Description of Device Parameters

Proline Prowirl 200

PROFIBUS PA

Vortex flowmeter
Table of contents

1 Document information 4
 1.1 Document function 4
 1.2 Target group 4
 1.3 Using this document
 1.3.1 Information on the document structure 4
 1.3.2 Structure of a parameter description 6
 1.4 Symbols used
 1.4.1 Symbols for certain types of information 6
 1.4.2 Symbols in graphics 7

2 Overview of the Expert operating menu 8

3 Description of device parameters 10
 3.1 "System" submenu
 3.1.1 "Display" submenu 13
 3.1.2 "Configuration backup display" submenu 26
 3.1.3 "Diagnostic handling" submenu 30
 3.1.4 "Administration" submenu 42
 3.2 "Sensor" submenu
 3.2.1 "Measured values" submenu 47
 3.2.2 "System units" submenu 61
 3.2.3 "Process parameters" submenu 74
 3.2.4 "Measurement mode" submenu 78
 3.2.5 "External compensation" submenu 104
 3.2.6 "Sensor adjustment" submenu 109
 3.2.7 "Calibration" submenu 111
 3.3 "Output" submenu
 3.3.1 "Pulse/frequency/switch output" submenu 113
 3.4 "Communication" submenu
 3.4.1 "PROFIBUS PA configuration" submenu 132
 3.4.2 "PROFIBUS PA info" submenu 134
 3.4.3 "Physical block" submenu 135
 3.5 "Analog inputs" submenu
 3.5.1 "Analog input 1 to 4" submenu 145
 3.6 "Discrete inputs" submenu
 3.6.1 "Discrete input 1 to 2" submenu 158
 3.7 "Analog outputs" submenu
 3.7.1 "Analog output 1" submenu 166
 3.8 "Discrete outputs" submenu
 3.8.1 "Discrete output 1 to 3" submenu 178
 3.9 "Application" submenu
 3.9.1 "Totalizer 1 to 3" submenu 188
 3.10 "Diagnoses" submenu
 3.10.1 "Diagnostic list" submenu 202
 3.10.2 "Event logbook" submenu 209
 3.10.3 "Device information" submenu 211
 3.10.4 "Sensor information" submenu 215
 3.10.5 "Data logging" submenu 215
 3.10.6 "Min/max values" submenu 221
 3.10.7 "Heartbeat" submenu 227
 3.10.8 "Simulation" submenu 228

4 Country-specific factory settings 234
 4.1 SI units 234
 4.1.1 System units 234
 4.1.2 Full scale values 234
 4.1.3 Pulse value 235
 4.2 US units 236
 4.2.1 System units 236
 4.2.2 Full scale values 236
 4.2.3 Pulse value 237

5 Explanation of abbreviated units 238
 5.1 SI units 238
 5.2 US units 239
 5.3 Imperial units 240
 5.4 Other units 241

Index .. 242
1 Document information

1.1 Document function
The document is part of the Operating Instructions and serves as a reference for parameters, providing a detailed explanation of each individual parameter of the Expert operating menu.

1.2 Target group
The document is aimed at specialists who work with the device over the entire life cycle and perform specific configurations.

1.3 Using this document

1.3.1 Information on the document structure
The document lists the submenus and their parameters according to the structure from the Expert menu (→ 8).

For information on the arrangement of the parameters according to the structure of the Operation menu, Setup menu, Diagnostics menu (→ 202), along with a brief description, see the Operating Instructions for the device.
For information about the operating philosophy, see the "Operating philosophy" chapter in the device's Operating Instructions.
1.3.2 Structure of a parameter description
The individual parts of a parameter description are described in the following section:

| Complete parameter name | Write-protected parameter =  |

Navigation
- Navigation path to the parameter via the local display (direct access code)
- Navigation path to the parameter via the operating tool

The names of the menus, submenus and parameters are abbreviated to the form in which they appear on the display and in the operating tool.

Prerequisite
The parameter is only available under these specific conditions.

Description
Description of the parameter function.

Options
List of the individual options for the parameter
- Option 1
- Option 2

User entry
Input range for the parameter.

User interface
User interface value/data for parameter.

Factory setting
Default setting ex works.

Additional information
Additional explanations (e.g. in examples):
- On individual options
- On display values/data
- On the input range
- On the factory setting
- On the parameter function

1.4 Symbols used

1.4.1 Symbols for certain types of information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>📰 Tip</td>
<td>Indicates additional information.</td>
</tr>
<tr>
<td>📗 Reference to documentation</td>
<td></td>
</tr>
<tr>
<td>📖 Reference to page</td>
<td></td>
</tr>
<tr>
<td>📖 Reference to graphic</td>
<td></td>
</tr>
<tr>
<td>📜 Operation via local display</td>
<td></td>
</tr>
<tr>
<td>📜 Operation via operating tool</td>
<td></td>
</tr>
<tr>
<td> Write-protected parameter</td>
<td></td>
</tr>
</tbody>
</table>
1.4.2 Symbols in graphics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3 ...</td>
<td>Item numbers</td>
<td>A, B, C, ...</td>
<td>Views</td>
</tr>
<tr>
<td>A-A, B-B, C-C, ...</td>
<td>Sections</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 Overview of the Expert operating menu

