7	Software history	
4.3 4.4	Degree of protection	9.8	Contact addresses of Endress+Hauser	84
4.5	Post-connection check	10	Technical data	85
5	Operation	10.1	Additional technical data	
5.1	Quick operation guide			
5.2	Operation with the display and	11	Appendix	
	operating module VU331	11.1	Operating menu FOUNDATION Fieldbus	
5.3	Operation with an Endress+Hauser	11.2	Description of functions	
5.4	operating program	11.3	Block model of the Levelflex M	
3. 4	configuration program	11.4	Sensor Block	
5.5	Operation with the Field Communicator 375, 475 . 39	11.6	Diagnostic Block	
J.J	operation with the riota communicator (7.5), 17.5.	11.7	Display Block	
6	Commissioning	11.8	Analog input block	
	G	11.9	Checklist for commissioning	
6.1 6.2	Function check		List of start indices	
6.3	Resetting the device	11.11	Patents	110
6.4	Basic setup			110
6.5	Commissioning by the display and	Inde	ex	113
	operating module VU331			
6.6	Blocking distance			
6.7	Envelope curve			
6.8	Basic setup with the Endress+Hauser			
6.9	operating program			
0.9	Commissioning with a FOUNDATION Fieldbus configuration tool			
6.10	Commissioning with the			
2.10	Field Communicator 375, 475			
	,	I		

1 Safety instructions

1.1 Designated use

The Levelflex M is a compact level transmitter for continuous measurement of liquids, measuring prinziple: Guided Level Radar / TDR: **T**ime **D**omain **R**eflectometry.

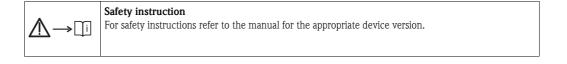
1.2 Installation, commissioning and operation

The Level M is designed to meet state-of-the-art safety requirements and conforms to applicable standards and EC regulations. If installed incorrectly or used for applications for which it is not intended, however, the device can present a source of application-related danger, e.g. product overflow due to incorrect installation or configuration. For this reason, installation, connection to the electricity supply, commissioning, operation and maintenance of the measuring system must only be carried out by trained, qualified specialists authorized to perform such work by the facility's owner-operator. The specialists must have read and understood these Operating Instructions and must follow the instructions they contain. Modifications and repairs to the device are permissible only when they are expressly approved in the Operating Instructions.

1.3 Operational safety and process safety

Alternative monitoring measures must be taken to ensure operational safety and process safety during configuration, testing and maintenance work on the device.

Hazardous area

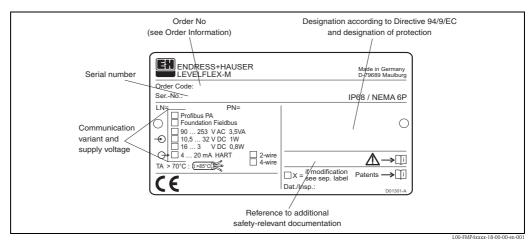

Applicable national standards must be observed when using the measuring system in hazardous areas. The device is accompanied by separate "Ex documentation", which is an integral part of this documentation. The installation regulations, connection values and safety instructions listed in this document must be observed.

- Ensure that all personnel are suitably qualified.
- Measuring point requirements with regard to measurement and safety must be observed.

1.4 Notes on safety conventions and icons

In order to highlight safety-relevant or alternative operating procedures in the manual, the following conventions have been used, each indicated by a corresponding symbol in the margin.

Safety instruction	ons
<u> </u>	Warning! Indicates an action or procedure which, if not performed correctly, can result in serious personal injury, a safety hazard or the destruction of the device.
C	Caution! Indicates an action or procedure which, if not performed correctly, can result in personal injury or the incorrect operation of the device.
	Note! Indicates an action or procedure which, if not performed correctly, can have an indirect effect on operation or trigger an unexpected response on the part of the device.
Explosion prote	ection
⟨£x⟩	Explosion protected, type-examined equipment If the device has this symbol embossed on its nameplate, it can be used in a hazardous area or a non-hazardous area, according to the approval.
EX	Explosion hazardous area This symbol is used in the drawings of these Operating Instructions to indicate hazardous areas. Devices in hazardous areas, or cables for such devices, must have appropriate explosion protection.
×	Safe area (non-hazardous area) This symbol is used in the drawings of these Operating Instructions to indicate non-hazardous areas. Devices in the non-hazardous area also have to be certified if connecting cables lead into the hazardous area.
Electrical symb	ols
	Direct current A terminal to which DC voltage is applied or through which direct current flows.
~	Alternating current A terminal to which alternating voltage (sine-wave) is applied or through which alternating current flows.
<u></u>	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded by means of a grounding system.
	Protective ground connection A terminal which must be connected to ground prior to making any other connection to the equipment.
	Equipotential connection A connection that has to be connected to the plant grounding system: This may be a potential equalization line or a star grounding system depending on national or company codes of practice.
(>85°C()	Temperature resistance of the connecting cables Indicates that the connecting cables have to withstand a temperature of 85 °C at least.



2 Identification

2.1 Device designation

2.1.1 Nameplate

The following technical data are given on the device nameplate:

Information on the nameplate of the Levelflex M FMP43

2.1.2 Ordering structure

This overview does not mark options which are mutually exclusive.

10	Aı	pproval:					
	A	Non-hazardous area					
	1	ATEX II 1/2 G Ex ia IIC T6					
	7	ATEX II 1/2 G Ex d (ia) IIC T6					
	5	ATEX II 1/2 G Ex ia IIC T6, ATEX II 1/3 D					
	3	ATEX II 2G Ex emb (ia) IIC T6					
	2	ATEX II 1/2 D, Alu blind cover					
	4	ATEX II 1/3 D					
	M	FM DIP Cl. II Div. 1 Gr. E-G N.I.					
	S	FM IS Cl. I, II, III Div. 1 Gr. A-G N.I., zone 0, 1, 2					
	T	FM XP Cl. I, II, III Div. 1 Gr. A-G, zone 1, 2					
	N	CSA General Purpose					
	P	CSA DIP Cl. II Div. 1 Gr. G + coal dust, N. I.					
	U	CSA IS Cl. I, II, III Div. 1 Gr. A-D, G + coal dust, N.I., zone 0, 1, 2					
	V	CSA XP Cl.I, II, III Div. 1 Gr. A-D, G + coal dust, N.I., zone 1, 2					
	K	TIIS Ex ia IIC T4 (in preparation)					
	I	NEPSI Ex ia IIC T6 (in preparation)					
	Y	Special version, TSP-No. to be spec.					
20		Probe:					
		300 mm - 4000 mm/12 in - 157 in					
		K mm, rod 8 mm, 316L, Ra < 0.76 μ m/30 μ in					
		M in, rod 8 mm 316L, Ra < 0.76 μ m/30 μ in					
		S mm, rod 8 mm, 316L, electropolished Ra $< 0.38 \mu m/15 \mu in$					
		T in, rod 8 mm 316L, electropolished Ra < 0.38 μ m/15 μ in					
		Special version, TSP-No. to be spec.					
30		O-ring Material; Temperature:					
		5 EPDM, FDA, USP CI. VI; - 20 °C to 130 °C					
		6 Kalrez, FDA, USP Cl. VI; - 20 °C to 150 °C					
		9 Special version, TSP-No. to be spec.					

40		1	Proce	956 1	Con	nect	ion·				
40			11000				oss —				
		1	U1J					install > accessory weld-in adapter			
		(UIJ				nection				
		-	TCJ			•		DN25-38 (1 to 1-1/2"), 316L, 3A, EHEDG			
			TDI		i-clamp ISO2852 DN40-51 (2"), 316L, 3A, EHEDG						
			TFI			-clamp ISO2652 DN70-76.1 (3"), 316L, 3A, EHEDG					
			,			ygienic connections —					
		7	T7J					316L, EHEDG			
			TXJ				,	, EHEDG			
			MAJ					25 tube DIN11850, 316L, slotted-nut, EHEDG			
		1	MQJ	DI!	N11	851 D	N40 Pl	N40, slotted-nut, 316L, EHEDG			
		1	MRJ	DI	N11	851 D	N50 Pl	N40, slotted-nut, 316L, EHEDG			
		5	S1J	NE	UM	O Bio	Control	DN25 PN16, 316L, EHEDG			
						I flang					
		A	AEJ	1-1	/2"	150 1	os RF, C	B16L flange ANSI B16.5			
			AFJ					flange ANSI B16.5			
)	YY9	Spe	ecial	versio	n, TSP	-No. to be spec.			
50				Po	we	r Sup	ply; (Output:			
	П			В		,		A SIL HART			
				D	2-v	vire; F	ROFIB	US PA			
				F	2-v	vire; F	OUND	ATION Fieldbus			
				G				/AC; 4-20mA SIL HART			
				Н				VDC; 4-20mA SIL HART			
				Y	Spe	ecial v	ersion,	TSP-No. to be spec.			
60					Oı	oerat	ion:				
					1			r, via communication			
					2			y VU331			
					3	Prepa	ared for	FHX40			
					9	Spec	al versi	on, TSP-No. to be spec.			
70						Tyn	e of P	robe:			
						-,-		t, basic version			
							•				
						5 Compact, detachable 6 Remote, cable 3 m, detachable					
						7 Remote, cable 6 m, detachable					
								version, TSP-No. to be spec.			
80						1	lousi	no.			
00								Alu, coated IP68 NEMA6P			
								•			
						B F23, 316L, IP68, NEMA6P C T12 Alu, coated IP68 NEMA6P, separate conn. compartment					
					D T12 Alu, coated IP08 NEMAOP, separate conn. compartment						
								cial version, TSP-No. to be spec.			
	1 1			! 		! ! ⁻	- F -	,			
90							- 1	ble Entry:			
							2	Gland M20 (EEx d > thread M20)			
							3	Thread G 1/2			
							4	Thread NPT 1/2			
							5	Plug M12			
							6	Plug 7/8" Special version, TSP-No, to be spec			
					l		19	Special version, TSP-No. to be spec.			
100								Additional Option:			
								A Basic version			
								B EN10204-3.1 material (316L wetted parts) inspection certificate			
								H 5-point linearity protocol, see additional spec.			
								J 5-point, 3.1, 5-point linearity protocol, see additional spec.,			
								EN10204-3.1 material (316L wetted parts), inspection certificate P CoC-ASME BPE, EN10204-3.1 material (316L wetted parts) inspection			
								certificate			
1								R 5-point, CoC-ASME BPE, 3.1, 5-point linearity protocol, see additional spec.,			
								EN10204-3.1 material (316L wetted parts), inspection certificate			
								Y Special version, TSP-No. to be spec.			
		- 1									
005								Marking:			
995								Marking: 1 Tagging (TAG), see additional spec.			
995								1 Tagging (TAG), see additional spec.			
995 FMP43-											

 $[\]overline{}^{1)}$ OVP = overvoltage protection

2.2 Scope of delivery

Caution!

It is essential to follow the instructions concerning the unpacking, transport and storage of measuring devices given in the chapter "Incoming acceptance, transport, storage", $\rightarrow \stackrel{\text{le}}{}$ 9!

The scope of delivery consists of:

- Assembled device
- Accessories (\rightarrow 🖹 75)
- Endress+Hauser operating program on the enclosed CD-ROM
- Brief operating instructions KA00189F/00/A2 (basic setup/troubleshooting), housed in the device
- Brief operating instructions KA01049F/00/EN for quick commissioning
- Approval documentation: if this is not included in the Operating Instructions
- CD-ROM with further documentation, e.g.
 - Technical Information
 - Operating Instructions
 - Description of Instrument Functions

2.3 Certificates and approvals

CE mark, declaration of conformity

The device is designed to meet state-of-the-art safety requirements, has been tested and left the factory in a condition in which it is safe to operate. The device takes into account applicable standards and regulations which are listed in the EC declaration of conformity and thus meets the legal requirements of the EC Directives. Endress+Hauser confirms the successful testing of the device by affixing to it the CE mark.

2.4 Registered trademarks

KALREZ®, VITON®, TEFLON®

Registered trademarks of E.I. Du Pont de Nemours & Co., Wilmington, USA

TRI-CLAMP®

Registered trademark of Ladish & Co., Inc., Kenosha, USA

PulseMaster®

Registered trademark of the company Endress+Hauser GmbH+Co. KG, Maulburg, Germany

FOUNDATION[™]Fieldbus

Registered trademark of Fieldbus Foundation Austin, Texas, USA

8

3 Installation

3.1 Incoming acceptance, transport, storage

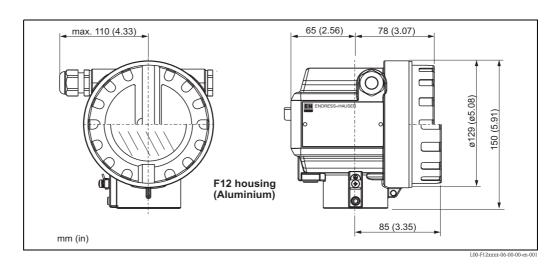
3.1.1 Incoming acceptance

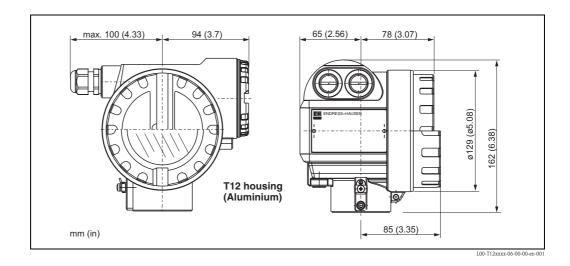
Check the packing and contents for any signs of damage. Check the shipment, make sure nothing is missing and that the scope of supply matches your order.

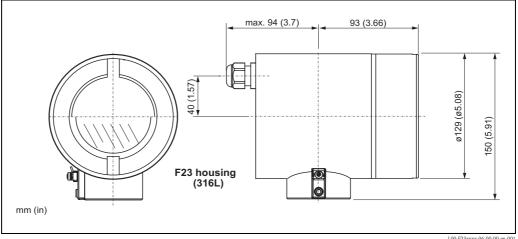
3.1.2 Transport

Caution!

Follow the safety instructions and transport conditions for devices of more than 18 kg. Do not lift the measuring device by the probe rod in order to transport it.

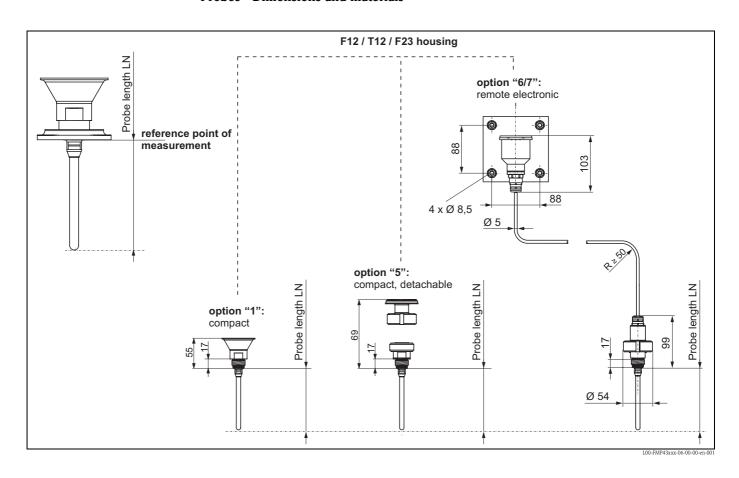

3.1.3 Storage

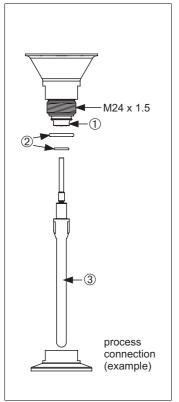

Pack the measuring device in such a way as to protect it reliably against impact for storage and transportation. The original packing material provides the optimum protection for this. The permissible storage temperature is -20 °C to +80 °C.


3.2 Installation conditions

3.2.1 **Dimensions**

Housing dimensions





L00-F23xxxx-06-00-00-en-001

10

Probes - Dimensions and materials

① Insulator

Material	Approval
Ketron PEEK LSG	FDA, 3A, USP Cl. VI

② O-ring (see Feature 30 in "Ordering information"

Material	Approval	Temperature range	Option
EPDM Freudenberg 70 EPDM 291	FDA, 3A,	- 20 °C to +130 °C (functional) - 20 °C to +121 °C (3A Class. II, USP Cl. VI)	5
FFKM DuPont Kalrez 6221	USP C1. VI	- 20 °C to +150 °C (functional) - 20 °C to +149 °C (3A Class. I, USP Cl. VI)	6

③ Probe (see Feature 20 in "Ordering information)

Material	Version	Option
316L (1.4435)	0.76 µm mechanically polished	K, M
310L (1.4433)	0.38 µm electropolished	S, T
Hastelloy C22	Special version available on request	Y

Process connections - Dimensions and materials

Endress+Hauser supplies DIN/EN flanges made of stainless steel according to AISI 316L (DIN/EN material number 1.4404 or 1.4435). With regard to their temperature stability properties, the materials 1.4404 and 1.4435 are grouped und 13E0 in EN 1092-1 Tab.18. The chemical composition of the two materials can be identical.

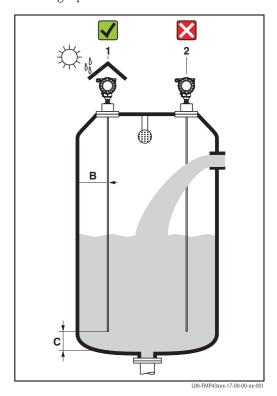
Process connection	Designation	Versions	Approvals	Option
ø43,4 ø50,4	Tri-clamp ISO2852 DN25-38 (1 to $1-\frac{1}{2}$ ")* $P_{max} = 16$ bar Material: 316L (1.4435)			TCJ
ø56,4 ø63,9	Tri-clamp ISO2852 DN40-51 (2")* P _{max} = 16 bar Material: 316L (1.4435)	0N40-51 (2")* 0 _{max} = 16 bar ■ 0.76 μm		TDJ
ø83,4 ø90,9	Tri-clamp ISO2852 DN70-76.1 (3") P _{max} = 10 bar Material: 316L (1.4435)			TFJ
Ø74 A 25	SMS 1-1/2" PN25 with slotted nut* $P_{max} = 16$ bar Material: $A = 1.4307$ $B = 316L (1.4435)$			T7J
ø54,85 ø84 A A 26 ø56,4	SMS 2" PN25 with slotted nut* $P_{max} = 16 \text{ bar}$ Material: $A = 1.4307$ $B = 316L (1.4435)$	- • 0.76 μm	■ EHEDG	TXJ

Process connection	Designation	Versions	Approvals	Option
ø78 A 21 ø56 ø39	DIN11851 DN40 PN40 with slotted nut F40* $P_{max} = 16 \text{ bar}$ Material: $A = 1.4307$ $B = 316L (1.4435)$			MQJ
ø92 A 22 Ø68 Ø51	DIN11851 DN50 PN40 with slotted nut F50* $P_{max} = 16 \text{ bar}$ Material: $A = 1.4307$ $B = 316L (1.4435)$	- ■ 0.76 μm	■ EHEDG	MRJ
ø63 A 21 Ø42,9	DIN11864-1 A DN25 Pipe DIN11850 with slotted nut F25* P _{max} = 16 bar Material: A= 1.4307 B= 316L (1.4435)	 0.76 μm 0.38 μm electropolished 		MAJ
ø64 Ø30,4	NEUMO BioControl DN25 PN16* P _{max} = 16 bar Material: 316L (1.4435)			S1J
ø127 17,5	1-1/2" 150lbs RF Flange ANSI B16.5* P _{max} = 16 bar Material: 316L	0.74		AEJ
ø152,4 19,1	2" 150lbs RF Flange ANSI B16.5* P _{max} = 16 bar Material: 316L	- ■ 0.76 μm		AFJ

Process connection	Designation	Versions	Approvals	Option
	Thread M24 x 1.5			UIJ
	You need the following weld	l-in adapter:		
#65 #31 M24x1.5	Weld-in adapter order number: 71041381 P _{max} = 16 bar Material: 316L (1.4435)	Accessory: weld-in adapter • 0.76 μm		

3.3 Installation instructions

3.3.1 Mounting tools

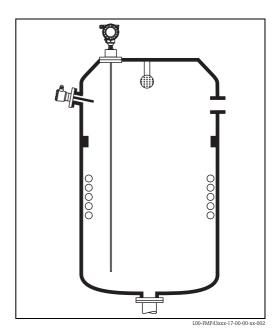

A 4 mm Allen key is needed to turn the housing.

3.3.2 General instructions

Normally use rod probes. Rope probes are used for measuring ranges > 4 m and with restricted ceiling clearance which does not allow the installation of rigid probes.

Mounting location

- Do not mount the probe in the filling curtain (2).
- Mount the probe at such a distance away from the wall (B) that, in the event of buildup on the wall, there is still a minimum distance of 100 mm between the probe and the buildup.
- Mount the probe as far away as possible from internals.
- The minimum distance from the probe end to the tank floor is 10 mm.
- If installing outdoors, it is recommended that you use a weather protection cover (1).
 ("Accessories", → ≜ 75)



Tank internals

- If the distance to the internals is < 300 mm, "mapping" must be carried out, and the measurement capability may be restricted.
- During operation, the probe must not touch any internals within the measuring range.

Optimization options

 Interference echo suppression: measurement can be optimized by electronically suppressing interference echoes.

15

Note!

You must ensure that the probe does not come into contact with the container wall, container bottom and tank internals.

3.3.3 Special instructions

When installing in tanks with agitator, observe the lateral loading capacity of rod probes:

- 10 Nm with 316L (1.4435)
- 16 Nm with Hasteloy C22 (on request).