The following table provides an overview of the menu structure of the expert operating menu and its parameters. The page reference indicates where the associated description of the submenu or parameter can be found.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct access (0106)</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Locking status (0004)</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Access status display (0091)</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Enter access code (0092)</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>System</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Display</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Configuration backup display</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Diagnostic handling</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Administration</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>Sensor</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>Measured values</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>System units</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>Process parameters</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>Measurement mode</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>External compensation</td>
<td></td>
<td>104</td>
</tr>
<tr>
<td>Sensor adjustment</td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>Calibration</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td>112</td>
</tr>
<tr>
<td>Pulse/frequency/switch output</td>
<td></td>
<td>113</td>
</tr>
<tr>
<td>Communication</td>
<td></td>
<td>132</td>
</tr>
<tr>
<td>PROFIBUS PA configuration</td>
<td></td>
<td>132</td>
</tr>
</tbody>
</table>
Overview of the Expert operating menu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROFIBUS PA info</td>
<td>134</td>
</tr>
<tr>
<td>Physical block</td>
<td>135</td>
</tr>
<tr>
<td>Analog inputs</td>
<td>145</td>
</tr>
<tr>
<td>Analog input 1 to 4</td>
<td>145</td>
</tr>
<tr>
<td>Discrete inputs</td>
<td>158</td>
</tr>
<tr>
<td>Discrete input 1 to 2</td>
<td>158</td>
</tr>
<tr>
<td>Analog outputs</td>
<td>166</td>
</tr>
<tr>
<td>Analog output 1</td>
<td>166</td>
</tr>
<tr>
<td>Discrete outputs</td>
<td>178</td>
</tr>
<tr>
<td>Discrete output 1 to 3</td>
<td>178</td>
</tr>
<tr>
<td>Application</td>
<td>188</td>
</tr>
<tr>
<td>Totalizer 1 to 3</td>
<td>188</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>202</td>
</tr>
<tr>
<td>Actual diagnostics (0691)</td>
<td>203</td>
</tr>
<tr>
<td>Previous diagnostics (0690)</td>
<td>204</td>
</tr>
<tr>
<td>Operating time from restart (0653)</td>
<td>205</td>
</tr>
<tr>
<td>Operating time (0652)</td>
<td>205</td>
</tr>
<tr>
<td>Diagnostic list</td>
<td>205</td>
</tr>
<tr>
<td>Event logbook</td>
<td>209</td>
</tr>
<tr>
<td>Device information</td>
<td>211</td>
</tr>
<tr>
<td>Sensor information</td>
<td>215</td>
</tr>
<tr>
<td>Data logging</td>
<td>215</td>
</tr>
<tr>
<td>Min/max values</td>
<td>221</td>
</tr>
<tr>
<td>Heartbeat</td>
<td>227</td>
</tr>
<tr>
<td>Simulation</td>
<td>228</td>
</tr>
</tbody>
</table>
3 Description of device parameters

In the following section, the parameters are listed according to the menu structure of the local display. Specific parameters for the operating tools are included at the appropriate points in the menu structure.

Direct access

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access (0106)</td>
<td>→ 10</td>
</tr>
<tr>
<td>Locking status (0004)</td>
<td>→ 11</td>
</tr>
<tr>
<td>Access status display (0091)</td>
<td>→ 11</td>
</tr>
<tr>
<td>Enter access code (0092)</td>
<td>→ 13</td>
</tr>
<tr>
<td>➤ System</td>
<td>→ 13</td>
</tr>
<tr>
<td>➤ Sensor</td>
<td>→ 47</td>
</tr>
<tr>
<td>➤ Output</td>
<td>→ 112</td>
</tr>
<tr>
<td>➤ Communication</td>
<td>→ 132</td>
</tr>
<tr>
<td>➤ Analog inputs</td>
<td>→ 145</td>
</tr>
<tr>
<td>➤ Discrete inputs</td>
<td>→ 158</td>
</tr>
<tr>
<td>➤ Analog outputs</td>
<td>→ 166</td>
</tr>
<tr>
<td>➤ Discrete outputs</td>
<td>→ 178</td>
</tr>
<tr>
<td>➤ Application</td>
<td>→ 188</td>
</tr>
<tr>
<td>➤ Diagnostics</td>
<td>→ 202</td>
</tr>
</tbody>
</table>

Navigation

Expert → Direct access (0106)

Description

Input of the access code to enable direct access to the desired parameter via the local display. For this reason, each parameter is assigned a parameter number that appears in the navigation view on the right in the header of the selected parameter.

User entry

0 to 65535
Additional information

User entry

The direct access code consists of a 4-digit number and the channel number, which identifies the channel of a process variable: e.g. 0914-1

- The leading zeros in the direct access code do not have to be entered. Example: Input of "914" instead of "0914"
- If no channel number is entered, channel 1 is jumped to automatically. Example: Enter **0914** → **Assign process variable** parameter
- If a different channel is jumped to: Enter the direct access code with the corresponding channel number. Example: Enter **0914-3** → **Assign process variable** parameter

Locking status

Navigation

[] Expert → Locking status (0004)

Description

Use this function to view the active write protection.

User interface

- Hardware locked
- Temporarily locked

Additional information

User interface

If two or more types of write protection are active, the write protection with the highest priority is shown on the local display.

In the operating tool all active types of write protection are selected.

- If additional write protection is active, this restricts the current access authorization even further. The write protection status can be viewed via the **Locking status** parameter (→ 11).

"Hardware locked" option (priority 1)

The DIP switch for hardware locking is activated on the main electronics module. This locks write access to the parameters (e.g. via local display or operating tool).

Information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device.

"Temporarily locked" option (priority 2)

Write access to the parameters is temporarily locked on account of internal processes running in the device (e.g. data upload/download, reset etc.). Once the internal processing has been completed, the parameters can be changed once again.

Access status display

Navigation

[] Expert → Access stat.disp (0091)

Prerequisite

A local display is provided.

Description

Use this function to view the access authorization to the parameters via the local display.
Description of device parameters

User interface
- Operator
- Maintenance

Factory setting
Operator

Additional information
Description
If the ⚠-symbol appears in front of a parameter, it cannot be modified via the local display with the current access authorization.

1. The access authorization can be modified via the Enter access code parameter (→ 13).
2. For information on the Enter access code parameter (→ 13), see the "Disabling write protection via access code" section of the Operating Instructions for the device.
3. If additional write protection is active, this restricts the current access authorization even further. The write protection status can be viewed via the Locking status parameter (→ 11).

User interface
Information on access authorization is provided in the 'User roles and associated access authorization' and 'Operating concept' sections of the Operations Instructions for the device.

Access status tooling

Navigation
Expert → Access stat.tool (0005)

Description
Use this function to view the access authorization to the parameters via the operating tool.

User interface
- Operator
- Maintenance

Factory setting
Maintenance

Additional information
Description
1. The access authorization can be modified via the Enter access code parameter (→ 13).
2. If additional write protection is active, this restricts the current access authorization even further. The write protection status can be viewed via the Locking status parameter (→ 11).

Display
Information on access authorization is provided in the 'User roles and associated access authorization' and 'Operating concept' sections of the Operations Instructions for the device.
Enter access code

Navigation

Expert → Ent. access code (0092)

Description
Use this function to enter the user-specific release code to remove parameter write protection on the local display.

User entry
0 to 9999

Enter access code

Navigation

Expert → Ent. access code (0003)

Description
Use this function to enter the user-specific release code to remove parameter write protection in the operating tool.

User entry
0 to 9999

3.1 "System" submenu

Navigation

Expert → System

3.1.1 "Display" submenu

Navigation

Expert → System → Display
Language

Navigation

Expert → System → Display → Language (0104)

Prerequisite

A local display is provided.

Description

Use this function to select the configured language on the local display.
Selection

- English
- Deutsch *
- Français *
- Español *
- Italiano *
- Nederlands *
- Portuguesa *
- Polski *
- русский язык (Russian) *
- Svenska *
- Türkçe *
- 中文 (Chinese) *
- 日本語 (Japanese) *
- 한국어 (Korean) *
- Bahasa Indonesia *
- tiếng Việt (Vietnamese) *
- čeština (Czech) *

Factory setting

English (alternatively, the ordered language is preset in the device)

Format display

Navigation

Expert → System → Display → Format display (0098)

Prerequisite

A local display is provided.

Description

Use this function to select how the measured value is shown on the local display.

Selection

- 1 value, max. size
- 1 bargraph + 1 value
- 2 values
- 1 value large + 2 values
- 4 values

Factory setting

1 value, max. size

Additional information

Description

The display format (size, bar graph etc.) and number of measured values displayed simultaneously (1 to 4) can be configured. This setting only applies to normal operation.

- The Value 1 display parameter (→ 17)...Value 4 display parameter (→ 22) parameters are used to specify which measured values are shown on the display and in which order.
- If more measured values are specified than the display mode selected permits, then the values alternate on the device display. The display time until the next change is configured using the Display interval parameter (→ 23) parameter.

Possible measured values shown on the local display:

* Visibility depends on order options or device settings
"1 value, max. size" option

"1 bargraph + 1 value" option

"2 values" option

"1 value large + 2 values" option

"4 values" option
Value 1 display

Navigation
Expert → System → Display → Value 1 display (0107)

Prerequisite
A local display is provided.

Description
Use this function to select one of the measured values to be shown on the local display.

Selection
- Volume flow
- Corrected volume flow
- Mass flow
- Flow velocity
- Temperature
- Calculated saturated steam pressure *
- Steam quality *
- Total mass flow *
- Condensate mass flow *
- Energy flow *
- Heat flow difference *
- Reynolds number *
- Density *
- Pressure *
- Specific volume *
- Degrees of superheat *
- Totalizer 1
- Totalizer 2
- Totalizer 3

Factory setting
Volume flow

Additional information

* Description
If several measured values are displayed at once, the measured value selected here will be the first value to be displayed. The value is only displayed during normal operation.