The formula for calculating the bending torque M impacting on the probe:

$$M = c_w \cdot \frac{\rho}{2} \cdot v^2 \cdot d \cdot L \cdot (L_{\scriptscriptstyle N} - 0.5 \cdot L)$$

with

 c_w : Friction factor

 ρ [kg/m³]: Density of the medium

v [m/s]: Velocity of the medium perpendicular to the probe rod

d [m]: Diameter of the probe rod (8 mm)

L [m]: Level

L_N [m]: Probe length

Calculation example

Friction factor $[c_{w]}$ 0.9 (on the assumption of a turbulent

current (high Reynolds number))

Density $[\rho]$ in kg/m³ 1000 (e.g. water)

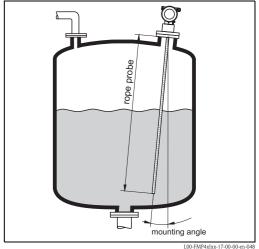
Probe diameter [d] in m 0.008

 $L = L_N$ (worst case)

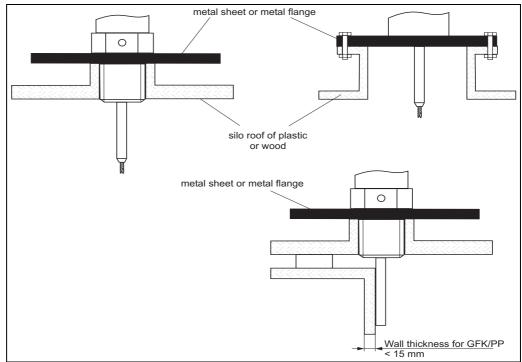
Bending torque [M] on rod probes 20.0 18.0 16.0 max. bending torque Bending torque [Nm] 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 v=0.5m/s 0.8 v=0.7m/s 1.2 1.6 2.4 2.8 v=1.0m/s Probe length [LN] in meters

16

The probe must be mounted opposite the agitator.


If possible, check whether a non-contact process, ultrasonic or level-radar would be better suited, particularly if the agitator generates large mechanical loads on the probe.

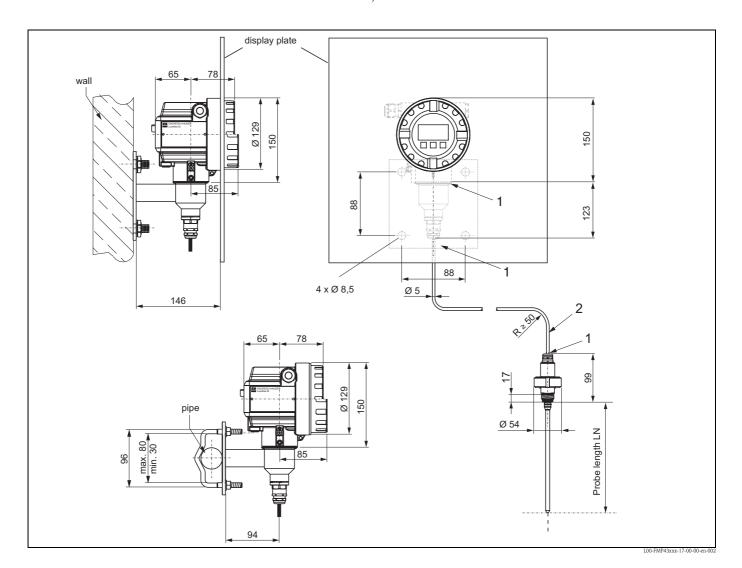
3.3.4 Notes on special installation situations


Installation at an angle

- For mechanical reasons, the probe should be installed as vertically as possible.
- With inclined installations the probe length has to be adjusted in dependence to the installation angle.
 - up to 1 m = 30°
 - up to 2 m = 10°
 - up to 4 m = 5° .

Installation in plastic containers

Please note that the "guided level radar" measurement principle requires a metallic surface at the process connection! When installing rod or robe probes in plastic silos, whose silo cover is also made of plastic or silos with wood cover, the probes must either be mounted in a \geq DN50 (2") metallic flange, or a metal sheet with diameter \geq 200 mm must be mounted under the screw-in piece.



L00-FMP4xxxx-17-00-00-en-018

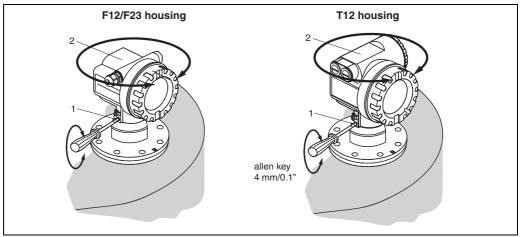
3.3.5 Installation with difficult-to-access process connections

Installation with remote electronics

- Wall and pipe bracket is contained in the scope of delivery and is already mounted.
- Mount the housing on the wall or pipe (vertically or horizontally, as required) as shown in the diagram.
- The wall retainer can also be used for mounting in display panels. Please observe the dimensions, \rightarrow $\stackrel{ }{=}$ 10 for the cutout.

Note!

The cable cannot be disassembled at these points (1).


The cable should never be bent or buckled.

The ambient temperature for the connecting line (2) between the probe and electronics can be max. 105 °C. The version with remote electronics consists of the probe, a connecting cable and the housing. If they are ordered as a set, they are assembled on delivery.

3.3.6 Turning the housing

After mounting, the housing can be turned 350° in order to ease access to the display and the terminal compartment. Proceed as follows to turn the housing to the required position:

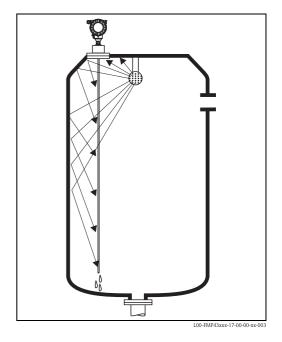
- Undo the fixing screw (1)
- Turn the housing (2) in the required direction
- Tighten the fixing screw (1)

L00-FMP41Cxx-17-00-00-en-002

3.4 Post-installation check

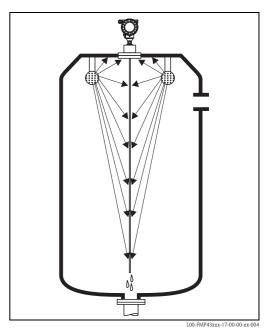
After the measuring device has been installed, perform the following checks:

- Is the device damaged (visual inspection)?
- Does the device correspond to specifications at the measuring point, including process temperature and pressure, ambient temperature, measuring range, etc.?
- Are the measuring point number and labeling correct (visual inspection)?
- Is the device adequately protected against rain and direct sunlight ($\rightarrow \stackrel{\triangle}{=} 75$)?


20

3.5 Cleaning of the probe

3.5.1 Cleaning of the probe in the tank


Installation close to tank wall

By installing the probe close to the tank wall, the cleaning effect is improved in cases where a spray ball is used. The cleaning jet is deflected against the tank wall and onto the probe. This means that those parts of the probe are cleaned which would normally not be reached by the spray ball jet. If the probe is positioned in this way, only one spray ball is needed.

Installation in the center of the tank

If the probe is mounted in the center of the tank, it may be necessary to use a second spray ball. The spray balls should then be mounted to the left and right of the probe.

3.5.2 Cleaning of the probe outside of the tank

The probe can be disassembled so it can be cleaned better.

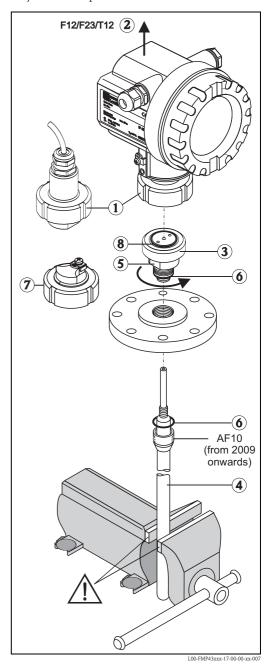
The disassembly requires the following tools:

- Note!
 - vise with fiber braces (surface protection for the polished probe rod)
- hook wrench for sanitary process connections (diary or SMS)
- open-ended wrench AF27 / AF32 with a torque adjustement up to 20 Nm

Before disassembly, it has to be make sure that the supply voltage for the device is switched off!

- Note!
 - Disassembling the housing for calibration purposes:
 - When releasing the slotted nut ① make sure to counterhold at the process connection ring ③ with an open-ended wrench as the adapter ③ could otherwise be released from the flange. In hazardous or contaminated areas, seal the adapter with a protective cover ⑦ ("Accessories", \rightarrow $\stackrel{ all}{=}$ 75) (20 Nm) and integrate into the local potential equalization where necessary.
- Unscrew the grooved nut ① with hook wrench.
- Remove the unscrewed housing ② together with the housing adapter from the adapter ③ of the process connection. The housing adapter is still connected with the housing. At the remote version: remove only the cable adapter.
- Replace O-ring ® where necessary. Order number, \rightarrow 🖹 83

Disassembly of rod probe:


- unscrew adapter ③ from the process connection (as example: flange): unscrew adapter at the wrench flats with hook wrench (AF27) and pull it out of the tank together with the rod probe (length max. 4 m).
- Probe rod ④
 - without wrench flats (until 2009): clamp the probe rod in a vise.
 - with wrench flats (from 2009 onwards):
 clamp the probe rod at the wrench flats or
 use a fitting pliers.

Caution:

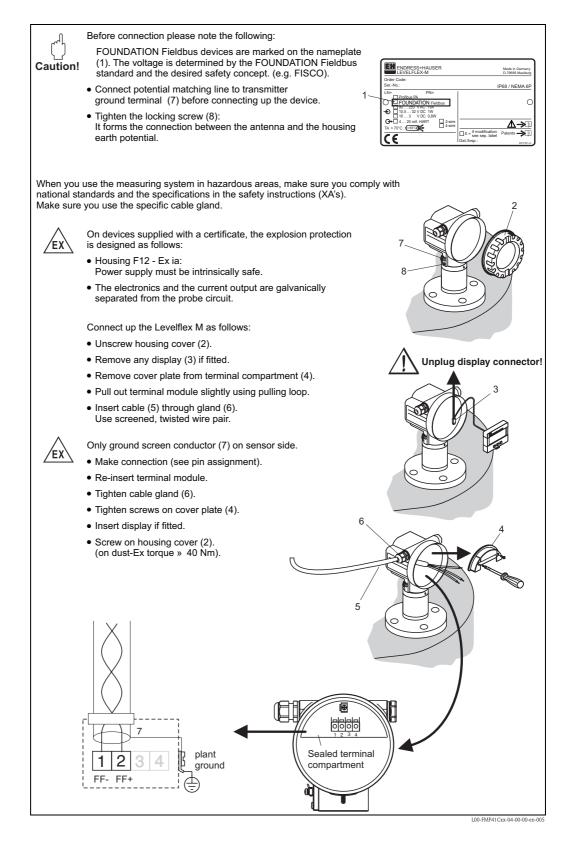
Protect the surface of the polished probe rod! Do not damage the surface by scratching or denting it.

- unscrew adapter ③ from the probe rod (approx. 12 rotations counter-clockwise and remove (plug connection). The probe rod is screwed in the insulating bush with 4.5 Nm.
- The O-rings ⑥ of the probe rod and adapter are now free accessible respectively changeable. The probe rod can be cleaned (autoclaved).

O-ring order numbers, $\rightarrow \stackrel{\triangle}{=} 83$.

22

Assembly of the probe

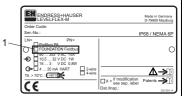

The assembly is done in reversed order:

- screw adapter ③ with 4.5 Nm on the probe rod ④
- screw the adapter into the container process connection together with the probe rod and tighten with 20 Nm
- lacksquare stick housing @ with housing adapter on the adapter and bolt it with the grooved nut @ torque 20 Nm.

4 Wiring

4.1 Quick wiring guide

Wiring in F12/F23 housing


Wiring in T12 housing

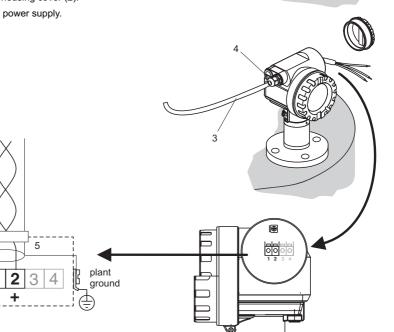
Before connection please note the following:

FOUNDATION Fieldbus devices are marked on the nameplate (1). The voltage is determined by the FOUNDATION Fieldbus standard and the desired safety concept. (see chapter 4.3).

- Connect potential matching line to transmitter earth terminal before connecting up the device.
- Tighten the locking screw: It forms the connection between the probe and the housing

When you use the measuring system in hazardous areas, make sure you comply with national standards and the specifications in the safety instructions (XA's). Make sure you use the specific cable gland.

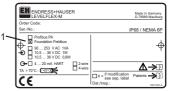
Connect up the Levelflex M as follows:


Before unscrew housing cover (2) at seperate connection room turn off the power supply!

• Insert cable (3) through gland (5). Use screened, twisted wire pair.

Only ground screening of the line (5) on sensor side.

- Make connection (see pin assignment).
- Tighten cable gland (4).
- Screw on housing cover (2).
- Switch on power supply.

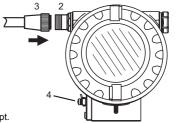

L00-FMP41Cxx-04-00-00-en-00

Wiring with FOUNDATION Fieldbus connector

Before connection please note the following:

- Foundation Fieldbus devices are marked on the nameplate (1). The voltage is determined by the Foundation Fieldbus standard and the desired safety concept (e.g. FISCO).
- Connect potential matching line to transmitter earth terminal (4) before connecting up the device.

When you use the measuring system in hazardous areas, make sure you comply with national standards and the specifications in the safety instructions (XA's).



On devices supplied with a certificate, the explosion protection is designed as follows:

- Housing F12 Ex ia: Power supply must be intrinsically safe (e.g. FISCO).
- The electronics and the current output are galvanically separated from the antenna circuit.

The Levelflex M is connected as follows:

- Insert plug (2) into bushing (3).
- Screw firmly
- Ground the device according to the desired safety concept.

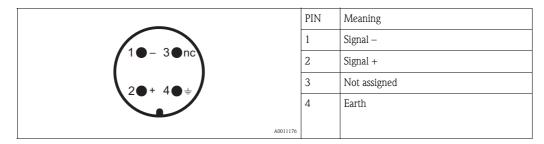
I.00-FMP41Cxx-04-00-00-en-00

Cable specification FOUNDATION Fieldbus

Twisted, shielded pairs must be used. The cable specifications can be taken from the FF specification or IEC 61158-2. The following have been found suitable:

Non-Ex-area:

- Siemens 6XV1 830-5BH10
- Belden 3076F
- Kerpen CEL-PE/OSCR/PVC/FRLA FB-02YS(ST)YFL

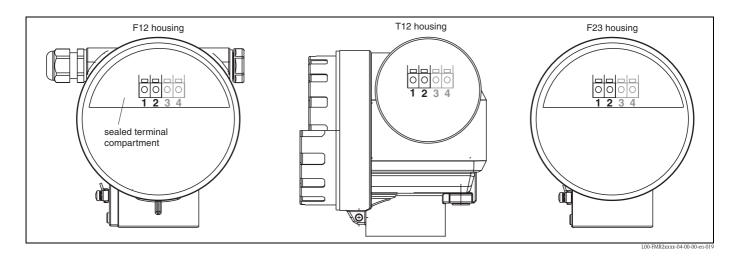

Ex-area:

- Siemens 6XV1 830-5AH10
- Belden 3076F
- Kerpen CEL-PE/OSCR/PVC/FRLA FB-02YS(ST)YFL

Connector

For the versions with a connector, the housing does not have to be opened for connecting the signal line.

PIN assignment for 7/8" connector


4.2 Connecting the measuring unit

4.2.1 Terminal compartment

Three housings are available:

- Aluminum housing F12 with additionally sealed terminal compartment for:
 - standard
 - Ex ia
- Aluminum housing T12 with separate terminal compartment for:
 - standard
 - Ex e
 - Ex d
 - Ex ia (with overvoltage protection)
- Stainless steel 316L (1.4435) housing F23 for:
 - standard
 - Ex ia

After mounting, the housing can be turned 350° in order to ease access to the display and the terminal compartment.

The device data are given on the nameplate together with important information regarding the analog output and power supply.

Housing orientation regarding the wiring see "Turning the housing", $\rightarrow \stackrel{\triangle}{=} 20$.

4.2.2 Ground connection

It is necessary to make a good ground connection to the ground terminal on the outside of the housing, in order to achieve EMC security.

4.2.3 Cable gland

Ту	ре	Clamping area
Standard, Ex ia, IS	Plastic M20x1.5	5 to 10 mm
Ex em, Ex nA	Metal M20x1.5	7 to 10.5 mm

4.2.4 Terminals

For wire cross-sections of 0.5 to 2.5 mm²

4.2.5 Cable entry

- Cable gland: M20x1.5 (only cable entry for Ex d)
- Cable entry: G½ or ½NPT
- FOUNDATION Fieldbus 7/8" plug

4.2.6 Supply voltage

The following values are the voltages across the terminals directly at the device:

Туре	Terminal voltage
standard	9 V to 32 V
Ex ia (FISCO model)	9 V to 17.5 V
Ex ia (Entity concept)	9 V to 24 V

Supply voltage	9 V to 32 V ¹⁾
Lift-off voltage	9 V

There may be additional restrictions for devices with an explosion protection certificate. Refer to the notes in the appropriate safety instructions (XA).

4.2.7 Current consumption

Nominal current	15 mA
Starting current	≤ 15 mA
Error current	0 mA
FISCO/FNICO conformal	Compliant
Polarity sensitive	No

4.2.8 Overvoltage protection

If the measuring device is used for the level measurement in flammable liquids which requires the use of an overvoltage protection according to EN/IEC 60079-14 or EN/IEC 60060-1 (10 kA, Puls $8/20~\mu s$) it has to be ensured that

- the measuring device with integrated overvoltage protection with gas discharge tubes within the T12-enclosure is used, refer to "Ordering structure", $\rightarrow \stackrel{\triangle}{=} 6$
- this protection is achieved by the use of other appropriate measures (external protection devices e.g. HAW562Z).

4.3 Recommended connection

For maximum EMC protection please observe the following points:

- The external ground terminal on the transmitter must be connected to ground.
- The continuity of the cable screening between tapping points must be ensured.
- If potential equalisation is present between the individual grounding points, ground the screening at each cable end or connect it to the device housing (as short as possible).
- If there are large differences in potential between grounding points, the grounding should run via a capacitor that is suitable for high frequency use (e.g. ceramic 10 nF/250 V~).

Caution!

Applications, which are subject to the explosion prevention, permit only under special conditions the repeated grounding of the protective screen , see to EN 60079-14.

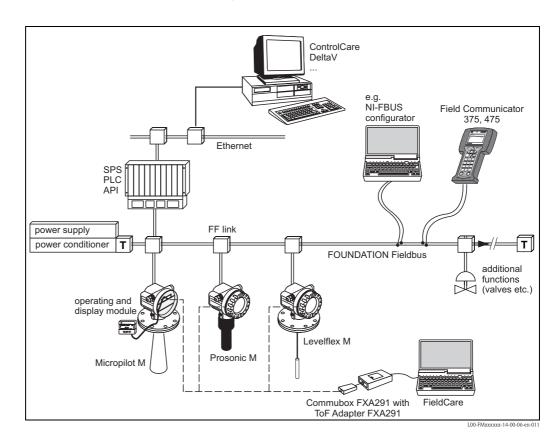
4.4 Degree of protection

- with closed housing tested according to:
 - all housings:
 - IP68, NEMA6P (24 h at 1,83 m under water)
 - IP66, NEMA4X
 - F23 housing: additionally IP69K in connection with M20, G½ and NPT½ cable entries
- with open housing: IP20, NEMA1 also ingress protection of the display)

4.5 Post-connection check

After wiring the measuring device, perform the following checks:

- Is the terminal assignment correct ($\rightarrow \stackrel{\triangle}{=} 24, 25$)?
- Is the cable gland tight?
- Is the FOUNDATION Fieldbus connector screwed tight?
- Is the housing cover screwed tight?
- If power is supplied:


Is the device ready for operation and is the LCD display lit?

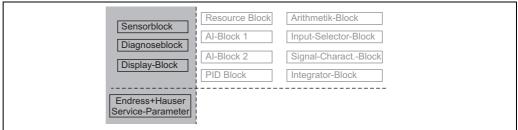
5 Operation

This chapter gives an overview of the different operating options for the device. The different methods of parameter access are described and the preconditions for each method are stated. The meaning of the parameters is not described in this chapter. Instead, refer to:

- ■Chapter 6: "Commissioning"
- ■Operating Instructions BA00245F/00/EN "Description of Instrument Functions"

5.1 Quick operation guide

5.1.1 On-site operation


Options for on-site operation

- ■Display and operating module VU331
- ■Endress+Hauser operating software "FieldCare"

Parameter access by on-site operation

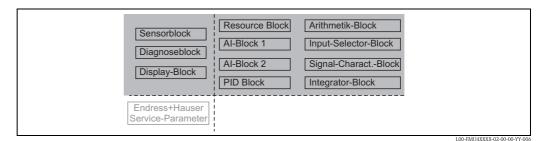
The following parameters can be accessed by on-site operation:

- Parameters of the device specific blocks (Sensor Block, Diagnostic Block, Display Block)
- Endress+Hauser service parameters
- in the Resource Block: "device tag", "device id", "dev. rev.", "dd rev." (read only)

The highlighted parameters can be edited by on-site operation.