* The **Format display** parameter (→ 15) is used to specify how many measured values are displayed simultaneously and how.

* **Selection**
The unit of the displayed measured value is taken from the **System units** submenu (→ 61).

0% bargraph value 1

Navigation
Expert → System → Display → 0% bargraph 1 (0123)

Prerequisite
A local display is provided.

Description
Use this function to enter the 0% bar graph value to be shown on the display for the measured value 1.

* Visibility depends on order options or device settings
Description of device parameters

User entry
Signed floating-point number

Factory setting
Country-specific:
- 0 m³/h
- 0 ft³/h

Additional information

- **Description**
 The **Format display** parameter (→ 15) is used to specify that the measured value is to be displayed as a bar graph.

- **User entry**
 The unit of the displayed measured value is taken from the **System units** submenu (→ 61).

100% bargraph value 1

Navigation
Expert → System → Display → 100% bargraph 1 (0125)

Prerequisite
A local display is provided.

Description
Use this function to enter the 100% bar graph value to be shown on the display for the measured value 1.

User entry
Signed floating-point number

Factory setting
Depends on country and nominal diameter → 234

Additional information

- **Description**
 The **Format display** parameter (→ 15) is used to specify that the measured value is to be displayed as a bar graph.

- **User entry**
 The unit of the displayed measured value is taken from the **System units** submenu (→ 61).

Decimal places 1

Navigation
Expert → System → Display → Decimal places 1 (0095)

Prerequisite
A measured value is specified in the **Value 1 display** parameter (→ 17).

Description
Use this function to select the number of decimal places for measured value 1.

Selection
- x
- x.x
- x.xx
- x.xxx
- xxxxx
Proline Prowirl 200 PROFIBUS PA

Description of device parameters

Factory setting

x.xx

Additional information

Description

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 2 display

Navigation

Expert → System → Display → Value 2 display (0108)

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values to be shown on the local display.

Selection

Picklist, see **Value 1 display** parameter (→ 17)

Factory setting

None

Additional information

Description

If several measured values are displayed at once, the measured value selected here will be the second value to be displayed. The value is only displayed during normal operation.

Selection

The unit of the displayed measured value is taken from the **System units** submenu (→ 61).

Decimal places 2

Navigation

Expert → System → Display → Decimal places 2 (0117)

Prerequisite

A measured value is specified in the **Value 2 display** parameter (→ 19).

Description

Use this function to select the number of decimal places for measured value 2.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting

x.xx
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

Additional information

Description

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 3 display

Navigation

Expert → System → Display → Value 3 display (0110)

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values to be shown on the local display.

Selection

Picklist, see Value 1 display parameter (→ 17)

Factory setting

None

Additional information

Description

If several measured values are displayed at once, the measured value selected here will be the third value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 15) is used to specify how many measured values are displayed simultaneously and how.

Selection

The unit of the displayed measured value is taken from the System units submenu (→ 61).

0% bargraph value 3

Navigation

Expert → System → Display → 0% bargraph 3 (0124)

Prerequisite

A selection has been made in the Value 3 display parameter (→ 20).

Description

Use this function to enter the 0% bar graph value to be shown on the display for the measured value 3.

User entry

Signed floating-point number

Factory setting

Country-specific:

- 0 m³/h
- 0 ft³/h

Additional information

Description

The Format display parameter (→ 15) is used to specify that the measured value is to be displayed as a bar graph.
User entry

The unit of the displayed measured value is taken from the System units submenu (→ 61).

100% bargraph value 3

Navigation

Expert → System → Display → 100% bargraph 3 (0126)

Prerequisite

A selection was made in the Value 3 display parameter (→ 20).

Description

Use this function to enter the 100% bar graph value to be shown on the display for the measured value 3.

User entry

Signed floating-point number

Factory setting

0

Additional information

Description

The Format display parameter (→ 15) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the System units submenu (→ 61).

Decimal places 3

Navigation

Expert → System → Display → Decimal places 3 (0118)

Prerequisite

A measured value is specified in the Value 3 display parameter (→ 20).

Description

Use this function to select the number of decimal places for measured value 3.

Selection

• x
• x.x
• x.xx
• x.xxx
• x.xxxx

Factory setting

x.xx

Additional information

Description

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.
Value 4 display

Navigation
Expert → System → Display → Value 4 display (0109)

Prerequisite
A local display is provided.

Description
Use this function to select one of the measured values to be shown on the local display.

Selection
Picklist, see Value 1 display parameter (→ 17)

Factory setting
None

Additional information
Description
If several measured values are displayed at once, the measured value selected here will be the fourth value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 15) is used to specify how many measured values are displayed simultaneously and how.

Selection
The unit of the displayed measured value is taken from the System units submenu (→ 61).

Decimal places 4

Navigation
Expert → System → Display → Decimal places 4 (0119)

Prerequisite
A measured value is specified in the Value 4 display parameter (→ 22).

Description
Use this function to select the number of decimal places for measured value 4.

Selection
- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting
x.xx

Additional information
Description
This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.
Display interval

Navigation

Expert → System → Display → Display interval (0096)

Prerequisite

A local display is provided.

Description

Use this function to enter the length of time the measured values are displayed if the values alternate on the display.

User entry

1 to 10 s

Factory setting

5 s

Additional information

Description

This type of alternating display only occurs automatically if the number of measured values defined exceeds the number of values the selected display format can display simultaneously.

- The Value 1 display parameter (→ 17) and Value 4 display parameter (→ 22) are used to specify which measured values are shown on the display.
- The display format of the displayed measured values is specified using the Format display parameter (→ 15).

Display damping

Navigation

Expert → System → Display → Display damping (0094)

Prerequisite

A local display is provided.

Description

Use this function to enter the reaction time of the local display to fluctuations in the measured value caused by process conditions.

User entry

0.0 to 999.9 s

Factory setting

5.0 s

Additional information

User entry

A time constant is entered:
- If a low time constant is entered, the display reacts particularly quickly to fluctuating measured variables.
- On the other hand, the display reacts more slowly if a high time constant is entered.

Header

Navigation

Expert → System → Display → Header (0097)

Prerequisite

A local display is provided.

Description

Use this function to select the contents of the header of the local display.
Selection

- Device tag
- Free text

Factory setting

Device tag

Additional information

Description

The header text only appears during normal operation.

![Header text on the display](image)

1 Position of the header text on the display

Selection

- Device tag
 Is defined in the Device tag parameter (→ 212).
- Free text
 Is defined in the Header text parameter (→ 24).

Header text

Navigation

Expert → System → Display → Header text (0112)

Prerequisite

The Free text option is selected in the Header parameter (→ 23).

Description

Use this function to enter a customer-specific text for the header of the local display.

User entry

Max. 12 characters such as letters, numbers or special characters (e.g. @, %, /)

Factory setting

Additional information

Description

The header text only appears during normal operation.

![Header text on the display](image)

1 Position of the header text on the display

User entry

The number of characters displayed depends on the characters used.
Separator

Navigation

Expert → System → Display → Separator (0101)

Prerequisite

A local display is provided.

Description

Use this function to select the decimal separator.

Selection

• . (point)
• , (comma)

Factory setting

. (point)

Contrast display

Navigation

Expert → System → Display → Contrast display (0105)

Prerequisite

A local display is provided.

Description

Use this function to enter a value to adapt the display contrast to the ambient conditions (e.g. the lighting or viewing angle).

User entry

20 to 80 %

Factory setting

Depends on the display

Additional information

Set the contrast via the push-buttons:

• Brighter: Press and hold down the keys simultaneously.
• Darker: Press and hold down the keys simultaneously.

Backlight

Navigation

Expert → System → Display → Backlight (0111)

Prerequisite

Order code for "Display; operation", option E 'SD03 4-line, illum.; touch control + data backup function"

Description

Option for switching the backlight of the local display on and off.

Selection

• Disable
• Enable

Factory setting

Disable
Access status display

Navigation

Expert → System → Display → Access stat.disp (0091)

Prerequisite

A local display is provided.

Description

Use this function to view the access authorization to the parameters via the local display.

User interface

- Operator
- Maintenance

Factory setting

Operator

Additional information

Description

If the ⚖-symbol appears in front of a parameter, it cannot be modified via the local display with the current access authorization.

- The access authorization can be modified via the **Enter access code** parameter (→ 13).
- For information on the **Enter access code** parameter (→ 13), see the "Disabling write protection via access code" section of the Operating Instructions for the device.
- If additional write protection is active, this restricts the current access authorization even further. The write protection status can be viewed via the **Locking status** parameter (→ 11).

User interface

Information on access authorization is provided in the 'User roles and associated access authorization' and 'Operating concept' sections of the Operations Instructions for the device.

3.1.2 "Configuration backup display" submenu

Navigation

Expert → System → Conf.backup disp

<table>
<thead>
<tr>
<th>Configuration backup display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating time (0652)</td>
</tr>
<tr>
<td>Last backup (0102)</td>
</tr>
<tr>
<td>Configuration management (0100)</td>
</tr>
<tr>
<td>Comparison result (0103)</td>
</tr>
</tbody>
</table>
Operating time

Navigation
Expert → System → Conf.backup disp → Operating time (0652)

Description
Use this function to display the length of time the device has been in operation.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
User interface

The maximum number of days is 9999, which is equivalent to 27 years.

Last backup

Navigation
Expert → System → Conf.backup disp → Last backup (0102)

Prerequisite
A local display is provided.

Description
Use this function to display the time since a backup copy of the data was last saved to the display module.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Configuration management

Navigation
Expert → System → Conf.backup disp → Config. managem. (0100)

Prerequisite
A local display is provided.

Description
Use this function to select an action to save the data to the display module.

Selection
- Cancel
- Execute backup
- Restore
- Duplicate
- Compare
- Clear backup data

Factory setting
Cancel

Additional information
Description

Configuration via the local display is disabled while the action is performed.

For information about the status message in the operating tool: Backup state parameter (→ 28)
Selection

- **Cancel**

 No action is executed and the user exits the parameter.

- **Execute backup**

 - A backup copy of the current device configuration in the HistoROM is saved to the display module of the device. The backup copy includes the transmitter data of the device.