100 EMITAYYYY 02 00 00 VV 00

5.1.2 Remote operation

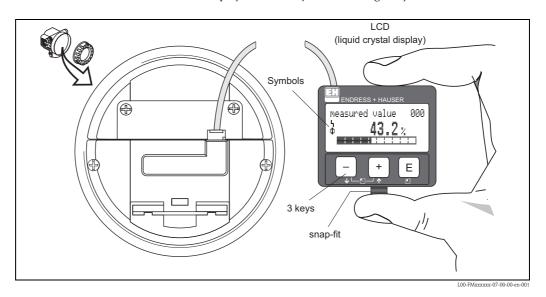

Options for remote operation

- ■FOUNDATION Fieldbus configuration tool (e.g. DeltaV or ControlCare)
- Handheld terminal Field Communicator 375, 475

Parameter access by remote operation

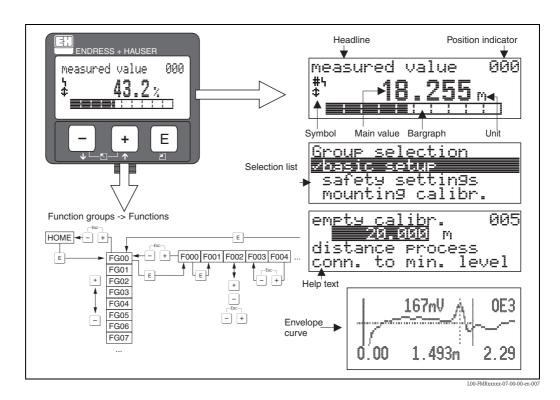
The following parameters can be accessed by remote operation:

- Parameters of the device specific blocks (Sensor Block, Diagnostic Block, Display Block)
- ■Parameters of the FOUNDATION Fieldbus function blocks



The highlighted parameters can be edited by remote operation.

5.2 Operation with the display and operating module VU331


5.2.1 Liquid crystal display (LCD)

Four lines with 20 characters each. Display contrast adjustable through key combination.

The VU331 LCD display can be removed to ease operation by simply pressing the snap-fit (see graphic above). It is connected to the device by means of a 500 mm cable.

5.2.2 Display appearance

5.2.3 Display symbols

The following table describes the symbols that appear on the liquid crystal display:

Sybmol	Meaning
4	ALARM_SYMBOL This alarm symbol appears when the device is in an alarm state. If the symbol flashes, this indicates a warning.
<u>"</u>	LOCK_SYMBOL This lock symbol appears when the device is locked, i.e. if no input is possible.
\$	COM_SYMBOL This communication symbol appears when a data transmission via e.g. HART, PROFIBUS PA or FOUNDATION Fieldbus is in progress.
*	SIMULATION_SWITCH_ENABLE This communication symbol appears when simulation in FOUNDATION Fieldbus is enabled via the DIP switch.

5.2.4 Key assignment

The operating elements are located inside the housing and are accessible for operation by opening the lid of the housing.

Function of the keys

Key(s)	Meaning
+ or †	Navigate upwards in the selection list. Edit numeric value within a function.
or ↓	Navigate downwards in the selection list. Edit numeric value within a function.
- + or	Navigate to the left within a function group.
E	Navigate to the right within a function group, confirmation.
+ and E or and E	Contrast settings of the LCD.
+ and - and E	Hardware lock / unlock After a hardware lock, an operation of the device via display or communication is not possible! The hardware can only be unlocked via the display. An unlock parameter must be entered to do so.

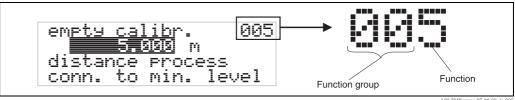
5.2.5 The operating menu

General structure of the operating menu

The operating menu is made up of two levels:

- Function groups (00, 01, 03, ..., 0C, 0D):

 The individual operating options of the device are split up roughly into different function groups.


 The function groups that are available include: "basic setup", "safety settings.", "output", "display", etc.
- Functions (001, 002, 003, ..., 0D8, 0D9):
 Each function group consists of one or more functions. The actual operation or configuration of the device takes place in the functions. Numerical values can be entered here and parameters can be selected and saved. The available functions of the "basic setup"(00) function group include: "tank properties"(002), "medium property"(003), "process propert."(004), "empty calibr."(005), etc.

If, for example, the application of the device is to be changed, carry out the following:

- 1. Select the **"basic setup"(00)** function group.
- 2. Select the **"tank properties" (002)** function (where the existing tank shape is selected).

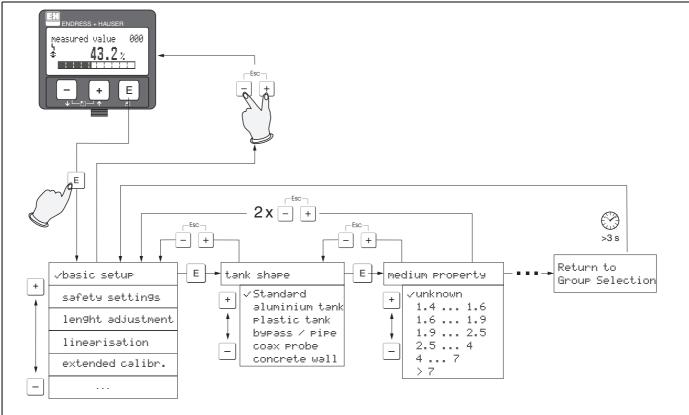
Identifying the functions

For simple orientation within the function menus, for each function a position is shown on the display.

L00-FMRxxxxx-07-00-00-de-005

The first two digits identify the function group:

■basic setup 00■safety settings 01■linearisation 04


. . .

The third digit numbers the individual functions within the function group:

■basic setup
 00 → ■tank properties
 002
 ■medium property
 003
 ■process cond.
 004

Hereafter the position is always given in brackets (e.g. "tank properties" (002)) after the described function.

Navigation within the menu

Selection and configuration in Operation menu:

- 1.) Change from Measured Value Display to Group Selection by pressing
- 2.) Press \Box or \Box to select the required **Function Group** (e.g.. "basic setup (00)") and confirm by pressing
 - □ → First function (e.g. "tank shape (002)") is selected.

Note!

The active selection is marked by a ✔ in front of the menu text.

3.) Activate Edit mode with \pm or \equiv .

Selection menus:

- a) Select the required **Parameter** in selected **function** (e.g. "tank shape (002)") with \Box or $\dot{\Box}$.
- b) € confirms selection → ✓ appears in front of the selected parameter
- c)
 ☐ confirms the edited value → system quits Edit mode
- d) ± / = (= = ±) interrupts selection → system quits Edit mode

Typing in numerals and text:

- a) Press $\stackrel{+}{\Box}$ or $\stackrel{-}{\Box}$ to edit the first character of the **numeral / text** (e.g. "empty calibr. (005)")
- b) positions the cursor at the next character → continue with (a) until you have completed your input
- c) if a

 symbol appears at the cursor, press

 to accept the value entered

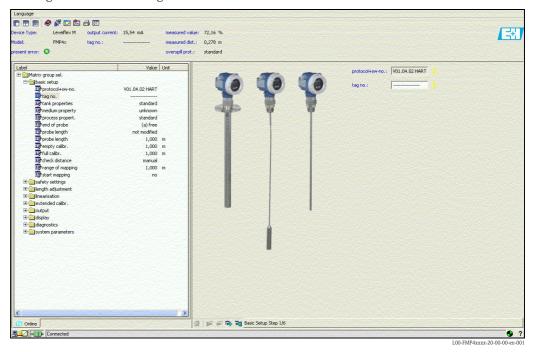
 system quits Edit mode
- d) + / (= i) interrupts the input, system guits Edit mode
- 4) Press E to select the next **function** (e.g. "medium property (003)")
- 5) Press ± / = (= = → nonce → return to previous function (e.g. "tank shape (002)")
 - Press + / (= twice → return to Group selection
- 6) Press + / (= 5) to return to Measured value display

I.00-FMII4xxxx-19-00-00-en-0

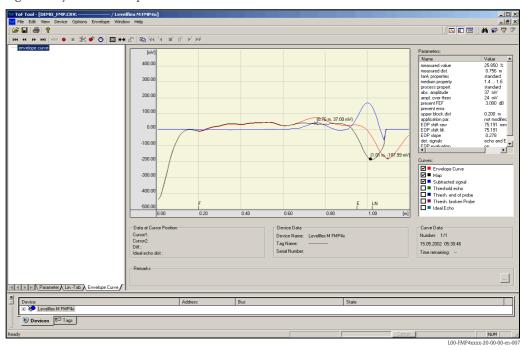
5.3 Operation with an Endress+Hauser operating program

The operating program FieldCare is an Endress+Hauser Plant Asset Management Tool based on FDT technology. You can use Field-Care to configure all your Endress+Hauser devices, as well as devices from other manufacturers that support the FDT standard. Hardware and software requirements you can find on the internet:

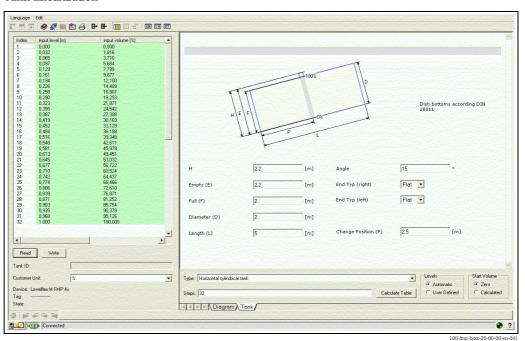
www.endress.com \rightarrow select your country \rightarrow search: FieldCare \rightarrow FieldCare \rightarrow Technical Data.


FieldCare supports the following functions:

- ■Online configuration of transmitters
- ■Signal analysis via envelope curve
- ■Tank linearization
- ■Loading and saving of device data (upload/download)
- ■Documentation of the measuring point


Connection options:

■Commubox FXA291 with ToF Adapter FXA291 via service interface


Menu-guided commissioning

Signal analysis via envelope curve

Tank linearization

5.4 Operation with a FOUNDATION Fieldbus configuration program

5.4.1 FOUNDATION Fieldbus configuration programs

The user can obtain special configuration and operating programs offered by different manufacturers for use in configuration. These can be used for configuring both the FOUNDATION Fieldbus functions and all the device-specific parameters. The predefined function blocks allow uniform access to all the network and fieldbus device data.

5.4.2 Device Description files

File names

You will need the following files for commissioning and network configuration:

■ Device Description files: *.sym, *.ffo

These files describe the structure of the blocks and their parameters. They offer guided setups with the help of menus and methods.

■ Capability file: *.cff

This file enables offline configuration and describes the device capability in terms of communication stack and function blocks.

The file names consist of the following parts:

- Instrument Revision (0C3)¹⁾
- DD Revision (0C4)¹⁾ (use the most current version)
- CFF Revision (use the most current version)

Example:

- Instrument Revision (0C3) = 04
- DD Revision (0C4) = 01
- CFF Revision = 02
- -> files to be used: "0402.sym", "0402.ffo", "040102.cff"

Directory structure

The files are normally stored in the following directory structure:

- ■/452B48/1012/*.sym
 - *.ffo
 - *.cff

The directory names have the following meaning:

- ■452B48: manufacturer ID of Endress+Hauser
- ■1012: ID-Code of Levelflex M

38

^{1) &}quot;Instrument Revision" (0C3) and "DD Revision" (0C4) can be obtained through the display and operating module VU331. For details refer to section 5.2: "Operation with the display and operating module VU331"

Source of supply

Host System	Source of supply for the Device Description and Network Configuration files
ABB (Field Controller 800) Allen Bradley (Control Logix) Endress+Hauser (ControlCare) Honeywell (Experion PKS) Invensys SMAR (System 302)	 www.endress.de (→ Download → Media type = "Software", "Instrument Drivers") CD-ROM (Endress+Hauser order code: 56003896) www.fieldbus.org
Emerson (Delta V)	■ www.easydeltav.com
Yokogawa (CENTUM CS 3000)	■ www.yokogawa.com

5.4.3 Representation of parameters

A FOUNDATION Fieldbus configuration tool offers two types of parameter representation:

■Representation by parameter name

Examples: "PAROPERATIONCODE", "PARRESET"

■Representation by parameter label

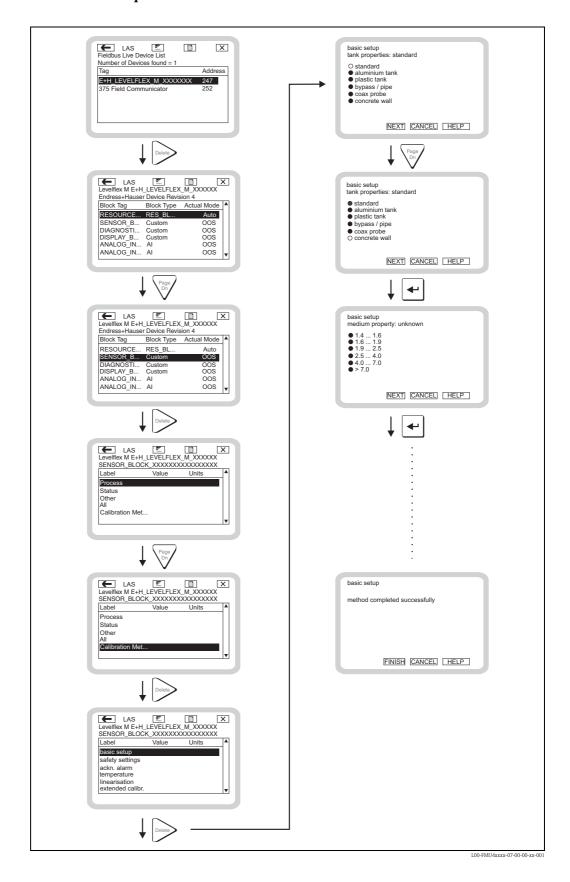
(identical to the labels on the display module VU331 and in an Endress+Hauser operation tool) Examples: "unlock parameter", "reset"

5.5 Operation with the Field Communicator 375, 475

5.5.1 Connection

The handheld terminal is directly connected to the FOUNDATION Fieldbus communication line. An additional communication resistor is not required.

5.5.2 Device Descriptions


Make sure you have loaded the valid Device Description files (DDs). DDs can be downloaded from the internet at "www.fieldcommunicator.com". The DDs can also be updated by the update functionality of the Field Communicator 375, 475.

5.5.3 User interface

The device parameters are arranged in blocks.

The handheld terminal Field Communicator 375, 475 uses this block structure to access the parameters. You can navigate within the structure by the arrow keys and the "Enter" key. Alternatively, you can use the touch-screen functionality of the handheld terminal for navigation. (Double-click on a name opens the respective block or parameter).

5.5.4 Example

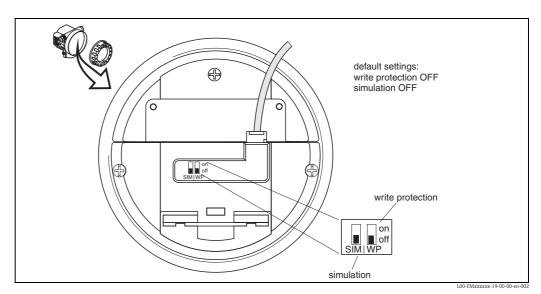
6 Commissioning

This chapter consists of the following sections:

- "Function check", \rightarrow 🖹 41
- "Unlocking the device", \rightarrow 🖹 41
- "Resetting the device", \rightarrow $\stackrel{\triangle}{=}$ 43
- "Basic setup", \rightarrow 🖹 45
- "Commissioning by the display and operating module VU331", \rightarrow \bigsim 47
- "Blocking distance", \rightarrow 🖹 57
- "Envelope curve", \rightarrow 🖹 59
- "Basic setup with the Endress+Hauser operating program", $\rightarrow \triangleq 63$
- "Commissioning with a FOUNDATION Fieldbus configuration tool", $\rightarrow \triangleq 69$
- "Commissioning with the Field Communicator 375, 475", \rightarrow 🖹 73

6.1 Function check

Make sure that all final checks have been completed before you start up your measuring point:


- Checklist "Post installation check", $\rightarrow \stackrel{\triangle}{=} 20$.
- Checklist "Post connection check", \rightarrow 🖹 29.

6.2 Unlocking the device

Before commissioning, make sure that the device is not locked against parameter changes. On delivery, the device is unlocked. In other cases, however, it may have been locked in one of the following ways:

6.2.1 DIP switch (under the housing cover)

Locking and unlocking

WP = on: parametrization locked

WP = off: parametrization unlocked

SIM = on: simulation possible in Analog Input Block by configuration tool

SIM = off: simulation not possible in Analog Input Block by configuration tool

Parameters affected

Locking by the DIP switch affects all parameters.

6.2.2 Key combination (display and operating module VU331)

Locking

Press $\overline{}$, $\overline{}$ and $\overline{}$ simultaneously.

Unlocking

If you try to change a parameter, the following appears:

unlock parameter 0A4 5 Hardware locked

L00-fmrxf0a4-20-00-00-de-00

Press \Box , \pm and \blacksquare simultaneously. The "unlock parameter" (0A4) function appears. Enter "2457". Now parameters can be changed.

Parameters affected

Locking by the key combination affects the following parameters:

- Parameters of the device specific blocks (Sensor Block, Diagnostic Block, Display Block)
- Endress+Hauser service parameters

6.2.3 Locking parameter

Locking

Enter a number other than "2457" into the **"unlock parameter" (0A4)** function. (FOUNDATION Fieldbus: Diagnostic Block, parameter PAROPERATIONMODE)

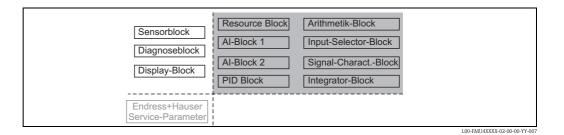
Unlocking

Enter "2457" into the "unlock parameter" (0A4) function. (FOUNDATION Fieldbus: Diagnostic Block, parameter PAROPERATIONMODE)

Parameters affected

Locking by the locking parameter affects the following parameters:

- Parameters of the device specific blocks (Sensor Block, Diagnostic Block, Display Block)
- Endress+Hauser service parameters


6.3 Resetting the device

It is advisable to reset the device parameters before the commissioning if you want to use a device with an unknown history.

6.3.1 Resetting the parameters of the FOUNDATION Fieldbus function blocks

Parameters affected

■ All parameters of the FOUNDATION Fieldbus function blocks

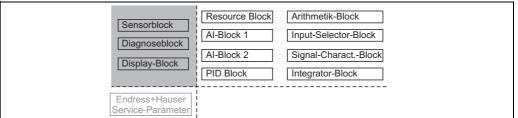
Performing the reset

Resource Block, parameter RESTART; select the option "defaults".

6.3.2 Resetting the parameters of the transducer blocks

Caution!

A reset may lead to impairment of the measurement. As a rule, a basic calibration is required after a reset.



Note!

The default values of each parameter are shown in bold in the menu overview in the appendix.

Parameters affected

■ All parameters of the device specific blocks (Sensor Block, Diagnostic Block, Display Block)

L00-FMU4XXXX-02-00-00-YY-008

Effects of the reset

- All customer parameters are reset to their default values.
- Customer interference echo suppression is **not** deleted.
- Linearisation is switched to "linear", but the table values are kept. The table can be switched back on in the "linearisation" (04) function group in the "linearisation" (041) function. (FOUNDATION Fieldbus: Sensor Block, Parameter PARLINEARISATION (linearisation))

Performing the reset

"diagnostics" (0A) function group, "reset" (0A3) function; enter "33333" (FOUNDATION Fieldbus: Diagnostic Block, parameter PARRESET)

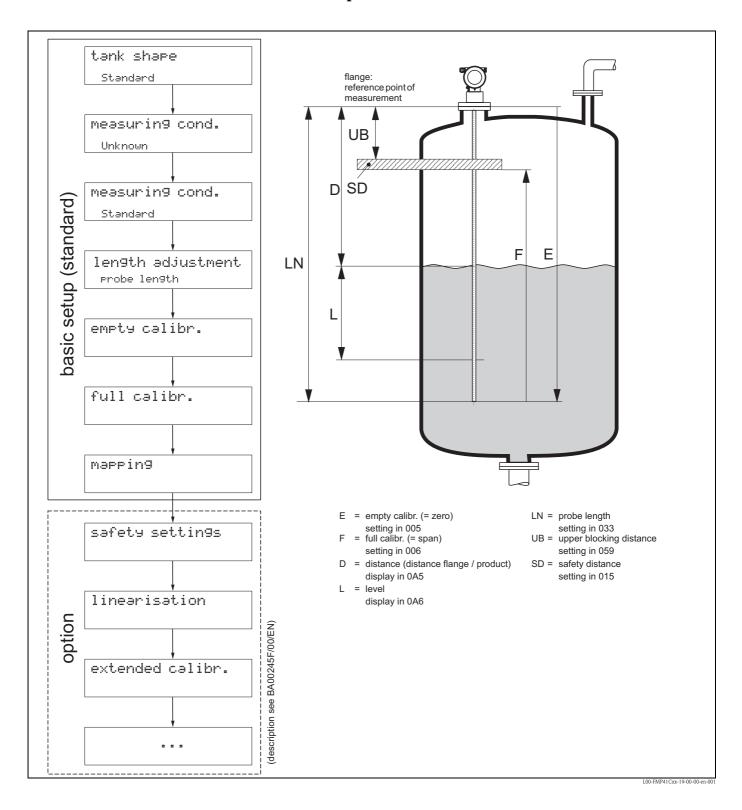
6.3.3 Resetting an interference echo suppression (tank map)

It is always adivable to reset the interference echo suppression (tank mapping) when:

- a device with an unknown history is used
- an incorrect suppression was input

Resetting the tank map with the VU331

- 1. In the "extended calibr." (05) function group select the "selection" (050) function.
- 2. Select "extended map."
- 3. Go to the "cust. tank map" (055) function and select the required option:
 - "reset": deletes the existing tank map.
 - "inactive": deactivates the tank map but does not delete it. It can be re-activated when required.
 - "active": activates the tank map.