 - The following message appears on local display: Backup active, please wait!

- **Restore**

 - The last backup copy of the device configuration is copied from the display module to the HistoROM of the device. The backup copy comprises the transmitter data of the device.

 - The following message appears on local display: Restore active! Do not interrupt power supply!

- **Duplicate**

 - The transmitter configuration from another device is duplicated to the device using the display module.

 - The following message appears on local display: Copy active! Do not interrupt power supply!

- **Compare**

 - The device configuration saved in the display module is compared to the current device configuration of the HistoROM.

 - The following message appears on local display: Comparing files

 - The result can be viewed in the **Comparison result** parameter (→ 29).

- **Clear backup data**

 - The backup copy of the device configuration is deleted from the display module of the device.

 - The following message appears on local display: Deleting file

HistoROM

A HistoROM is a "non-volatile" device memory in the form of an EEPROM.

Backup state

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Conf.backup disp → Backup state (0121)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>A local display is provided.</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to view the status of the data backup process.</td>
</tr>
</tbody>
</table>
| User interface | • None
 • Store in progress
 • Restore in progress
 • Import in progress
 • Delete in progress
 • Compare in progress |
| Factory setting | None |
Comparison result

Navigation

![Folder Icon] Expert → System → Conf.backup disp → Compar. result (0103)

Prerequisite

A local display is provided.

Description

Use this function to view the last result of comparing the current device configuration to the backup copy in the display module.

User interface

- Settings identical
- Settings not identical
- No backup available
- Backup settings corrupt
- Check not done
- Dataset incompatible

Factory setting

Check not done

Additional information

Description

The comparison is started via the **Compare** option in the **Configuration management** parameter (→ 27).

Selection

- Settings identical
 - The current device configuration of the HistoROM is identical to the backup copy in the display module.
 - If the transmitter configuration of another device has been copied to the device via the display module and the **Duplicate** option in the **Configuration management** parameter (→ 27), the current device configuration of the HistoROM only partly matches the backup copy in the display module: The settings for the transmitter are not identical.

- Settings not identical
 - The current device configuration of the HistoROM is not identical to the backup copy in the display module.

- No backup available
 - There is no backup copy of the device configuration of the HistoROM in the display module.

- Backup settings corrupt
 - The current device configuration of the HistoROM is corrupt or not compatible with the backup copy in the display module.

- Check not done
 - The device configuration of the HistoROM has not yet been compared to the backup copy in the display module.

- Dataset incompatible
 - The backup copy in the display module is not compatible with the device.

HistoROM

A HistoROM is a "non-volatile" device memory in the form of an EEPROM.
3.1.3 "Diagnostic handling" submenu

Navigation

Expert → System → Diagn. handling

Alarm delay

Navigation

Expert → System → Diagn. handling → Alarm delay (0651)

Description

Use this function to enter the time interval until the device generates a diagnostic message.

The diagnostic message is reset without a time delay.

User entry

0 to 60 s

Factory setting

0 s

Additional information

This setting affects the following diagnostic messages:

- 046 Sensor limit exceeded
- 828 Ambient temperature too low
- 829 Ambient temperature too high
- 832 Electronic temperature too high
- 833 Electronic temperature too low
- 834 Process temperature too high
- 835 Process temperature too low
- 841 Flow velocity too high
- 841 Sensor range
- 844 Sensor range exceeded
- 870 Measuring inaccuracy increased
- 871 Near steam saturation limit
- 872 Wet steam detected
- 873 Water detected
- 874 X% spec invalid
- 945 Sensor range exceeded
- 946 Vibration detected
- 947 Vibration exceeded
- 972 Degrees of superheat limit exceeded
"Diagnostic behavior" submenu

For a list of all the diagnostic events, see the Operating Instructions for the device.

Modifying the diagnostic behavior of a diagnostic event. Each diagnostic event is assigned a certain diagnostic behavior at the factory. The user can change this assignment for certain diagnostics events.

The following options are available in the Assign behavior of diagnostic no. xxx parameters:

- **Off** option
 The diagnostic event is ignored; it is neither entered into the Event logbook, nor is a diagnostic message generated.

- **Alarm** option
 The device continues to measure. The signal outputs assume the defined alarm condition. A diagnostic message is generated.

- **Warning** option
 The device continues to measure. A diagnostic message is generated.

- **Logbook entry only** option
 The device continues to measure. The diagnostic message is entered in the Event logbook submenu (→ 209) (Event list submenu (→ 210)) only and is not displayed in alternation with the measured value display.

Navigation
Expert → System → Diagn. handling → Diagn. behavior
Assign behavior of diagnostic no. 022 (Temperature sensor defective)

Navigation

- **Expert** → **System** → **Diagn. handling** → **Diagn. behavior** → **Diagnostic no. 022 (0751)**

Prerequisite

For the following order code:
- 'Sensor version', option 'Mass flow'

Description

Use this function to change the diagnostic behavior of the diagnostic message **022 Temperature sensor defective**.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Alarm
Assign behavior of diagnostic no. 122 (Temperature sensor defective)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 122 (0752)

Prerequisite
For the following order code:
'Sensor version', option 'Mass flow'

Description
Use this function to change the diagnostic behavior of the diagnostic message 122 Temperature sensor defective.