Resetting the tank map with an Endress+Hauser operating program

- 1. In the function group **"extended calibr."** select the **"cust. tank map" (055)** function.
- 2. Select the required option (**"reset"**, **"inactive"** or **"active"**)

Resetting the tank map with a FOUNDATION Fieldbus configuration tool

- 1. In the **Sensor Block** select the parameter **PARCUSTTANKMAP** (cust tank map).
- 2. Select the required option ("reset", "inactive" or "active").

6.4 Basic setup

Caution!

The basic setup is sufficient for successful commissioning in most applications.

The Levelflex is precalibrated at the factory to the probe length ordered so that in most cases only the application parameters, which automatically adapt the device to the measuring conditions, need to be entered. For digital outputs and the display module, the factory adjustment for zero point "E" and span "F" is 0% and 100%.

A linearization, can be activated onsite or via remote operation. This function allows the conversion of the level into units of volume or weight, for example.

Note!

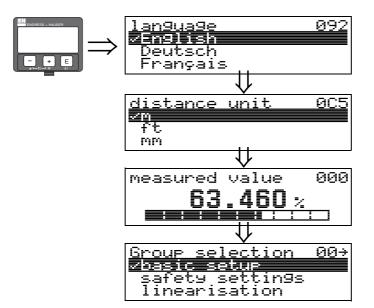
The Levelflex M also makes it possible to monitor the probe for breakage. On delivery, this function is switched since any probe shortening would be mistaken for a broken probe. To activate this function, perform the following.

- 1. With the probe uncovered, perform a mapping ("range of mapping" (052) and "start mapping" (053)).
- 2. Activate the "broken part det." (019) function in the "safety settings" (01) function group.

Complex measuring operations necessitate additional functions that the user can use to customize the Levelflex as necessary to suit his specific requirements. The functions available to do this are described in detail in BA00245F/00/EN.

Comply with the following instructions when configuring the functions in the "basic setup" (00):

- Select the functions as described, $\rightarrow \stackrel{\triangle}{=} 30$.
- Certain functions (e.g. starting interference echo suppression (053)) prompt you to confirm this function after entering the data. Press + or to select "YES" and press to confirm. The function is now started.
- If you do not press a key during a configurable time period (→ function group "display (09)") the system returns automatically to the measured value display position.


Note!

- The device continues to measure while data entry is in progress, i.e. the current measured values are output via the signal outputs in the normal way.
- If the envelope curve mode is active on the display, the measured values are updated in a slower cycle time. Thus, it is advisabel to leave the envelope curve mode after the mesauring point has been optimized.
- If the power supply fails, all preset and configured values remain safely stored in the EEPROM.
- All functions are described in detail, as is the overview of the operating menu itself, in "BA00245F Description of Instrument Functions" on the enclosed CD-ROM.

6.5 Commissioning by the display and operating module VU331

6.5.1 Power up device

When the device is switched on for the first time, the following messages appear in a sequence of 5 s on the display: software version, communication protocoll and language selection

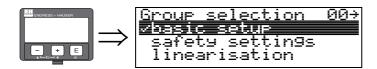
Select the language (this message appears the first time the device is switched on)

Select the basic unit (this message appears the first time the device is switched on)

The current measured value is displayed

After pressing E, you are taken to the group selection

This selection enables you to perform the basic standard


The "basic setup" (00) function group lists all the functions which are required for a standard measurement tast to commission the Levelflex M. When you have complete your input for a function, the next function appears automatically. In this way, you are guided through the complete calibration.

Function "measured value" (000)

This function displays the current measured value in the selected unit (see "customer unit" (042) function). The number of digits after decimal point can be selected in the "no.of decimals" (095) function.

6.5.2 Function group "basic setup" (00)

Function "tank properties" (002)

This function is used to select the tank properties.

Selection:

- standard
- aluminium tank
- plastic tank
- bypass / pipe
- coax probe
- concrete wall

standard

The "standard" option is recommended for normal containers for rod and rope probes.

aluminium tank

The "aluminium tank" option is designed especially for high aluminium silos that cause an increased level of noise when empty. This option is only useful for probes longer than > 4 m. For short probes (< 4 m) select the "standard" option.

Note!

If "aluminium tank" is selected, the device calibrates of its own accord when first filled, depending on the medium's properties. Slope errors can, therefore occur when beginning the first filling procedure.

plastic tank

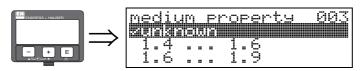
Select the "**plastic tank**" option when installing probes in wood or plastic containers **without** metallic surfaces at the process connection (see installation in plastic containers). When using a metallic surface at the process connection, the "**standard**" optionis sufficient!

Note!

In principle the employment of a metallic surface area should be prefferred at the process connection!

bypass / pipe

The "**bypass / pipe**" option is designed especially for the installation of probes in a bypass or a stilling well. If this option is selected, the upper blocking distance is preset to 100 mm.


coax probe (not relevant for FMP43)

Select the "**coax probe**" option when using a coaxial probe. When this setting is made, the evaluation is adapted to the high sensitivity of the coax probe. This option should, therefore, **not** be selected when using a rope or rod probes.

concrete wall

The "**concrete wall**" option takes into account the signal-damping property of concrete walls when mounting with < 1 m distance to the wall.

Function "medium property" (003)

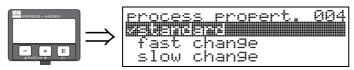
This function is used to select the dielectric constant.

Selection:

- unknown
- 1.4 ... 1.6 (use coaxial or Rod probe ith installation in metallic pipes ≤ DN150)
- **1.6...1.9**
- **1.9...2.5**
- **2.5 ... 4.0**
- **4.0 ... 7.0**
- **■** > 7.0

Media group	DC (Er)	Typical liquids	Measuring range
1	1.4 to 1.6	- condensed gases, e.g. N ₂ , CO ₂	_
2	1.6 to 1.9	 Liquefied gas, e.g. propane Solvent Frigen / Freon Palm oil 	
3	1.9 to 2.5	- Mineral oil, fuels	
4	2.5 to 4	Benzene, styrene, tolueneFuranNaphthalin	4 m
5	47	Chlorobenzene, chloroformCellulose sprayIsocyanat, aniline	
6	> 7	Aqueous solutionsAlkoholsAcids, alkalis	

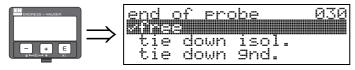
The lower group applies to very loose or loosened bulk solids. Reduction of the max. possible measuring range by means of:


- Extremly loose surfaces of bulk solids, e.g. bulk solids with low piled density when filled pneumatically.
- Build-up, primarily of moist products.

Note!

Due to the high diffusion rate of ammonia it is recommended to use the FMP45 with gas-tight bushing for measurements in this medium.

Function "process propert" (004)

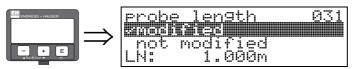

Use this function to adapt the device to the filling speed in the tank. The setting impacts on an intelligent filter.

Selection:

- standard
- fast change
- slow change
- test: no filter

Selection:	standard	fast change	slow change	test: no filter
Application:	For all normal applications, bulk solids and fluids at low to medium filling speed and sufficiently large tanks.	Small tanks, primarily with fluids, at high filling speeds.	Applications with strong surface movement, e.g. coused by stirrer, primarily large tanks with slow to medium filling speed.	Shortest reaction time: For test purposes Measurement in small tanks at high filling speeds, if "rapid change" setting is too slow.
2-wire Dead time: 4 s electronics: Rise time: 18 s		Dead time: 2 s	Dead time: 6 s	Dead time: 1 s
		Rise time: 5 s	Rise time: 40 s	Rise time: 0 s
4-wire electronics:	Dead time: 2 s	Dead time: 1 s	Dead time: 3 s	Dead time: 0,7 s
	Rise time: 11 s	Rise time: 3 s	Rise time: 25 s	Rise time: 0 s

Function "end of probe" (030)


Use this function to selcet the polarity of the probe end signal. If the probe end is uncovered or in an insulated attachment, there is an egative probe end signal. The signal from the probe end is positive if the attachment is grounded and a metallic centering of probe end is used.

Selection:

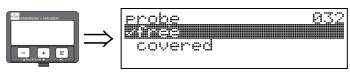
- free
- tie down isol.
- tie down gnd.

50

Function "probe length" (031)

Use this function to select whether the probe length was changed after factory calibration. Only then is it necessary to enter or correct the probe length.

Selection:


- not modified
- modified

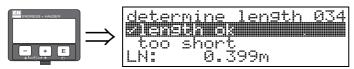
Note!

If "modified" was selected in the "**probe length**" **(031)** function, the probe length is defined in the next step.

Function "probe" (032)

Use this function to select whether the probe is at the time of the commissioning uncovered or convered. If the probe is uncovered, the Levelflex can determine the probe length automatically by the "determine length" (034) function. If the probe is covered, a correct entry is required in the "probe length" (033) function.

Selection:

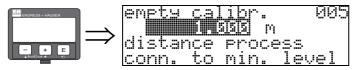

- free
- covered

Function "probe length" (033)

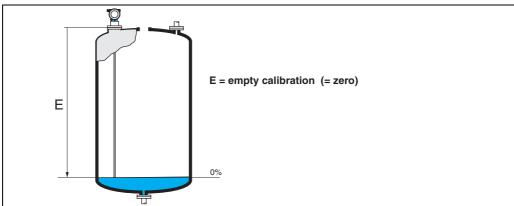
Use this function, the probe length can be entered manually.

Function "determine length" (034)

Use this function, the probe length can be determined automatically.

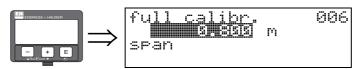

Due to the mounting conditions, the automatically determined probe length may be larger than the actual probe (typically 20 to 30 mm longer). This has no influence on the measuring accuracy. When entering the empty value for a linearisation, please use the "empty calibration" instead of the automatically determined probe length.

Selection:

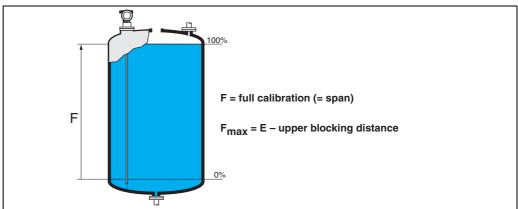

- length ok
- length short
- length long

After selection "length too short" or "length too long", the calculation of the new value need aprox. 10 s.

Function "empty calibr." (005)



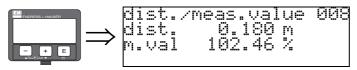
This function is used to enter the distance from the flange (reference point of the measurement) to the minimum level (= zero).



I 00-FMP4yyyy-14-00-06-en-008

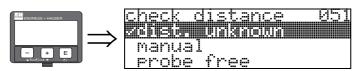
Function "full calibr." (006)

This function is used to enter the distance from the minimum level to the maximum level (= span).


I.00-FMP4xxxx-14-00-06-en-00

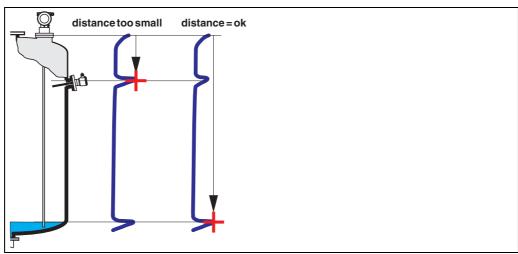
Note!

The usable measuring range lies between the upper blocking distance and the probe end. The value for empty distance "E" and span "F" can be set independently of this.


Function "dist./meas.value" (008)

The **distance** measured from the reference point to the product surface and the **meas. value** calculated with the aid of empty calibration are displayed. Check whether the values correspond to the actual measured value or the actual distance. The following cases can occur:

- Distance correct meas. value correct → continue with the next function "check distance" (051)
- Distance correct meas. value incorrect → Check "empty calibr." (005)
- Distance incorrect meas. value incorrect → continue with the next function
 "check distance" (051)


Function "check distance" (051)

This function triggers the mapping of interference echoes. To do so, the measured distance must be compared with the actual distance to the product surface. The following options are available:

Options:

- Distance = ok
- Dist. too small
- Dist. too big
- Dist. unknown
- Manual
- Probe free

L00-FMP4xxxx-14-00-06-en-010

Distance = ok

Use this function for partially covered probes. Choose "manual" or "probe free" if the probe is free.

- Mapping is carried out up to the currently measured echo
- The range to be suppressed is suggested in the "range of mapping" (052) function

It is wise to carry out a mapping even in this instance.

Note!

If the probe is free, the mapping should be confirmed with "probe free".

Dist. too small

- At the moment, an interference echo is being evaluated
- Therefore, a mapping is carried out including the echoes currently measured
- \blacksquare The range to be suppressed is suggested in the "range of mapping" (052) function

Dist. too big

- This error cannot be remedied by interference echo suppression
- Check application parameters (002), (003), (004) and "empty calibr." (005)

Dist. unknown

If the actual distance is not known, no mapping can be carried out.

54

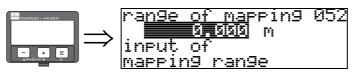
Manual

Mapping is also possible by manually entering the range to be suppressed. This entry is made in the "range of mapping" (052) function.

الم Caution!

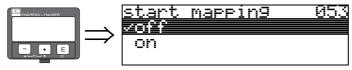
The range of mapping must end 0.3 m (20") before the echo of the actual level.

Probe free


If the probe is uncovered, mapping is carried out along the whole probe length.

(4)

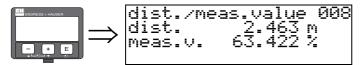
Caution!


Only begin mapping in this function if the probe is definitely uncovered. Otherwise, the device will not measure correctly!

Function "range of mapping" (052)

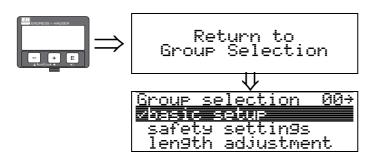
This function displays the suggested range of mapping. The reference point is always the reference point of the measurement ($\rightarrow \stackrel{\cong}{=} 45$). This value can be edited by the operator. For manual mapping, the default value is 0.3 m.

Function "start mapping" (053)



This function is used to start the interference echo suppression up to the distance entered in "range of mapping" (052).

Options:


- Off: no mapping is carried out
- On: mapping is started

Function "dist./meas.value" (008)

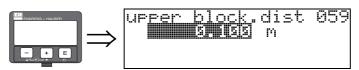
The distance measured from the reference point to the product surface and the measured value calculated with the aid of the empty calibration are displayed again. Check whether the values correspond to the actual meas. value or the actual distance. The following cases can occur:

- Distance correct meas. value correct \rightarrow basic setup completed
- Distance incorrect meas. value incorrect → another interference echo suppression must be carried out "check distance" (051)
- Distance correct meas. value incorrect → check "empty calibr" (005)

After 3 s, the following message appears

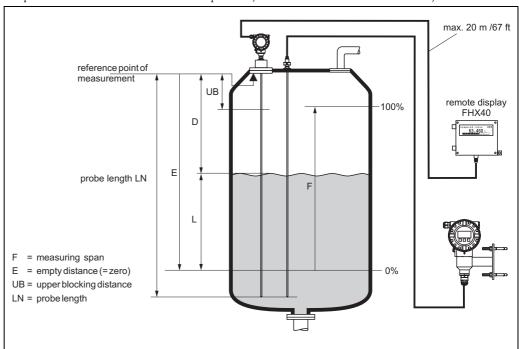
Notel

After the basic setup, it is recommended to evaluate the measurement with the aid of the envelope curve ("envelope curve" (0E) function group, $\rightarrow \stackrel{\triangle}{=} 59$).


Return to group selection

After the interference echo suppression the basic setting is finished and the device jumps automatically back into the group selection.

56


6.6 Blocking distance

Function "upper block. dist" (059)

For rod probes and for rope probes with lengths of up to 8 m, the upper blocking distance is set to 0.2 m at the factory.

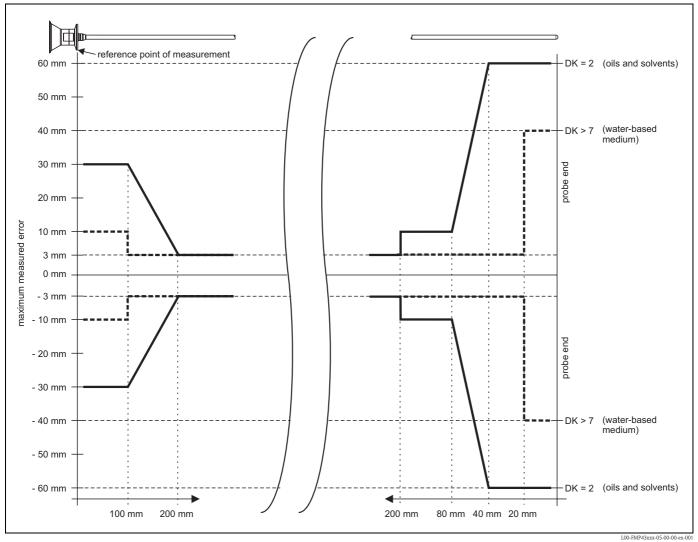
The upper blocking distance (= UB) is the minimum distance from the reference point of the measurement (lower edge of the process connection) to the maximum level. At the lowest part of the probe an exact measurement is not possible, see "Performance characteristics", $\rightarrow \blacksquare 89$.

Reference point of measurement, details $\rightarrow 12$

L00-FMP43xxx-17-00-00-en-001

The blocking distance can be reduced if the probe is mounted flush with the wall or in a nozzle, max. 50 mm in height.

When using a spray ball the blocking distance may not be smaller than 50 mm.


Maximum measured error

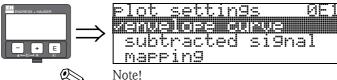
Typical values under reference operating conditions: DIN EN 61298-2, percentage values with reference to the span.

Output:	Digital
Sum of non-linearity, non-repeatability and hysteresis	±3 mm
Offset / zero point	±4 mm

If the reference conditions are not met, the offset/zero point resulting from the installation setup may be up to ± 12 mm. This additional offset/zero point can be compensated for by entering a correction (function "offset" (057)) during commissioning.

Differing from this, the following measuring error is present in the vicinity of the upper and lower probe end:

58


6.7 Envelope curve

After the basic setup, an evaluation of the measurement with the aid of the envelope curve ("envelope curve" (0E) function group) is recommended.

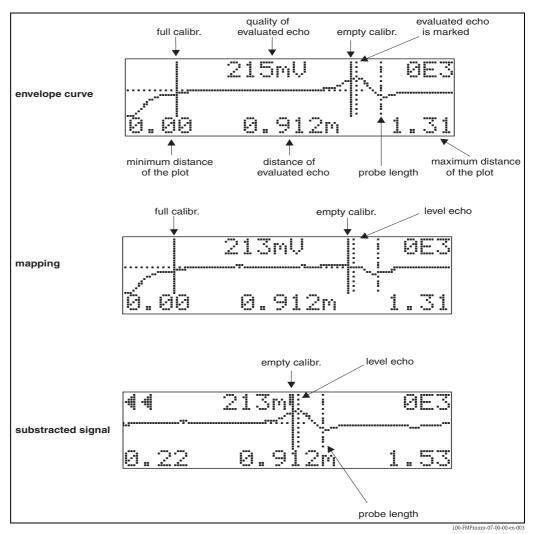
6.7.1 Function "plot settings" (0E1)

In this function, select whether you want to display

- just the envelope curve
- The envelope curve and the echo evaluation line FAC
- The envelope curve and interference echo suppression (map)

The interference echo suppression (map) are explained in BA00245F "Description of Instrument Functions"

6.7.2 Function "recording curve" (0E2)


In this function, specify whether you want to display

- an individual envelope curve
- The current envelope curve, with cyclical refreshment.

If the envelope curve mode is active on the display, the measured values are updated in a slower cycle time. Thus, it is advisable to leave the envelope curve mode after the measuring point has been optimized.

6.7.3 Function "envelope curve display" (0E3)

Check that the following conditions are fulfilled:

- The echo quality at the end of measuring range should be at least 10dB.
- There should be practically no interference echoes in front of the level signal.

Note!

If the cyclical envelope curve display is still active on the display, the measured value is updated at a slower cycle time. We therefore advise you to exit the envelope curve display after optimising the measuring point. To do this, press [E]. (The device does not leave the envelope curve display automatically.)

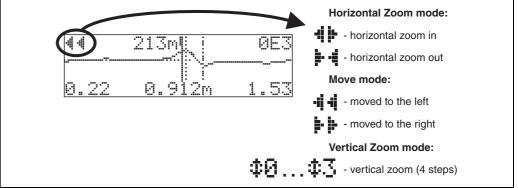
6.7.4 Envelope curve

The Levelflex emits individual pulses in quick succession and scans their reflection with a slightly variable delay. The energy values received are ordered by their time-of-flight. The graphic representation of this sequence is known as an "envelope curve".

6.7.5 Mapping (empty curve) and difference curve

To suppress interference signals, the envelope curve is not directly evaluated in the Levelflex. The mapping (empty curve) is first subtracted from the envelope curve. The system looks for level echoes in the resulting difference curve. Difference curve = envelope curve - mapping (empty curve) The mapping (empty curve) should be a good representation of the probe and the empty tank or silo. Ideally, only the signals from the medium being measured remain in the difference curve.

6.7.6 Mapping

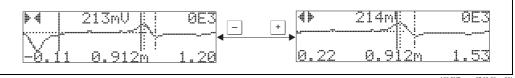

- Factory mapping Mapping (empty curve) is already available in the device when the device is delivered.
- Customer mapping
 In a partially filled state, the distance up to 10 cm before the actual total level can be mapped
 (range of mapping = actual distance from total level 10 cm), or values > LN can be mapped in the case of empty tanks.
- Dynamic mapping It is not static like factory and customer-specific interference echo suppression. Instead, it follows directly from static mapping and constantly adapts to the changing features of the probe environment during ongoing operation. Thus, dynamic mapping does not have to be recorded explicitly.

6.7.7 Echo threshold

Maximum points in the difference curve are only accepted as reflection signals if they are above a specified threshold. This threshold depends on the location and is automatically calculated from the ideal echo curve of the probe used. The calculation of the threshold in question depends on the "Installation" customer parameter in the extended calibration function.

6.7.8 Navigation in the envelope curve display

Using navigation, the envelope curve can be scaled horizontally and vertically and shifted to the left or the right. The active navigation mode is indicated by a symbol in the top left hand corner of the display.

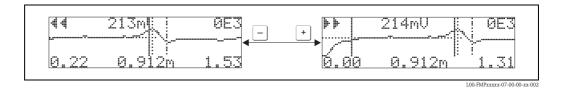


L00-FMPxxxxx-07-00-00-en-004

Horizontal Zoom mode

Firstly, go into the envelope curve display. Then press + or - to switch to the envelope curve navigation. You are then in Horizontal Zoom mode. Either + or + is displayed.

- + increases the horizontal scale.
- ¬ reduces the horizontal scale.

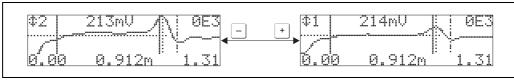

Endress+Hauser 61

L00-FMPxxxxx-07-00-00-xx-0

Move mode

Then press
☐ to switch to Move mode. Either ☐ or ☐ is displayed.

- + shifts the curve to the right.
- _ shifts the curve to the left.



Vertical Zoom mode

Press once more to switch to Vertical Zoom mode. ‡1 is displayed. You now have the following

- + increases the vertical scale.
- — reduces the vertical scale.

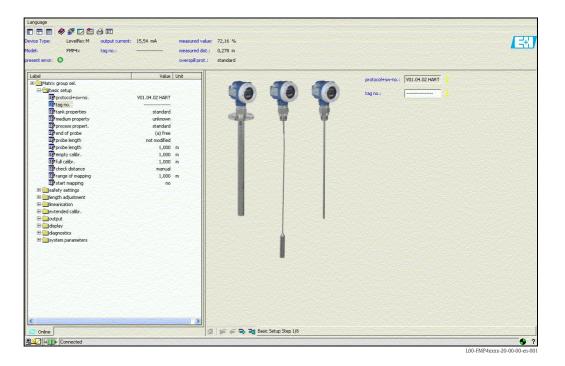
The display icon shows the current zoom factor ($\ddagger 5$ to $\ddagger 5$).

Exiting the navigation

- Press 🗉 again to run through the different modes of the envelope curve navigation.
- Press + and to exit the navigation. The set increases and shifts are retained. Only when you reactivate the "recording curve" (0E2) function the display settings return to their standard values.

62

6.8 Basic setup with the Endress+Hauser operating program

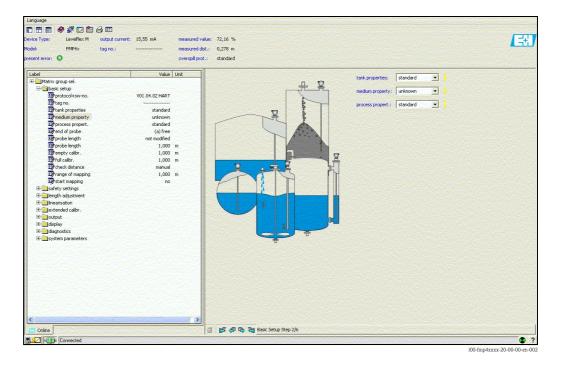

To carry out the basic setup with the operating program, proceed as follows:

- Start the operating program and establish a connection.
- Select the "basic setup" function group in the navigation window.

The following display appears on the screen:

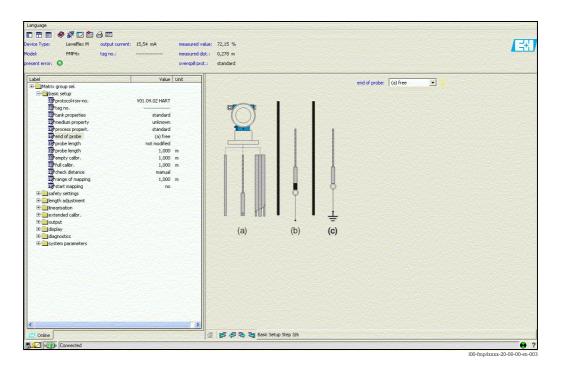
Basic setup step 1/6:

- Status image
- The TAG number can be entered.

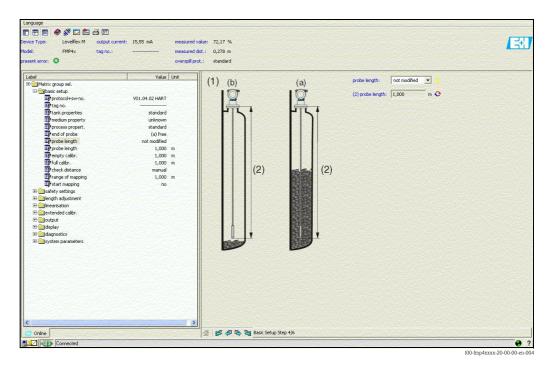


Note!

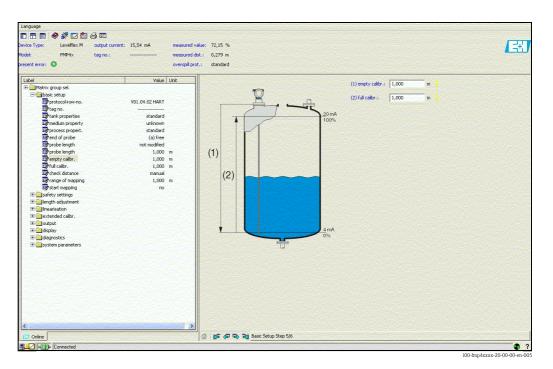
- Each parameter that is changed must be confirmed with the **RETURN** key!
- The "Next" button takes you to the next screen:


Basic setup step 2/6:

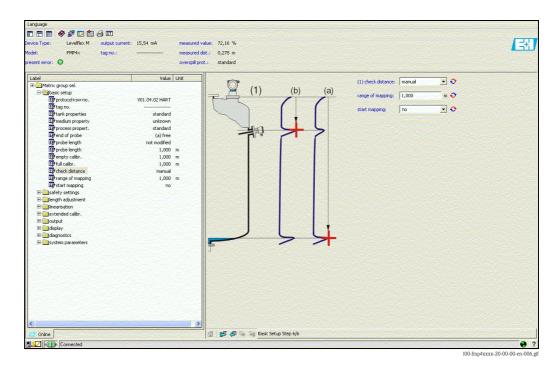
- Enter the application parameters (see chapter basic setup with "VU331"):
 - Tank properties
 - Medium properties
 - Process properties


Basic setup step 3/6:

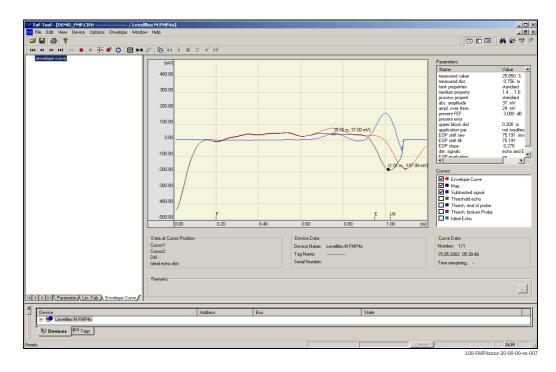
- Enter the application parameters (see chapter basic setup with "VU331"):
 - End of probe


Basic setup step 4/6:

- Enter the application parameters (see chapter basic setup with "VU331"):
 - Probe length
 - Probe
 - Probe length
 - Determine length


Basic setup step 5/6:

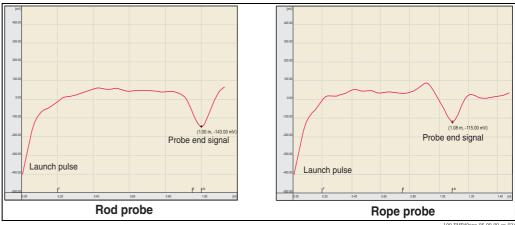
- Enter the application parameters (see chapter basic setup with "VU331"):
 - Empty calibration
 - Full calibration


Basic setup step 6/6:

- Interference echo suppression takes place in this step
- The measured distance and the current measured value are always displayed in the header

6.8.1 Signal analysis via envelope curve

After the basic setup, it is recommended to evaluate the measurement with the aid of the envelope curve.

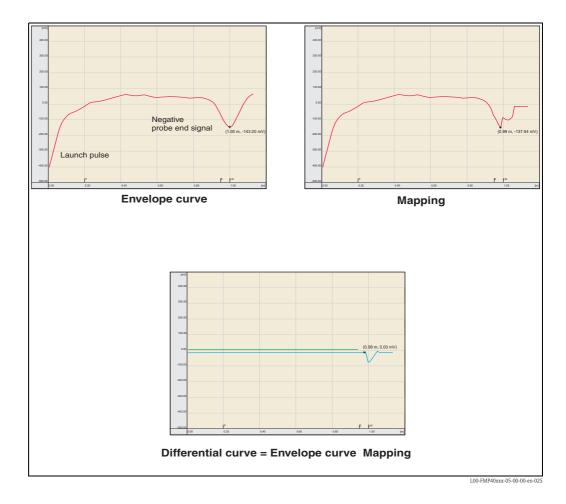

Note!

In the event of severe interference echoes, installing the Levelflex at another point can optimize the measurement routine.

Evaluating the measurement with the aid of the envelope curve

Typical curve shapes:

The following examples display typical curve shapes for a rope or rod probe in an empty tank. For all probe types, a negative probe end signal is shown. For rope probes, the end weight causes an additional preliminary positive echo (see rope probe diagram).



L00-FMP40xxx-05-00-00-en-024

Level echoes are indicated as positive signals in the envelope curve. Interference echoes can be both positive (e.g. reflections from internals) and negative (e.g. nozzles). The envelope curve, the map and the differential curve are used for the evaluation. Level echoes are searched for in the differential curve.

Evaluating the measurement:

- The map must correspond to the course of the envelope curve (for rod probes up to approx. 5 cm and for rope probes up to approx. 25 cm before the end of the probe) when the tank is empty.
- Amplitudes in the differential curve should be at a level of 0 mV when the tank is empty and lie within the span that is specified by the probe-specific blocking distances. In order to not detect any interference echoes, there must be no signals that exceed the echo threshold when the tank is empty.
- For partially-filled tanks, the map may only differ from the envelope curve at the position of the level echo. The level signal is then detected unequivocally as a positive signal in the differential curve. For detecting the level echo, the amplitude must lie above the echo threshold.

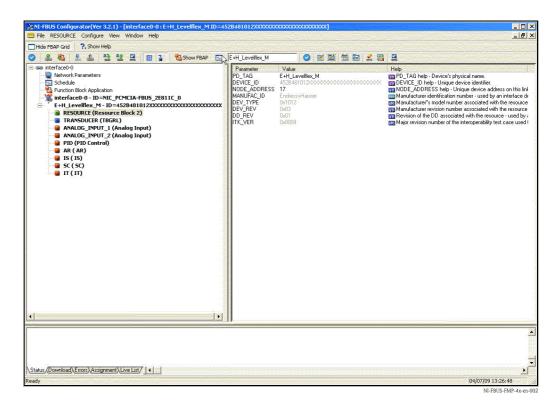
6.8.2 User-specific applications (operation)

For details of setting the parameters of user-specific applications, see separate documentation BA00245F/00/EN "Description of Instrument Functions" on the enclosed CD-ROM.

6.9 Commissioning with a FOUNDATION Fieldbus configuration tool

Note!

For commissioning of the device with a FOUNDATION Fieldbus configuration tool you need to know the INSTRUMENT_ID, which consists of the following parts:


 $Instrument_ID = 452B481012-XXXXXXXX$

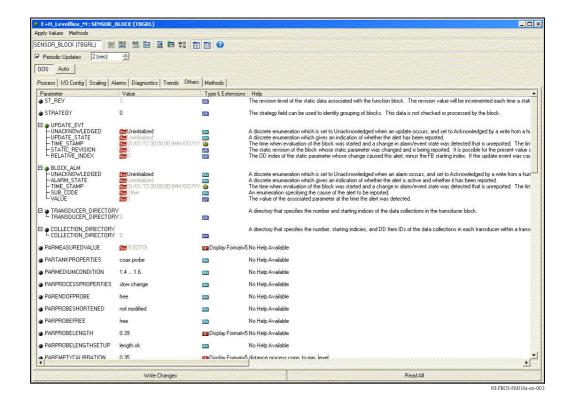
whereby:

452B48	452B48 ID code for Endress+Hauser	
1012	ID code for Levelflex M	
XXXXXXX	Instrument serial number, as printed on the nameplate	

6.9.1 Fist setup

- 1. Open the configuration tool and load the device Descriptions (*.ffo, *.sym and if required by the tool *.cff). Ensure you use the correct files ($\rightarrow \stackrel{\triangle}{=} 38$).
- 2. The first time it is connected, the device reports as follows:

 Identify the device using the INSTRUMENT_ID and assign the desired field device tag name (PD_TAG).

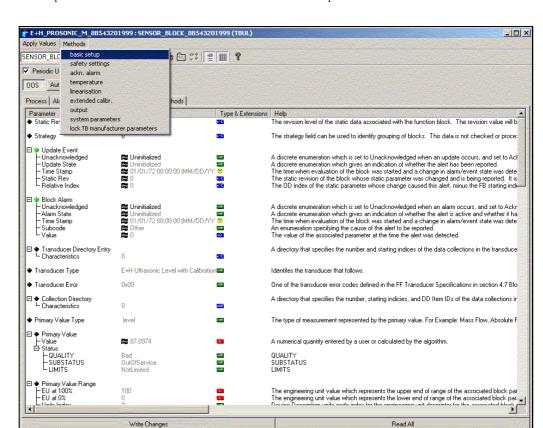

Factory setting: PD_TAG = E+H_LEVELFLEX_M_XXXXXXXX

6.9.2 Parametrization of the Resource Block (Start Index: 400)

- Enter the desired block name (optional). Factory setting: RESOURCE_XXXXXXXX
- 2. Opern the Resource Block
- 3. On delivery, write protection is disabled so that you can access the write parameters via FOUNDATION Fieldbus. Check this status by the parameter WRITE_LOCK:
 - Write protectin activated: WRITE_LOCK = LOCKED
 - Write protection deactivated: WRITE_LOCK = NOT LOCKED Deactivate the write protection if necessary, $\rightarrow \stackrel{\triangle}{=} 41$.
- 4. Set the operating mode to AUTO in the parameter group MODE_BLK (parameter TARGET).

6.9.3 Parametrization of the Sensor Block (Start Index: 2000)

- 1. Enter the desired block name (optional) Factory setting: SENSOR_XXXXXXX
- 2. Open the Sensor Block. The following display appears:



Note!

There are two possibilities to edit the parameters of the block:

- A parameter from the list can be opened for editing by a double click.
- You can open one of the FOUNDATION Fieldbus methods. Each method guides you automatically through a number of parameters which are required for a specific configuration task. The following sections describe the parametrization by the "basic setup" method.

3. Open the FOUNDATION Fieldbus method "basic setup":

NI-FBUS-FMU4x-en-003

- 4. The method contains the following parameters²:
 - a. Application parameters ($\rightarrow = 48$)
 - PARTANKPROPERTIES (tank properties)
 - PARMEDIUMCONDITION (medium property)
 - PARPROCESSPROPERTIES (process condition)
 - b. Empty and full calibration ($\rightarrow \stackrel{\triangle}{=} 52$)
 - PAREMPTYCALIBRATION (empty calibration)
 - PARFULICALIBRATION (full calibration)
 - c. Interference echo suppression ($\rightarrow \stackrel{\triangle}{=} 54$)
 - PARCHECKDISTANCE (check distance)
 - PARSUPPRESSIONDISTANCE (range of mapping)
 - PARSTARTMAPPINGRECORD (start maping)
 - PARPRESMAPRANGE (pres. map. dist.)
 - PARCUSTTANKMAP (cust. tank map)
- 5. Set the operating mode to AUTO in the parameter group MODE_BLK (parameter TARGET). Otherwise the measured value can not be processed correctly by the connected Analog Input Block.
- 6. If measuring errors occur or if the measuring value seems unreliable, it is advisable to check the quality of the measurement by the envelope curve display. This can be done in two different ways:
 - by the display and operating module VU331 ($\rightarrow \stackrel{\triangle}{=} 32$)
 - by an Endress+Hauser operating program (→ $\stackrel{\triangle}{=}$ 36)

²⁾ In the FOUNDATION Fieldbus configuration tool you can select from two types of parameter display:

⁻ parameter names (e.g. "PARTANKSHAPE")

⁻ label texts (e.g. "tank shape")

6.9.4 Parametrization of the Analog Input Blocks

Levelflex M has two Analog Input Blocks that can be assigned to the various process variables. The following descripiton provides an example for the Analog Input Block 1 (Start Index 500).

- Enter the desired block name (optional). Factory setting: ANALOG INPUT 1 XXXXXXXX
- 2. Open the Analog Input Block.
- Set the operating mode to OOS (Out of Service) in the parameter group MODE_BLK (parameter TARGET).
- 4. Using the parameter CHANNEL select the process variable that is to be used as the input value for the function block algorithm (scaling and limit value monitoring). The following settings are possible:
 - CHANNEL = 1: level
 - CHANNEL = 2: distance
- 5. In the parameter gorup XD_SCALE select the desired engineering unit and the block input range (measuring range) for the process variable in question (see the example below).
 - Caution!

Make sure that the selected unit is suitable for the measurement variable of the selected process variable. Otherwies the parameter BLOCK_ERROR will display the error message "Block Configuration Error" and the block operating mode cannot be set to AUTO.

6. In the L TYPE prameter, select the mode of linearization for the input variable (Direct, Indirect, Indirect Sq Root). For details, $\rightarrow \stackrel{\triangle}{=} 104$.

Note that with the type of linearization "Direct" the configuration of the parameter group OUT SCALE must agree with the configuration of the parameter group XD SCALE. Otherwise the block operating mode cannot be set to AUTO. Such incorrect configuration is indicated in the parameter BLOCK_ERROR by the "Block Configuration Error" message.

Example:

- The measuring range of the sensor is 0 to 10 m.
- The output range to the automation system should be 0 to 10 m, too.

The following settings are to be made:

- Analog Input Block 1, Parameter CHANNEL -> "1" (measured level)
- Parameter L_TYPE -> DIRECT
- Parameter group XD_SCALE

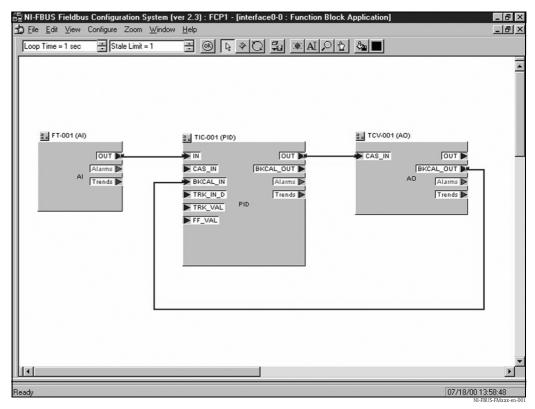
XD_SCALE 0% -> 0

XD_SCALE 100% -> 10

XD_SCALE_UNIT -> m

■ Parameter group OUT_SCALE

OUT_SCALE 0% -> 0 OUT_SCALE 100% -> 10


- OUT_SCALE_UNIT -> m
- 7. If required, use the following parameters to define the limit values for alarm and warning messages:
 - HI_HI_LIM -> Limit value for the upper alarm
 - HI LIM -> Limit value for the upper warning
 - LO LIM -> Limit value for the lower warning
 - LO_LO_LIM -> Limit value for the lower alarm

The limit values entered must be within the value range specified in the parameter group OUT SCALE.

8. In addition to the limit values you must also specify the action taken if a limit value is exceeded using the alarm priorities (parameters HI_HI_PRI, HI_PRI, LO_PRI, LO_LO_PRI). Reporting to the fieldbus host system only takes place if the alarm priority is higher than 2. For details, $\rightarrow \blacksquare 104$.

6.9.5 Connection of the function blocks

1. A concluding overall system configuration is essential so that the operating mode of the Analog Input Block can be set to AUTO and so that the field device is integrated into the system application. To do this, a configuration software (e.g. you host system software) is used to connect the function blocks – normally graphically – to the desired control strategy and then the sequence of the individual process control functions is specified.