Selection
• Off
• Alarm
• Warning
• Logbook entry only

Factory setting
Warning

Assign behavior of diagnostic no. 350 (Pre-amplifier defective)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 350 (0756)

Description
Use this function to change the diagnostic behavior of the diagnostic message 350 Pre-amplifier defective.

Selection
• Off
• Alarm
• Warning
• Logbook entry only

Factory setting
Alarm

Assign behavior of diagnostic no. 371 (Temperature sensor defective)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 371 (0757)

Description
Use this function to change the diagnostic behavior of the diagnostic message 371 Temperature sensor defective.
Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available for selection: → 31

Assign behavior of diagnostic no. 442 (Frequency output)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 442 (0658)

Prerequisite
The measuring device has a pulse/frequency/switch output.

Description
Use this function to change the diagnostic behavior of the diagnostic message **442 Frequency output**.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available for selection: → 31

Assign behavior of diagnostic no. 443 (Pulse output)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 443 (0659)

Prerequisite
The measuring device has a pulse/frequency/switch output.

Description
Use this function to change the diagnostic behavior of the diagnostic message **443 Pulse output**.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available for selection: → 31
Assign behavior of diagnostic no. 828 (Ambient temperature too low)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 828 (0755)

Description
Use this function to change the diagnostic behavior of the diagnostic message 828 Ambient temperature too low.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available for selection: → 31

Assign behavior of diagnostic no. 829 (Ambient temperature too high)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 829 (0754)

Description
Use this function to change the diagnostic behavior of the diagnostic message 829 Ambient temperature too high.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available for selection: → 31

Assign behavior of diagnostic no. 832 (Electronic temperature too high)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 832 (0675)

Description
Use this function to change the diagnostic behavior of the diagnostic message 832 Electronic temperature too high.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available for selection: → 31
Assign behavior of diagnostic no. 833 (Electronic temperature too low)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 833 (0676)

Description

Use this function to change the diagnostic behavior of the diagnostic message 833 Electronic temperature too low.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning

Additional information

For a detailed description of the options available for selection: → 31

Assign behavior of diagnostic no. 834 (Process temperature too high)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 834 (0677)

Description

Use this function to change the diagnostic behavior of the diagnostic message 834 Process temperature too high.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning

Additional information

For a detailed description of the options available for selection: → 31

Assign behavior of diagnostic no. 835 (Process temperature too low)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 835 (0678)

Description

Use this function to change the diagnostic behavior of the diagnostic message 835 Process temperature too low.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning

Additional information

For a detailed description of the options available for selection: → 31
<table>
<thead>
<tr>
<th>Assign behavior of diagnostic no. 841 (Flow velocity too high)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>
| **Selection** | • Off
• Alarm
• Warning
• Logbook entry only |
| **Factory setting** | Warning |
| **Additional information** | For a detailed description of the options available for selection: → 31 |

<table>
<thead>
<tr>
<th>Assign behavior of diagnostic no. 844 (Sensor range exceeded)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>
| **Selection** | • Off
• Alarm
• Warning
• Logbook entry only |
| **Factory setting** | Warning |
| **Additional information** | For a detailed description of the options available for selection: → 31 |

<table>
<thead>
<tr>
<th>Assign behavior of diagnostic no. 870 (Measuring inaccuracy increased)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>
| **Selection** | • Off
• Alarm
• Warning
• Logbook entry only |
| **Factory setting** | Warning |
| **Additional information** | For a detailed description of the options available for selection: → 31 |
Assign behavior of diagnostic no. 871 (Near steam saturation limit)

Navigation
ением− система → Рек. обработка → Рек. поведение → Диагн. no. 871 (0748)

Prerequisite
In the Select medium parameter (→ 78), the Steam option is selected.

Description
Use this function to change the diagnostic behavior of the diagnostic message 871 Near steam saturation limit.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Off

Additional information
For a detailed description of the options available for selection: → 31

Assign behavior of diagnostic no. 872 (Wet steam detected)

Navigation
нием− система → Рек. обработка → Рек. поведение → Диагн. no. 872 (0746)

Prerequisite
The Wet steam detection application package has been enabled.

The software options currently enabled are displayed in the Software option overview parameter (→ 45).

Description
Use this function to change the diagnostic behavior of the diagnostic message 872 Wet steam detected.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available for selection: → 31

Assign behavior of diagnostic no. 873 (Water detected)

Navigation
нием− система → Рек. обработка → Рек. поведение → Диагн. no. 873 (0749)

Prerequisite
In the Select medium parameter (→ 78), the Steam option is selected.

Description
Use this function to change the diagnostic behavior of the diagnostic message 873 Water detected.
Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Off

Additional information
For a detailed description of the options available for selection: → 31

Assign behavior of diagnostic no. 874 (X% spec invalid)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 874 (0772)

Prerequisite
In the Select medium parameter (→ 78), the Steam option is selected.