Example: Connection of the function blocks with the NI-FBUS Configurator

- 2. Download the configuration data into the field devices by the download function of the FOUNDATION Fieldbus configuration tool.
- 3. Set the oerating mode of the AI Block to AUTO (parameter group MODE_BLK, parameter TARGET). However, this is only possible under the following conditions:
 - The function blocks are correctly connected with each other.
 - The parametrization of the AI Block is correct ($\rightarrow \stackrel{\triangle}{=} 72$, steps 5 and 6).
 - The Resource Block is in operating mode AUTO.

6.10 Commissioning with the Field Communicator 375, 475

The steps of the commissioning procedure are the same as with a FOUNDATION Fieldbus configuration tool ($\rightarrow \stackrel{\triangleright}{=} 69$). The blocks should be parametrized in the following order:

- \blacksquare the RESOURCE BLOCK
- the SENSOR BLOCK (the "basic setup" method can be used for this, see chapter "basic setup")
- the ANALOG INPUT BLOCKS

7 Maintenance

The Levelflex M measuring device requires no special maintenance.

7.1 Exterior cleaning

When cleaning the Levelflex M, always use cleaning agents that do not attack the surface of the housing and the seals.

7.2 Repair

The Endress+Hauser repair concept assumes that the measuring devices have a modular design and that customers are able to undertake repairs themselves ("Spare Parts", $\rightarrow \stackrel{\triangle}{=} 83$). Please contact Endress+Hauser Service for further information on service and spare parts.

7.3 Repairs to Ex-approved devices

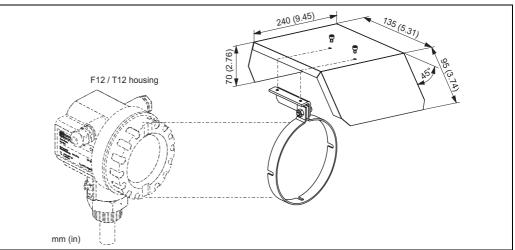
When carrying out repairs to Ex-approved devices, please note the following:

- Repairs to Ex-approved devices may only be carried out by trained personnel or by Endress+Hauser Service.
- Comply with the prevailing standards, national Ex-area regulations, safety instructions (XA) and certificates.
- Only use genuine spare parts from Endress+Hauser.
- When ordering a spare part, please note the device designation on the nameplate. Only replace parts with identical parts.
- Carry out repairs according to the instructions. On completion of repairs, carry out the specified individual test on the device.
- Only Endress+Hauser Service may convert a certified device into a different certified version.
- Document all repair work and conversions.

7.4 Replacement

After a complete Levelflex M or electronic module has been replaced, the parameters can be downloaded into the device again via the communication interface. To do so, the data have to have been uploaded to the PC beforehand using the FieldCare.

Measurement can continue without having to carry out a new calibration.


- You may have to activate linearization (see BA00245F/00/EN on the enclosed CD-ROM.)
- New interference echo suppression (see Basic setup)

After a probe or the electronics have been replaced, a new calibration must be carried out. This is described in the repair instructions.

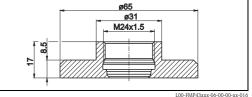
8 **Accessories**

8.1 Weather protection cover

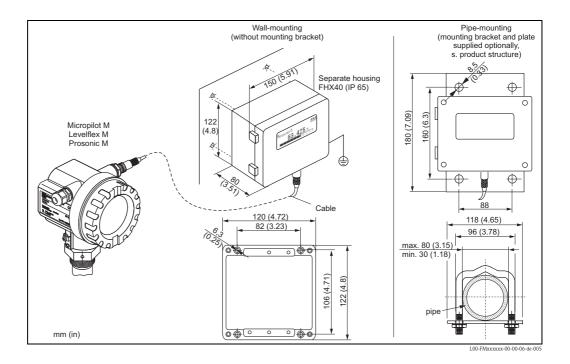
A weather protection cover made of stainless steel is recommended for outdoor mounting (order No: 543199-0001). The shipment includes the protective cover and tension clamp.

8.2 Weld-in adapter

Welding adapter with M24xof 1.5 – threads for the front-concise assembly of the sensor. Material:


corrosion-resistant steel AISI 316L (1.4435) Weight: 0.22 kg

For details refer to BA00361F/00/A6.


■ Standard:

Order No.: 71041381

■ With 3.1 inspection certificate: Order No.: 71041383

8.3 Remote display and operation FHX40

Technical data (cable and housing) and product structure:

,	6) 1
Max. cable length	20 m (65 ft)
Temperature range -30 °C to +70 °C (-22 °F to +158 °F)	
Degree of protection IP65/67(housing); IP68 (cable) acc. to IEC 60529	
Materials Housing: AlSi12; cable glands: nickle plated brass	
Dimensions [mm (in)] 122x150x80 (4.8x5.9x3.2) / HxWxD	

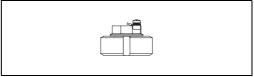
010	Approval:				
010	Ap	-	Non-hazardous area		
	A 2			2G Ex ia IIC T6	
	3			2D Ex ia IIC 10	
	G			one1 Ex ia IIC T6/T5	
	S				
	_			I. I Div.1 Gr. A-D, zone 0	
	U			Cl. I Div.1 Gr. A-D, zone 0	
	N			neral Purpose	
	K			a IIC T6	
	С			x ia IIC T6/T5	
	Y	Spec	cial v	ersion, TSP-No. to be spec.	
020		Cal	ble:		
		1	20n	n / 65ft (> for HART)	
		5	20n	n / 65ft (> for PROFIBUS PA/FOUNDATION Fieldbus)	
		9	Spe	cial version, TSP-No. to be spec.	
030			Ad	ditional option:	
			A Basic version		
			B Mounting bracket, pipe 1"/ 2"		
			Y Special version, TSP-No. to be spec.		
FHX40 -				Complete product designation	

For connection of the remote display FHX40 use the cable which fits the communication version of the respective device.

Commubox FXA291 8.4

The Commubox FXA291 connects Endress+Hauser field devices with CDI interface (= Endress+Hauser Common Data Interface) to the USB interface of a personal computer or a notebook. For details refer to TI00405C/07/EN.

Note!

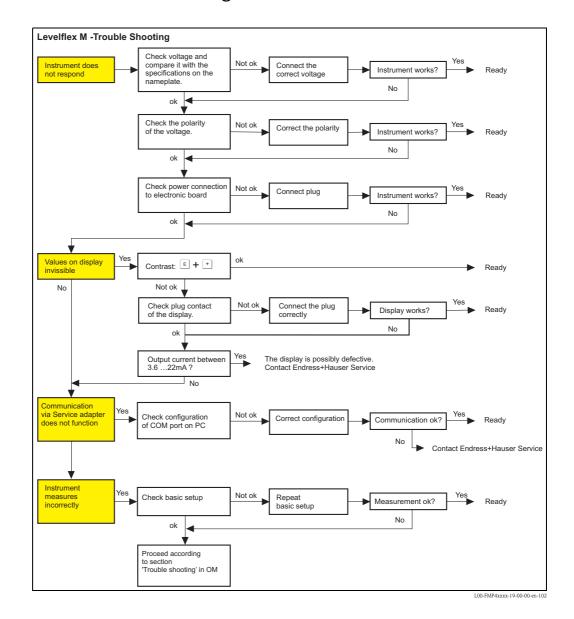

For the device you need the "ToF Adapter FXA291" as an additional accessory.

8.5 ToF Adapter FXA291

The ToF Adapter FXA291 connects the Commubox FXA291 via the USB interface of a personal computer or a notebook to the device. For details refer to KA00271F/00/A2.

8.6 **Protective cover**

With the protective cover the probe can be locked with dismantled electronics. For details refer to BA00362F/00/A6. Order No.: 71041379

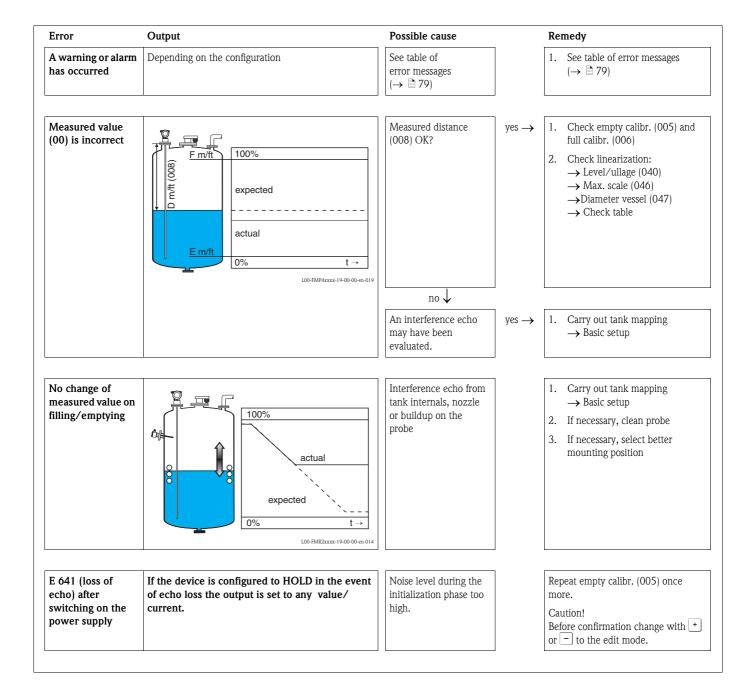


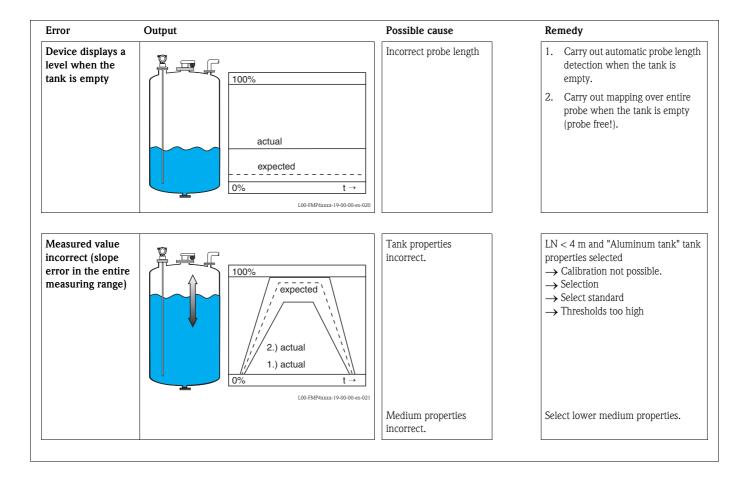
8.7 Calibration kit

The calibration kit is used to regularly test the accuracy and reproducibility of the Levelflex M FMP43 level measurement device. For details refer to BA00360F/00/EN. Order No.: 71041382

9 Troubleshooting

9.1 Troubleshooting instructions




9.2 System error messages

Code	Description	Possible cause	Remedy	
A102	checksum error total reset & new calibr. required.	device was switched off before data were stored; EMC problem; EEPROM defective	reset avoid EMC problems; if alarm prevails after reset, exchange electronics	
W103	initializing - please wait	EEPROM storage not yet finished	wait a few seconds; if warning prevails, exchange electronics	
A106	downloading - please wait	downloading data	wait, message disappears after downloading operation	
A110	checksum error total reset & new calibr. required.	device was switched off before data were stored; EMC problem; EEPROM defective	reset avoid EMC problems; if alarm prevails after reset, exchange electronics	
A111	electronics defective	RAM defective	reset if alarm prevails after reset, exchange electronics	
A113	electronics defective	ROM defective	reset if alarm prevails after reset, exchange electronics	
A114	electronics defective	EEPROM defective	reset if alarm prevails after reset, exchange electronics	
A115	electronics defective	general hardware problem	reset if alarm prevails after reset, exchange electronics	
A116	download error repeat download	checksum of stored data not correct	restart download of data	
A121	electronics defective	no factory calibration available; EEPROM cleared	contact service	
W153	initializing - please wait	initialization of electronics	wait a few seconds; if warning prevails, switch power off and on again	
A160	checksum error total reset & new calibr. required.	device was switched off before data were stored; EMC problem; EEPROM defective	reset avoid EMC problems; if alarm prevails after reset, exchange electronics	
A164	electronics defective	hardware problem	reset if alarm prevails after reset, exchange electronics	
A171	electronics defective	hardware problem	reset if alarm prevails after reset, exchange electronics	
A221	probe pulse deviates from normal values	HF module or cable between HF module and electronics defective	check contacts on HF module if fault cannot be eliminated: replace HF module	
A241	Broken probe	rod probe broken, rope probe broken/torn or value entered for probe length is too long	check the probe length in 033, check the probe mechanically, if the probe is broken, change the probe or change to a non contact system	
		probe break monitoring enabled without mapping beforehand	disable probe break monitoring, perform mapping and then reactivate probe break monitoring	

Code	Description	Possible cause	Remedy
A251	feedthrough	lost contact in the process feedthrough	replace process feedthrough
A261	HF cable defective	HF cable defective or HF connector loose	check HF connector, replace cable if defective
W275	offset too high	temperature at the electronics too high or HF module defective	check temperature, replace HF module if defective
W512	recording of mapping – please wait	recording active	wait a few seconds until alarm disappears
W601	linearization ch1 curve not monotone	linearization not monotonously increasing	correct linearization table
W611	less than 2 linearization points for channel 1	number of entered linearization points < 2	correct linearization table
W621	simulation ch. 1 on	simulation mode is active	switch off simulation mode
E641	no usable echo channel 1 check calibr.	echo lost due to application conditions or buildup on probe	check basic setup; clean probe (see Operating Instructions, Troubleshooting)
W650	signal/noise ratio too low or no echo	noise amplitude too high	eliminate electromagnetic interference
E651	of overfill leaves safety distance		alarm will disappear as soon as level leaves safety distance perform reset where necessary
A671	linearization ch1 not complete, not usable linearization table is in edit mode activate linearization table		activate linearization table

9.3 Application errors

9.4 Spare Parts

An overview of the spare parts for your device is available in the internet at www.endress.com. To obtain information on the spare parts, proceed as follows:

- 1. Go to "www.endress.com" and select your country.
- 2. Click "Instruments".



3. Enter the product name into the "product name" field.

Endress+Hauser product search

- 4. Select the device.
- 5. Click the "Accessories/Spare parts" tab.

6. Select the required spare parts (You may also use the overview drawing on the right side of the screen.)

When ordering spare parts, always quote the serial number indicated on the nameplate. As far as necessary, the spare parts also include replacement instructions.

9.5 Return

The following procedures must be carried out before a level transmitter requiring repair or calibration, for example, is returned to Endress+Hauser:

- Remove all residues. Pay special attention to the grooves for seals and crevices which could contain fluid residues. This is particularly important if the substance is hazardous to health, e.g. flammable, toxic, caustic, carcinogenic, etc.
- Always enclose a duly completed "Declaration of contamination" form with the device (a copy of the "Declaration of contamination" can be found at the end of these Operating Instructions). Only then can Endress + Hauser transport, examine and repair a returned device.
- Enclose special handling instructions if necessary, for example a safety data sheet as per EN 91/155/EEC.

Additionally specify:

- The chemical and physical characteristics of the fluid
- A description of the application
- A description of the error that occurred (specify error code if possible)
- Operating time of the device

9.6 Disposal

When disposing, separate and recycle the device components based on the materials.

9.7 Software history

Date	Software version	Software modifications	Documentation	Description of Instrument Functions
07.2007	01.04.02	Original-Software.	BA359F/00/en/07.07 71041165 BA359F/00/en/03.09 71074939 BA359F/00/en/08.09 71102356 BA00359F/00/EN/13.10 71120308	BA245F/00/en/07.07 71040940

9.8 Contact addresses of Endress+Hauser

Contact addresses can be found on our homepage: www.endress.com/worldwide. If you have any questions, please do not hesitate to contact your Endress+Hauser representative.

10 Technical data

10.1 Additional technical data

10.1.1 Input

Measured variable

The measured variable is the distance between the reference point (see Fig., $\rightarrow \stackrel{\cong}{=} 11$) and the product surface. The level is calculated subject to the empty distance entered "E" (see Fig., $\rightarrow \stackrel{\cong}{=} 45$). Alternatively, the level can be converted by means of linearization (32 points) to other variables (volume, mass).

10.1.2 Output

Output signal

- FOUNDATION Fieldbus (H1):
 - signal coding: Manchester Bus Powered (MBP)
 - data transmission rate: 31.25 KBit/s, voltage mode

Signal on alarm

Error information can be accessed via the following interfaces:

- Local display:
 - Error symbol (→ $\stackrel{\triangle}{=}$ 33)
 - Plain text display
- Current output, failsafe mode can be selected (e.g. according to NAMUR recommendation NE43)
- Digital interface

Linearization

The linearization function of the Levelflex M allows the conversion of the measured value into any unit of length or volume unit, mass or %. Linearization tables for calculating the volume in cylindrical tanks are preprogrammed. Other tables with up to 32 value pairs can be entered manually or semi-automatically. The creation of a linearization table with FieldCare is particularly convenient.

Data of the FOUNDATION Fieldbus interface

Basic Data

Instrument Type	1012 (hex)
Instrument Revision	04 (hex)
DD Revision	02 (hex)
CFF Revision	02 (hex)
ITK Version	4.61
ITK-Certification Driver-No.	www.endress.com / www.fieldbus.org
Link-Master (LAS) cabable	yes
Link Master / Basic Instrument selectable	yes; Default: Basic Devce
Number VCRs	24
Number of Link-Objects in VFD	24

Virtual communication references (VCRs)

Permanent Entries	1
Client VCRs	0
Server VCRs	24
Source VCRs	23
Sink VCRs	0
Subscriber VCRs	23
Publisher VCRs	23

Link Settings

Slot time	4
Min. Inter PDU delay	6
Max. response delay	10

Transducer Blocks

Block	Content	Output values
Sensor Block	contains all parameters related to the measurement	 level or volume¹⁾ (channel 1) distance (channel 2)
Diagnsotic Block	contains diagnostiv information	no output values
Display Block	contains parameters to configure the local display	no output values

1) depending on the configuration of the sensor-block

Function Blocks

Block	Content	Execution time	Functionality
Resource Block	The Resource Block contains all the data that uniquely identifies the field device. It is an electronic version of a nameplate of the device.		enhanced
Analog Input Block 1 Analog Input Block 2	The AI block takes the manufacturer's input data, selected by channel number, and makes it available to other function blocks at its output.	30 ms	standard
PID Block	The PID block serves as proportional-integral-derivative controller and is used almost universally to do closed-loop-control in the field including cascade and feedforward.	80 ms	standard
Arithmetic Block	This block is designed to permit simple use of popular measurement math functions. The user does not have to know how to write equations. The math algorithm is selected by name, chosen by the user for the function to be done.	50 ms	standard
Input Selector Block	The input selector block provides selection of up to four inputs and generates an output based on the configured action. This block normally receives its inputs from AI blocks. The block performs maximum, minimum, middle, average and 'first good' signal selection.	30 ms	standard
Signal Characterizer Block	The signal characterizer block has two sections, each with an output that is a non-linear function of the respective input. The non-linear function is determined by a single look-up table with 21 arbitrary x-y pairs.	40 ms	standard
Integrator Block	The Integrator Function Block integrates a variable as a function of the time or accumulates the counts from a Pulse Input block. The block may be used as a totalizer that counts up until reset or as a batch totalizer that has a setpoint, where the integrated or accumulated value is compared to pre-trip and trip settings, generating discrete signals when these settings are reached.	60 ms	standard

10.1.3	Auxiliary	energy
--------	-----------	--------

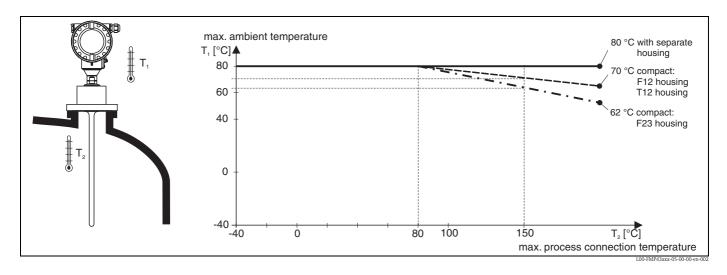
Max. 15 mA

	10.1.3 Auxiliary energy		
Terminals	Cable cross-section: 0.5 to 2.5 mm ²		
Cable entry	 ■ Cable gland: M20x1.5 (only cable entry for Ex d) ■ Cable entry: G½ or ½NPT ■ FOUNDATION Fieldbus 7/8" plug 		
Supply voltage	Version	Terminal voltage	
	Standard	9 V to 32 V	
	Ex ia (FISCO model)	9 V to 17.5 V	
	Ex ia (Entity concept)	9 V to 24 V	
	Supply voltage	9 V to 32 V ¹⁾	
	Lift-off voltage	9 V	
FISCO	$U_i = 17,5 \text{ V}$		
		rvoltage protection 273 mA	
	$P_i = 5.5 \text{ W}$; with overv		
	$C_i = 5 \text{ nF}$		
	$L_i = 0.01 \text{ mH}$		
FNICO	Yes		
Polarity sensitive	No		
In-rush current	≤ 15 mA		

Basic current

10.1.4 Performance characteristics

Reference operating conditions	 Temperature = +20 °C ± 5 °C Pressure = 1013 mbar abs. ±20 mbar Relative humidity (air) = 65 % ±20 % Metallic tank, no internals, distance to tank wall > 500 mm Medium: water (DC > 7), respectively oil (DC = 2) Probe length > 500 mm
Maximum measured error	Is in Function group "basic setup" (00) starting from $\rightarrow \ \ $ 48.
Resolution	Digital: 1 mm
Reaction time	The reaction time depends on the configuration. Shortest time: 2-wire electronics: 1 s
Influence of ambient temperature	The measurements are carried out in accordance with EN 61298-3: ■ Digital output: — average T _K : 0.6 mm/10 K, max. ±3.5 mm over the entire temperature range -40 °C to +80 °C


10.1.5 Operating conditions: Environment

Ambient temperature range

Ambient temperature for electronics: -40 °C to +80 °C. The functionality of the LCD display may be limited for temperatures $T_a < -20$ °C and $T_a > +60$ °C. A weather protection cover should be used for outdoor operation if the device is exposed to direct sunlight.

Ambient temperature limits

If the temperature (T_2) at the process connection is above 80 °C, the permitted ambient temperature (T_1) decreases as per the following diagram (temperature derating):

Storage temperature

-20 °C to +80 °C

Climate class

DIN EN 60068-2-38 (test Z/AD)

■ With closed housing tested according to

- All housings

- IP68, NEMA6P (24 h at 1.83 m under water)

- IP66, NEMA4X

- Housing F23: IP69K in combination with cable entries M20, G½ and NPT½

■ With open housing: IP20, NEMA1 (also ingress protection of the display)

Vibration resistance

DIN EN 60068-2-64 / IEC 68-2-64: 20 to 2000 Hz, 1 (m/s²)²/Hz

Cleaning the probe

Depending on the application, contamination or build-up can accumulate on the probe. A thin, even

Depending on the application, contamination or build-up can accumulate on the probe. A thin, even layer only influences measurements slightly. Thick layers can dampen the signal and then reduce the measuring range. Severe, uneven build-up, adhesion e.g. through crystallization, can lead to incorrect measurement. In this case, we recommend that you use a non-contact measuring principle, or check the probe regularly for soiling.

90

Electromagnetic compatibility (EMC)

Electromagnetic compatibility to EN 61326 and NAMUR Recommendation EMC (NE21). Details are provided in the Declaration of Conformity. A standard installation cable is sufficient if only the analog signal is used.

When installing the probes in metal and concrete tanks and when using a coax probe:

- Interferece emmision to EN 61326 x series, electrical equipment Class B.
- Interference immunity to EN 61326 x series, requirements for industrial areas and NAMUR Recommendation NE21 (EMC)

The measured value can be affected by strong electromagnetic fields when installing rod and rope probes without a shielding/metallic wall, e.g. plastic, and in wooden silos.

- Interference emission to EN 61326 x series, electrical equipment Class A.
- Interference Immunity: the measured value can be affected by strong electromagnetic fields.

10.1.6 Operating conditions: Process

Process temperature range

The maximum permitted temperature at the process connection (see figure measuring point) is determined by the O-ring material ordered:

O-ring material	Min. temperature	Max. temperature	
FFKM (Kalrez)	-20 °C	+150 °C	
EPDM	-20 °C	+130 °C	measured

Process pressure limits

 $P_{\text{max}} = 16 \text{ bar.}$

The specified range may be reduced by the selected process connection (\rightarrow Page 6). The pressure rating (PN) specified on the flanges refers to a reference temperature of 20 °C, for ASME flanges 100 °F. Observe pressure-temperature dependency.

Please refer to the following standards for the pressure values permitted for higher temperatures:

- EN 1092-1: 2001 Tab.18
 - With regard to their temperature stability properties, the materials 1.4404 and 1.4435 are grouped under 13E0 in EN 1092-1 Tab.18. The chemical composition of the two materials can be identical.
- ASME B 16.5a 1998 Tab. 2-2.2 F316
- ASME B 16.5a 1998 Tab. 2.3.8 N10276
- JIS B 2220

Dielectric constant

 $\varepsilon r \ge 1.6$

10.1.7 Mechanical construction

Material

See TI00424F/00/EN, chapter "Material (not in contact with process)" and "Material (in contact with process)".

Tolerance of probe length

Tolerance	Rod length
+ 0 / - 3 mm	< 1000 mm
+ 0 / - 5 mm	1000 to < 4000 mm

Weight

Part	Weight	Part	Weight
T12 housing	approx. 2.7 kg	Compact probe, removable	approx. 0.8 kg
F12 housing	approx. 1.8 kg	Separate probe	approx. 2.1 kg
F23 housing	approx. 5 kg	Probe rod	approx. 0.4 kg/m
Compact probe	approx. 0.7 kg		

Process connection

See "Ordering structure", $\rightarrow \stackrel{\triangle}{=} 6$.

Probe

See "Ordering structure", $\rightarrow \stackrel{\triangle}{=} 6$.

Note!

The modular structure of the probe makes a simple possible exchanges of the process seals, the probe rod and the process coupling ring.

10.1.8 Certificates and approvals

CE approval

The measuring system meets the legal requirements of the applicable EC guidelines. These are listed in the corresponding EC Declaration of Conformity together with the standards applied. Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.

Certificates

The devices are certified for use in hazardous areas. The safety instructions to be observed are enclosed and referenced on the nameplate:

- Europe: EC type-examination certificate, Safety Instructions XA
- USA: FM Approval, Control Drawing
- Canada: CSA Certificate of Compliance, Control Drawing
- China: NEPSI Explosion Protection Certificate of Conformity, Safety Instructions XA
- Japan: TIIS Certificate for Ex-apparatus

Correlation of the Certificates (XA, ZD) to the device:

Feature		Variant	7117077	ZD110F	ZD109F	ZD107F	ZD106F	ZD078F	ZD077F	ZD076F	ZD075E	ZD117E	ZD114F	ZD113F	ZD083F	ZD082F	ZD081F	ZD080F	XA379F	XA378F	XA416F	XA415F	XA414F	XA412F	XA411F	XA410F
	Non-hazardous area	Α		Г									Г								I			Г		П
	*NEPSI Ex ia IIC T6	I																	Χ	Х						П
	*TIIS Ex ia IIC T4	K																								П
	FM DIP CI.II Div.1 Gr. E-G, N.I.	М						Χ																		П
	CSA General Purpose	N																								П
	CSA DIP CI.II Div.1 Gr. G + coal dust	Р													Х											П
	FM IS Cl.I,II,III Div.1 Gr. A-G, N.I., zone 0, 1, 2	S	Х	Х	Χ	Х	Χ			X >	(T					П
10	FM XP CI.I,II,III Div.1 Gr. A-G, zone 1, 2	Т							Χ												T					П
Approval:	CSA IS CI.I,II,III Div.1 Gr. A-D, G + coal dust, N.I., zone 0, 1, 2	U									Х	X	Х	Χ			Χ	Χ			T					П
	CSA XP CI.I,II,III Div.1 Gr. A-D, G + coal dust, N.I., zone 1, 2	٧														Χ					T					П
	ATEX II 1/2G Ex ia IIC T6	1	Ī			Г									Г						٦				Х	Х
	ATEX II 1/2D, Alu blind cover 1)	2																			X)	X	х			П
	ATEX II 2G Ex e mb (ia) IIC T6	3																					×	1		П
	ATEX II 1/3D 1)	4																			X)	X	х			П
	ATEX II 1/2G Ex ia IIC T6,ATEX II 1/3D	5																			7	Х				П
	ATEX II 1/2G Ex d (ia) IIC T6	7																						Х		П
	2-wire 4-20mA SIL HART	В			Χ	Г	Χ		Χ	>	(X		Χ	Г	Χ		Χ		X	X)	Χ	×	(X		Χ
50	2-wire PROFIBUS PA	D	Х	Х		Х			Χ	Х	Х		Х			Χ	Χ		Χ		X)	Χ	×	ίX	X	П
Power supply	2-wire FOUNDATION Fieldbus	F	Х	Х		Х			Χ	Х	Х		Х			Χ	Χ		Χ		X)	Χ	×	(X	Х	П
Output:	4-wire 90-250VAC 4-20mA SIL HART	G						Χ							Х								х			П
	4-wire 10.5-32VDC 4-20mA SIL HART	Н						Χ							Х						T		Х			П
	F12 Alu, coated IP68 NEMA6P	Α	Х			Г		Χ		χ >	(Χ		Χ	Χ			7	Χ	X		X	Χ
80	F23 316L IP68 NEMA6P		Х			Х	Χ						Х	Χ							7	Χ			X	Х
Housing:	T12 Alu, coated IP68 NEMA6P	С							Χ	ĺ						Х					Х		×	X		П
	T12 Alu, coated IP68 NEMA6P + OVP	D	Х	Х	Χ	Г					Х	X			Г							Χ			Х	Χ

¹⁾ Housing F12/F23/T12-OVP: In combination with electronics B, D or F supply intrinsically safe.

^{*} In preparation

Sanitary compatibility

Overview of permitted process connections from $\rightarrow \stackrel{\triangle}{=} 12$.

Note!

The gap-free connections can be cleaned without residue using the usual cleaning methods.

Many versions of the Levelflex M meet the requirements of 3A-Sanitary Standard No. 74. Endress+Hauser confirms this by attaching the 3A symbol.

Pharma (CoC)

Certificate of Compliance (CoC)

- See "Ordering structure", $\rightarrow \stackrel{\triangle}{=} 6$, feature 100 "Additional Option:", option"P".
- Materials in Contact with process made of 316L with Δ ferrite < 3%
- Surface roughness Ra < 0,38 µm/15 µin
- Information on ASME BPE Conformity

Overfill protection

SIL 2, for 4 to 20 mA output signal (see SD00174F/00/EN "Functional Safety Manual").

Telecommunications

Complies with "Part 15" of the FCC rules for an "Unintentional radiator". All probes meet the requirements for a "Class A Digital Device".

In addition to this, all probes in metallic tanks meet the requirements for a "Class B Digital Device".

External standards and guidelines

The European directives and standards applied can be taken from the associated EC Declarations of Conformity. In addition, the following also applied for Levelflex M:

EN60529

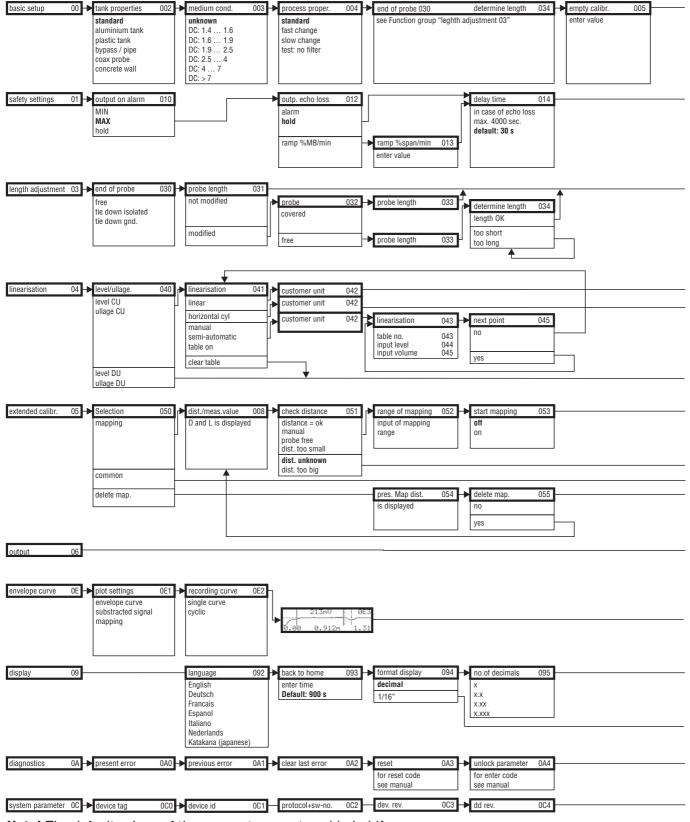
Protection class of housing (IP-code)

Namur - international user association of automation technology in process industries.

- NE21
 - Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment.
- NE43

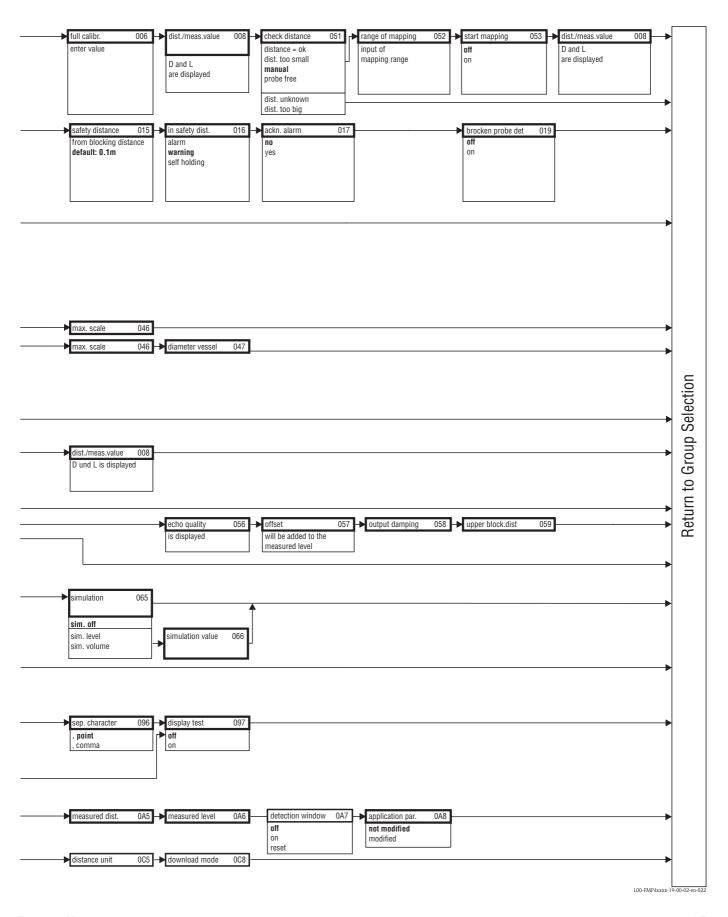
Standardization of the signal level for the failure information of digital transmitters.

10.1.9 Additional documentation


Additional documentation

This additional documentation can be found on our product pages on www.endress.com.

- Technical Information (TI00424F/00/EN)
- Safety Manual "Functional safety manual" (SD00174F/00/EN)
- Operating Instruction "Description of Instrument Functions" (BA00245F/00/EN)


11 Appendix

11.1 Operating menu FOUNDATION Fieldbus

Note! The default values of the parameters are typed in boldface.

L00-FMP4xxxx-19-00-01-en-022

11.2 **Description of functions**

Note!

A detailed description of the function groups, functions and parameters is given in the documentation BA00245F/00/EN "Description of Instrument Functions" on the enclosed CD-ROM.

11.3 Block model of the Levelflex M

The Micropilot M contains the following blocks:

■ Resource Block (RB2)

see Operating Instructions BA013S/04/EN: "FOUNDATION Fieldbus - Overview"

Sensor Block (TBGRL)

contains the parameters relevant to the measurement of the Levelflex M

■ Diagnostic Block (DIAG)

contains the diagnostic parameters of the Levelflex M

■ Display Block (DISP) contains the configuration parameters for the display module VU331

■ Analog-Input-Block 1 bzw. 2 (AI)

scale the signal of the Transducer Block and transmit them to the PLCS

■ PID Block (PID)

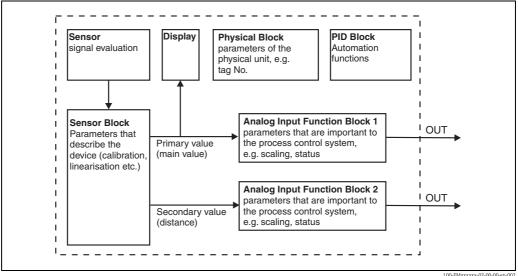
see Operating Instructions BA013S/04/EN: "FOUNDATION Fieldbus - Overview" ■ Arithmetic Block (AR)

see Operating Instructions BA013S/04/EN: "FOUNDATION Fieldbus - Overview"

■ Input Selector Block (IS)

see Operating Instructions BA013S/04/EN: "FOUNDATION Fieldbus - Overview"

Signal Characterizer Block (SC)


see Operating Instructions BA013S/04/EN: "FOUNDATION Fieldbus - Overview"

■ Integrator Block (IT)

see Operating Instructions BA013S/04/EN: "FOUNDATION Fieldbus - Overview"

11.3.1 **Default Block configuration**

The input and output variables of the blocks can be interconnected by a network configuration tool (e.g. NI-Fieldbus configurator). The figure below shows, how these connections are set by default.

98

11.4 Resource block

The resource block contains the parameters used to describe physical resources of the device. It has no linkable inputs or outputs.

11.4.1 Operation

The resource block is opened by a click on the resource line. If the NI-FBUS Configurator is being used, a series of file tabs appears on the screen. The files can be opened to view and/or edit the parameters in the following table. A short description of the parameter function appears on the side of the screen. A change in the parameter is stored by pressing the WRITE CHANGES button when the block is out of service. Press the READ ALL button to check the values stored in the device.

11.4.2 Parameters

Parameter	Description
TAG_DESC	User description of the intended application of the block.
MODE_BLK	Lists the actual, target, permitted and normal operating modes of the block. - Target: changes the operating mode of the block - Actual: indicates the current operating mode of the block - Permitted: states which operating modes are allowed - Normal: indicates the normal operating mode of the block
	The possible operating modes of the resources block are: – AUTO: the block is operating as normal – OOS: the block is out of service.
	If the resource block is out of service, then all blocks within the device (resource) are forced into the same status.
RS_STATE	Indicates the state of the resource block application state machine On-line: block in AUTO mode Standby: block in OOS mode
WRITE_LOCK	Indicates the status of DIP-switch WP - LOCKED: device data can be modified - NOT LOCKED: device data can be modified
RESTART	Allows a manual restart: - UNINITIALISED: no status - RUN: normal operational status - RESOURCE: resets the resource block parameters - DEFAULTS: Resets all FOUNDATION Fieldbus parameters within the device, but not the manufacturer specific parameters. - PROCESSOR: make a warm start of the processor
BLOCK_ERROR	Shows error status of software and hardware components Out-of-Service: the block is in OOS mode Simulation active: shows the setting of DIP-switch SIM
BLOCK_ALM	Shows any configuration, hardware, connection and system problems in the lock. The cause of the alert is to be seen in the subcode field.

The function of the resource block parameters not described here can can be taken from the FOUNDATION Fieldbus specification, see "www.fieldbus.org".

11.5 Sensor Block

The Sensor Block contains the parameters required to calibrate the device. These parameters can also be addressed by using the VU331 display module. The calibration of the device is described in Chapter 6.

11.5.1 Operation

Parameter changes from the tool are made off-line while the device is operating. The changes are downloaded by first setting MODE_BLK = OOS then pressing the WRITE CHANGES button. In order to resume operation, change MODE-BLK to AUTO $^{3)}$.

11.5.2 Block administration parameters

Parameter	Description
MODE_BLK	See description in Resource block. The possible operating modes of the Sensor block are: - AUTO: the block is operating as normal - OOS: the block is out of service.
TAG_DESC	User description of the intended application of the block.
BLOCK_ERROR	Shows error status of software and hardware components Out-of-Service: the block is in OOS mode

11.5.3 Output values

Parameter	Description
PRIMARY_VALUE	Main value (level or volume).
SECONDARY_VALUE	Measured distance.

11.5.4 Configuration parameters

The Sensor block also contains the configuration parameters, which are used to commission and calibrate the device. They are identical to the functions of the operating menu, except for the service parameters which are not accessible on the bus. Thus, the calibration procedure via the display module ($\rightarrow \stackrel{\triangle}{=} 45$) is equally valid for a calibration via a network configuration tool. A complete list of the configuration parameters can be found in the BA00245F/00/EN "Description of Instrument Functions".

³⁾ If MODE_BLK refuses to be changed to AUTO, an error is present. Control all parameters, perform the required changes and try again to change MODE_BLK to AUTO.

11.5.5 Methods

The FOUNDATION Fieldbus specification provides for the use of so-called methods to simplify the operation of the device. A method is an interactive sequence of steps that must be followed in order to obtain a particular function from the device.

The Levelflex M has got the following methods:

- Basic setup
- Safety settings
- Acknowledge alarm
- Length adjustment
- Linearisation
- Extended calibration
- Output
- System parameters
- Lock TB Manufacturer parameters

Most of these methods are identical to the respective function group in the operating menu. A detailed description of them can be found in the BA00245F/00/EN "Description of Instrument Functions".

11.5.6 Parameter list of the Levelflex M Sensor Block

Parameter	Position Indicator	rel. Index	Variable Name	Size [bytes]	Туре	Access	Storage Class	Changeable in Mode
measured value	000	18	PARMEASUREDVALUE	4	FloatingPoint	RO dynamic		Auto, OOS
tank properties	002	19	PARTANKPROPERTIES	1	Unsigned8	RW	static	OOS
medium property	003	20	PARMEDIUMCONDITION	1	Unsigned8	RW	static	OOS
process propert.	004	21	PARPROCESSPROPERTIES	1	Unsigned8	RW	static	OOS
end of probe	030	22	PARENDOFPROBE	1	Unsigned8	RW	static	OOS
probe length	031	23	PARPROBESHORTEND	1	Unsigned8	RW	dynamic	OOS
probe	032	24	PARPROBEFREE	1	Unsigned8	RW	dynamic	OOS
probe length	033	25	PARPROBELENGTH	4	FloatingPoint	RW	static	OOS
determine length	034	26	PARPROBELENGTHSETUP	1	Unsigned8	RW	dynamic	OOS
empty calibr.	005	27	PAREMPTYCALIBRATION	4	FloatingPoint	RW	static	OOS
full calibr.	006	28	PARFULLCALIBRATION	4	FloatingPoint	RW	static	OOS
echo quality	056	29	PARECHOQUALITY	2	Integer16	RO	dynamic	Auto, OOS
check distance	051	30	PARCHECKDISTANCE	1	Unsigned8	RW	dynamic	OOS
range of mapping	052	31	PARSUPPRESSIONDISTANCE	4	FloatingPoint	RW	dynamic	OOS
start mapping	053	32	PARSTARTMAPPINGRECORD	1	Unsigned8	RW	dynamic	OOS
pres. map dist.	054	33	PARPRESMAPRANGE	4	FloatingPoint	RO	dynamic	Auto, OOS
delete mapping	055	34	PARDELETEMAPPING	1	Unsigned8	RW	dynamic	OOS
offset	057	35	PAROFFSETOFMEASUREDDISTANCE	4	FloatingPoint	RW	static	OOS
output damping	058	36	PAROUTPUTDAMPING	4	FloatingPoint	RW	static	Auto, OOS
upper block.dist	059	37	PARHIGHBLOCKINGDISTANCE	4	FloatingPoint	RW	static	OOS
output on alarm	010	38	PAROUTPUTONALARM	1	Unsigned8	RW	static	OOS
outp. echo loss	012	39	PARREACTIONLOSTECHO	1	Unsigned8	RW	static	OOS
ramp %span/min	013	40	PARRAMPINPERCENTPERMIN	4	FloatingPoint	RW	static	OOS
delay time	014	41	PARDELAYTIMEONLOSTECHO	2	Unsigned16	RW	static	OOS
safety distance	015	42	PARLEVELWITHINSAFETYDISTANCE	4	FloatingPoint	RW	static	OOS
in safety dist.	016	43	PARINSAFETYDISTANCE	1	Unsigned8	RW	static	OOS

Parameter	Position Indicator	rel. Index	Variable Name	Size [bytes]	Туре	Access	Storage Class	Changeable in Mode
ackn. alarm	017	44	PARACKNOWLEDGEALARM	1	Unsigned8	RW	dynamic	Auto, OOS
broken probe det	019	45	PARBROKENPROBEDETECTION	1	Unsigned8	RW	static	OOS
level/ullage	040	46	PARLEVELULLAGEMODE	1	Unsigned8	RW	static	OOS
linearisation	041	47	PARLINEARISATION	1	Unsigned8	RW	static	OOS
customer unit	042	48	PARCUSTOMERUNIT	2	Unsigned16	RW	static	OOS
table no.	043	49	PARTABLENUMBER	1	Unsigned8	RW	non-vol.	Auto, OOS
input level	044	50	PARINPUTLEVELHALFAUTOMATIC	4	FloatingPoint	RO	dynamic	Auto, OOS
input level	044	51	PARINPUTLEVELMANUAL	4	FloatingPoint	RW	dynamic	OOS
input volume	045	52	PARINPUTVOLUME	4	FloatingPoint	RW	dynamic	OOS
max. scale	046	53	PARMAXVOLUME	4	FloatingPoint	RW	static	OOS
diameter vessel	047	54	PARCYLINDERVESSEL	4	FloatingPoint	RW	static	OOS
simulation	065	55	PARSIMULATION	1	Unsigned8	RW	dynamic	OOS
simulation value	066	56	PARSIMULATIONVALUELEVEL	4	FloatingPoint	RW	dynamic	Auto, OOS
simulation value	066	57	PARSIMULATIONVALUEVOLUME	4	FloatingPoint	RW	dynamic	Auto, OOS
unlock parameter	0A4	58	PAROPERATIONCODE	2	Unsigned16	RW	non-vol.	OOS
measured dist.	0A5	59	PARMEASUREDDISTANCE	4	FloatingPoint	RO	dynamic	Auto, OOS
measured level	0A6	60	PARMEASUREDLEVEL	4	FloatingPoint	RO	dynamic	Auto, OOS
detection window	0A7	61	PARDETECTIONWINDOW	1	Unsigned8	RW	dynamic	OOS
application par.	0A8	62	PARAPPLICATIONPARAMETER	1	Unsigned8	RO	dynamic	Auto, OOS
distance unit	0C5	63	PARDISTANCEUNIT	2	Unsigned16	RW	static	OOS
download mode	0C8	64	PARDOWNLOADMODE	1	Unsigned8	RW	static	OOS
max meas dist	0D84	65	PARABSMAXMESSDIST	4	FloatingPoint	RO	dynamic	Auto, OOS
max sample dist.	0D88	66	PAREDITRANGEMAXSAMPLEDIST	4	FloatingPoint	RO	dynamic	Auto, OOS
present error	0A0	67	PARACTUALERROR	2	Unsigned16	RO	dynamic	Auto, OOS

102

11.6 Diagnostic Block

11.6.1 Operation

The diagnostic block contains the error messages of the device. These parameters can also be addressed by using the VU331 display module. The diagnostic block is opened by clicking on the "diagnostic" line. Parameter changes from the tool are made off-line while the device is operating. The changes are downloaded by first setting MODE_BLK = OOS then pressing the WRITE CHANGES button. Press the READ ALL button to check the values stored in the device. In order to resume operation, change MODE_BLK to $AUTO^4$.

11.6.2 Block administration parameters

Parameter	Description
MODE_BLK	See description in Resource block. The possible operating modes of the Sensor block are: AUTO: the block is operating as normal. OOS: the block is out of service.
TAG_DESC	User description of the intended application of the block.
BLOCK_ERROR	Shows the error status associated with the block components Out-of-Service: the block is in OOS mode.

11.6.3 Methods

The FOUNDATION Fieldbus specification provides for the use of so-called methods to simplify the operation of the device. A method is an interactive sequence of steps that must be followed in order to obtain a particular function from the device.

The Levelflex M has got the following methods:

- Set to customer default
- Diagnostics

Most of these methods are identical to the respective function group in the operating menu. A detailed description of them can be found in the BA00245F/00/EN "Description of Instrument Functions".

11.6.4 Device specific parameters

Parameter	Position Indicator	rel. Index	Variable Name	Size [bytes]	Туре	Access	Storage Class	Changeable in Mode		
present error	0A0	13	PARACTUALERROR	2	Unsigned16	RO	dynamic	Auto, OOS		
previous error	0A1	14	PARLASTERROR	2 Unsigned16		2 Unsigned16 RO non-		non-vol.	Auto, OOS	
clear last error	0A2	15	PARCLEARLASTERROR	1	Unsigned8	RW	dynamic	Auto, OOS		
reset	0A3	16	PARRESET	2	Unsigned16	RW	dynamic	OOS		
unlock parameter	0A4	17	PAROPERATIONCODE	2	Unsigned16	RW	non-vol.	OOS		
protocol+sw-no.	0C2	18	PARPROTSOFTVERSIONSTRING	16	VisibleString	RO	const	Auto, OOS		

⁴⁾ If MODE_BLK refuses to be changed to AUTO, an error is present. Control all parameters, perform the required changes and try again to change MODE_BLK to AUTO.

11.7 Display Block

11.7.1 Operation

The display block contains the parameters required to parametrise the display module VU331 (which is contained in the remote display and operating unit FHX40). These parameters can also be addressed by using the VU331 display module.

The display block is opened by clicking on the "display" line.

Parameter changes from the tool are made off-line while the device is operating. The changes are downloaded by first setting MODE_BLK = OOS then pressing the WRITE CHANGES button. Press the READ ALL button to check the values stored in the device. In order to resume operation, change $MODE_BLK$ to $AUTO^{5}$.

11.7.2 Block administration parameters

Parameter	Description	
MODE_BLK	See description in Resource block. The possible operating modes of the sensor block are: - AUTO: the block is operating as normal. - OOS: the block is out of service.	
TAG_DESC	User description of the intended application of the block.	
BLOCK_ERROR	Shows the error status associated with the block components Out-of-Service: the block is in OOS mode.	

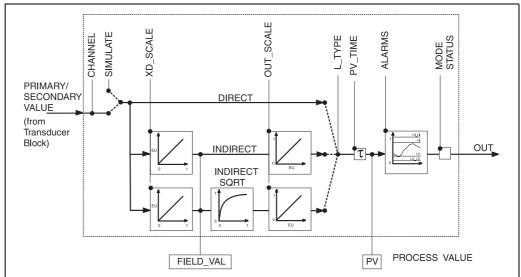
11.7.3 Methods

The FOUNDATION Fieldbus specification provides for the use of so-called methods to simplify the operation of the device. A method is an interactive sequence of steps that must be followed in order to obtain a particular function from the device.

The Levelflex M has got the following methods:

■ Display

Most of these methods are identical to the respective function group in the operating menu. A detailed description of them can be found in the BA00245F/00/EN "Description of Instrument Functions".


11.7.4 Device specific parameters

Parameter	Position Indicator	rel. Index	Variable Name	Size [bytes]	Туре	Access	Storage Class	Changeable in Mode
language	092	13	PARLANGUAGE	1	Unsigned8	RW	non-vol.	Auto, OOS
back to home	093	14	PARBACKTOHOME	2	Integer16	RW	non-vol.	Auto, OOS
format display	094	15	PARFORMATDISPLAY_FT	1	Unsigned8	RW	non-vol.	Auto, OOS
no.of decimals	095	16	PARNOOFDECIMALS	1	Unsigned8	RW	non-vol.	Auto, OOS
sep. character	096	17	PARSEPARATIONCHARACTER	1	Unsigned8	RW	non-vol.	Auto, OOS
unlock parameter	0A4	18	PAROPERATIONCODE	2	Unsigned16	RW	non-vol.	OOS

⁵⁾ If MODE_BLK refuses to be changed to AUTO, an error is present. Control all parameters, perform the required changes and try again to change MODE_BLK to AUTO.

11.8 Analog input block

The analog input block conditons the signal output by the Sensor block and outputs signal to the PCL or other function blocks.

I.00-FMR2xxxx-05-00-00-en-008

11.8.1 Operation

The resource block is opened by a click on the resource line.

Parameter changes from the tool are made off-line while the device is operating. The changes are downloaded by first setting MODE_BLK = OOS then pressing the WRITE CHANGES button. Press the READ ALL button to check the values stored in the device. Normally operation is resumed as soon as MODE-BLK is set to AUTO.

11.8.2 Block administration parameters

Parameter	Description	
MODE_BLK	See description in Resource block. The possible operating modes of the Sensor block are: - AUTO: the block is operating as normal - MAN: the block is operated with a manually entered primary value. - OOS: the block is out of service.	
TAG_DESC	User description of the intended application of the block.	
BLOCK_ERROR	Shows error status of software and hardware components Out-of-Service: the block is in OOS mode Simulation active: shows the setting of DIP-switch SIM. Input failure/process variable has BAD status. configuration error	

11.8.3 Output values

Parameter	Description	
PV	Either the primary/secondary Sensor block value used to execute the block or a proculur value associated with it. Comprises value and status.	
OUT	The primary value output as a result of executing the analog input block. Comprises value and status.	
FIELD_VALUE	Raw value of field device in % of PV range with a status reflecting the Sensor conductor before signal characterisation L_Type or filtering V_TIME. Comprises value and st	

11.8.4 Scaling parameters

Parameter	Description	
CHANNEL	Selects the measured value to be input to the analogue input block - 0 = no channel defined - 1 = primary value: measured level/volume - 2 = secondary value: measured distance	
XD_SCALE	Scales the Sensor block value in the required engineering units (EU).	
OUT_SCALE	Scales the output value in the required engineering units (EU).	
L_TYPE	Sets the linearization type: - DIRECT: the Sensor block value bypasses the scaling functions - INDIRECT:the Sensor block value is fed through the linear scaling functions - INDIRECT SQRT: the Sensor block value is fed through the square root scaling functions	

The relationship between the output values and scaling paramaters for the Levelflex M is as follows:

The L_TYPE parameter influences the signal conversion:

■ Direct:

PV = CHANNEL_VALUE

■ Indirect:

$$PV = \frac{FIELD_VALUE}{100} \times (OUT_SCALE_MAX - OUT_SCALE_MIN) + OUT_SCALE_MIN$$

■ Indirect square root:

$$PV = \sqrt{\frac{\text{FIELD_VALUE}}{100}} \times (\text{OUT_SCALE_MAX - OUT_SCALE_MIN}) + \text{OUT_SCALE_MIN}$$

11.8.5 Output response parameters

Parameter	Description
LOW_CUT	Not relevant to level measurement! Determines a threshold for square root linearization below which the output value is set to zero.
PV_FTIME	Sets the time constant for the output value.

11.8.6 Alarm parameters

Parameter	Description	
ACK_OPTION	Sets the way in which alarms and warnings are to be acknowledged.	
ALARM_HYS	Sets the hysteresis (in output engineering units) for all configured alarms. A hysteresis of e.g. 2 % on a HI_HI_LIMIT of 95 % would cause the alarm to activate when the level reaches 95 % and to deactivate when the level drops below 93 %. A hysteresis of e.g. 2 % on a LO_LO_LIMIT of 5 % would cause the alarm to activate when the level drops below 5 % and to deactivate when the level rises to 7 %.	
HI_HI_PRI	The priority $(1-15)$ of the HI_HI alarm	
HI_HI_LIM	Sets the HI_HI alarm limit in output engineering units	
HI_PRI	The priority $(1-15)$ of the HI alarm Sets the HI warning limit in output engineering units	
HI_LIM		
LO_PRI	The priority $(1-15)$ of the LO alarm	
LO_LIM	Sets the LO warning limit in output engineering units	
LO_LO_PRI	The priority $(1-15)$ of the LO_LO alarm	
LO_LO_LIM	Sets the LO_LO alarm limit in output engineering units	

11.8.7 Alarm priorities

Parameter	Description	
0	Alarm is suppressed	
1	Recognised by the system but not reported	
2	Reported to the operator, but does not require his attention	
3 - 7	Advisroy alarms of increasing priority	
8 - 15	Critical alarms of increasing priority	

11.8.8 Alarm status

Parameter Description	
HI_HI_ALM The status of the HI_HI alarm	
HI_ALM The status of the HI alarm	
LO_ALM The status of the LO alarm	
LO_LO_ALM The status of the LO_LO alarm	

11.8.9 Simulation

The SIMULATE parameter allows the Sensor block output value to be simulated, provided simulation has also been enabled at the device DIP switch. The simulation must be enabled, a value and/or status entered and the block must be in AUTO mode. During simulation the Sensor output value is substituted by the simulated value.

A simulation is also possible by switching MODE_BLK to "MAN" and entering a value for OUT.

Parameter	Description	
SIMULATE	Enables, sets and displays a simulated value, options: - enable/disable - simulated value - output value	

11.9 Checklist for commissioning

The following checklist refers to the configuration via the NI-Fieldbus configurator. In general, the operation is rather similar for other network design tools.

- 1. Configure the network and integrate the device.
 - Identify the device by means of the device ID and serial number.
 - If appropriate, assign a new PD_TAG.
- 2. Configure the resource block.
 - Check the position of the hardware switch in WRITE_LOCK
 - If "locked" is displayed, change the position of the DIP-switch.
 - If appropriate, change the block tag (right-hand click on tree).
 - Set MODE_BLK_TARGET to Out-of-Service.
 - Reset the device to factory values by using the function RESTART => Defaults
 (this function may also be available with a right-hand click on the device name)
 - If appropriate, assign a tag description (TAG_DESC).
 - Set MODE BLK TARGET to Auto.
- 3. Configure the Sensor block.
 - If appropriate, change the block tag (right-hand click on tree).
 - Set MODE_BLK_TARGET to Out-of-Service.
 - If appropriate, assign a tag description (TAG_DESC)
 - Configure the device as described, $\rightarrow \stackrel{\triangle}{=} 45$.
 - Set MODE_BLK_TARGET to Auto.
- 4. Configure the analog input block.
 - If appropriate, change the block tag (right-hand click on tree).
 - Set MODE_BLK_TARGET to Out-of-Service.
 - If appropriate, assign a tag description (TAG_DESC).
 - Set Channel to measured value or distance.
 - Set L_TYPE to "DIRECT" if the OUT value is to be in technical units e.g. ft to "INDIRECT" if the OUT value is to be scaled.
 - Set the desired output damping in PV_TIME.
 - If appropriate, set the advisory and critical alarms.
 - Set MODE_BLK_TARGET to Auto.
- 5. Link the function blocks in the function block editor.
- 6. Download the configuration (menu configure).
- 7. If appropriate, check the configuration by using the SIMULATE function.

11.10 List of start indices

The following list indicates the start indices for all blocks and objects:

Object	Start Index
Object Dictionary	298

Object	Start Index
Resource Block	400
Analog Input 1 Function Block	500
Analog Input 2 Function Block	600
PID Function Block	700
Arithmetic Function Block	800
Input Selector Function Block	900
Signal Characterizer Function Block	1000
Integrator Function Block	1100
Sensor Block	2000
Diagnostic Block	2200
Display Block	2400

Object	Start Index				
View Objects Resource Block	3000				
View Objects Analog Input 1 Function Block	3010				
View Objects Analog Input 2 Function Block	3020				
View Objects PID Function Block	3030				
View Objects Arithmetic Function Block	3040				
View Objects Input Selector Function Block	3050				
View Objects Signal Characterizer Function Block	3060				
View Objects Integrator Function Block	3070				
View Objects Sensor Block	4000				
View Object Diagnostic Block	4100				
View Object Display Block	4200				

11.11 Patents

This product may be protected by at least one of the following patents. Further patents are pending.

- US 5,661,251 EP 0 780 664
- US 5,827,985 \(\circ\) EP 0 780 664
- US 5,884,231 EP 0 780 665
- US 5,973,637 EP 0 928 974

Index

A Application errors
Basic setup
C CE mark 8 Connector 26
DDeclaration of conformity8Designated use4Determine length52, 65Dimensions10Display appearance32Display symbols33
EEmpty calibr.52Empty calibration65End of probe64Error messages79Ex approval93Exterior cleaning74
F24F12 housing24F23 housing24FHX4076FieldCare63Foundation Fieldbus connector26
IInstallation9Installation instructions15Interference echo mapping66
K Key assignment
MMaintenance74Medium properties64Medium property49Messbedingungen50
Nameplate
On-site display

r
Probe
Probe length
Process propert
R
Repairs
Repairs to Ex-approved instruments
Replacement
Return84
S
Service Interface FXA291
Software history
Spare Parts
System error messages
T
T12 housing
Tank properties
Technical data
Terminal compartment
Troubleshooting
Troubleshooting instructions
Turn housing
W
Weather protection cover
Wiring

People for Process Automation

Declaration of Hazardous Material and De-Contamination

Erklärung zur Kontamination und Reinigung

RA No.	Please reference the Return Authorization Number (RA#), obtained from Endress+Hauser, on all paperwork and mark the RA# clearly on the outside of the box. If this procedure is not followed, it may result in the refusal of the package at our facility. Bitte geben Sie die von E+H mitgeteilte Rücklieferungsnummer (RA#) auf allen Lieferpapieren an und vermerken Sie diese auch außen auf der Verpackung. Nichtbeachtung dieser Anweisung führt zur Ablehnung ihrer Lieferung.								
and De-Contamina packaging. Aufgrund der gese	gulations and for the safety tion", with your signature, tzlichen Vorschriften und z ntamination und Reinigung	before your orde	er can be handl erer Mitarbeite	led. Please ma er und Betrieb	ke absolutel [.] seinrichtung	y sure to attac en, benötiger	th it to the ou a wir die unte	tside of the rschriebene	
Type of instrume Geräte-/Sensortyp		Serial number Seriennummer							
Used as SIL d	evice in a Safety Instrum	nented System	/ Einsatz als S	SIL Gerät in So	chutzeinrich	tungen			
Process data/Pro	ratur [°F]	Pressure	Pressure / <i>Druck</i> [psi] [Pa]						
	Condu	ctivity / <i>Leitfähi</i>	igkeit	[μS/cm]	Viscosity	/Viskosität _	[cp] _	$[mm^2/s]$	
Medium and war Warnhinweise zun	•					\bigwedge	$\overline{\mathbb{A}}$		
	Medium /concentration Medium /Konzentration	Identification CAS No.	flammable entzündlich	toxic giftig	corrosive ätzend	harmful/ irritant gesundheits- schädlich/ reizend	other * sonstiges*	harmless unbedenklich	
Process medium Medium im Prozess Medium for process cleaning Medium zur Prozessreinigung						1000010			
Returned part cleaned with Medium zur Endreinigung									
Zutreffendes ankre	one of the above be applicat uzen; trifft einer der Warni lure / Fehlerbeschreibung	* ble, include safet ninweise zu, Sich	herheitsdatenb	dfördernd; um d, if necessary latt und ggf. s	nweltgefährli , special han pezielle Han	ch; biogefährl dling instructi dhabungsvors	lich; radioakti ions. schriften beile	v egen.	
Company data //	Angaben zum Absender								
Company / Firma			Phone number of contact person / Telefon-Nr. Ansprechpartner:						
Address / Adress	 Fax /	Fax / E-Mail							
			Your o	order No. / Ih	re Auftragsr	nr			
parts have been car "Wir bestätigen, di	that this declaration is fille refully cleaned. To the best re vorliegende Erklärung na rückgesandten Teile sorgfä	of our knowledg och unserem bes	ge they are free eten Wissen wa	of any residu hrheitsgetreu	es in danger <i>und vollstäi</i>	ous quantities n <i>dig ausgefüll</i>	." t zu haben. W	Vir bestätigen	
(place, date / Ort,	Datum)	Name, dept.	/Abt. (please prir	nt / bitte Druckscl	hrift)	Signa	ture / Unters	schrift	

www.endress.com/worldwide

People for Process Automation