Description
Use this function to change the diagnostic behavior of the diagnostic message 874 X% spec invalid.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Off

Additional information
For a detailed description of the options available for selection: → 31

Assign behavior of diagnostic no. 945 (Sensor range exceeded)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 945 (0750)

Prerequisite
For the following order code: 'Sensor version', option 'Mass flow'

Description
Use this function to change the diagnostic behavior of the diagnostic message 945 Sensor range exceeded.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available for selection: → 31
Assign behavior of diagnostic no. 947 (Vibration exceeded)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 947 (0753)

Description
Use this function to change the diagnostic behavior of the diagnostic message 947 Vibration exceeded.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Alarm

Additional information
For a detailed description of the options available for selection: → 31

Assign behavior of diagnostic no. 972 (Degrees of superheat limit exceeded)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 972 (0758)

Prerequisite
If the **Steam** option is selected in the **Select medium** parameter (→ 78).

Description
Use this function to change the diagnostic behavior of the diagnostic message 972 Degrees of superheat limit exceeded.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Off

Additional information
For a detailed description of the options available for selection: → 31

"Diagnostic limits" submenu

Navigation
Expert → System → Diagn. handling → Diagn. limits

- Reynolds number limit (7646)
- Steam quality limit (7717)
- Degrees of superheat limit (7737)
Reynolds number limit

Navigation
Expert → System → Diagn. handling → Diagn. limits → Re number limit (7646)

Prerequisite
For the following order code:
"Sensor version", option "Mass flow (integrated temperature measurement)"

Description
Use this function to enter the lower limit value for the Reynolds number. If the Reynolds number falls short of this limit value, the diagnostic message **870 Measuring inaccuracy increased** is triggered.

User entry
4 000 to 100 000

Factory setting
5 000

Additional information
Limit value
If the Reynolds number falls short of the limit value configured here, the diagnostic behavior selected in the **Assign behavior of diagnostic no. 870** parameter (→ 37) is triggered.

Steam quality limit

Navigation
Expert → System → Diagn. handling → Diagn. limits → SteamQualLimit (7717)

Prerequisite
The following conditions are met:
• In the **Select medium** parameter (→ 78), the Steam option is selected.
• In the **Steam quality** parameter (→ 108), the Calculated value option is selected.

Description
Use this function to enter the threshold value for the steam quality which, if undershot, triggers the diagnostic message **S872 Wet steam detected**.

User entry
80 to 100 %

Factory setting
80 %

Additional information
Limit value
This limit value has a hysteresis of 5 %, i.e. the diagnostic message is reset at a threshold value of +5 % or if 100 % is reached (for factory setting of 80 % at 85 %).

If the steam quality has dropped below the limit value configured here, the diagnostic behavior selected in the **Assign behavior of diagnostic no. 872** parameter (0746) (→ 38) is triggered.

Degrees of superheat limit

Navigation
Expert → System → Diagn. handling → Diagn. limits → Degr.superh.lim. (7737)

Prerequisite
In the **Select medium** parameter (→ 78), the Steam option is selected.
Description
Use this function to enter the threshold value for the degree of superheat which, if exceeded, triggers the diagnostic message 972 Degrees of superheat limit exceeded.

User entry
0 to 500 K

Factory setting
5 K

Additional information
Limit value
This limit value has a hysteresis of 1 K, i.e. the diagnostic message is triggered if the threshold value +1 K is reached and is reset again when the value drops below the threshold value.

If the degree of superheat has exceeded the limit value configured here, the diagnostic behavior selected in the Assign behavior of diagnostic no. 972 parameter (→ 40) is triggered.

3.1.4 "Administration" submenu

Navigation
Expert → System → Administration

"Define access code" wizard

The Define access code wizard is only available if operating using the local display. If you are operating using the operating tool, the Define access code parameter (→ 44) is directly in the Administration submenu. The Confirm access code parameter is not available if you are operating using the operating tool.

Navigation
Expert → System → Administration → Def. access code
Define access code

Navigation

Expert → System → Administration → Def. access code → Def. access code

Description

Use this function to enter a user-specific release code to restrict write-access to the parameters. This protects the configuration of the device against any inadvertent changes via the local display.

User entry

0 to 9999

Factory setting

0

Additional information

Description

The write protection affects all parameters in the document marked with the symbol. On the local display, the symbol in front of a parameter indicates that the parameter is write-protected.

Once the access code has been defined, write-protected parameters can only be modified if the access code is entered in the Enter access code parameter (→ 13).

If you lose the access code, please contact your Endress+Hauser Sales Center.

User entry

A message is displayed if the access code is not in the input range.

Factory setting

If the factory setting is not changed or 0 is defined as the access code, the parameters are not write-protected and the device configuration data can be modified. The user is logged on in the "Maintenance" role.

Confirm access code

Navigation

Expert → System → Administration → Def. access code → Confirm code

Description

Enter the defined release code a second time to confirm the release code.

User entry

0 to 9999

Factory setting

0
Additional parameters in the "Administration" submenu

Define access code

Navigation

Expert → System → Administration → Def. access code (0093)

Description

Use this function to enter a user-specific release code to restrict write-access to the parameters. This protects the configuration of the device against any inadvertent changes via the operating tool.

User entry

0 to 9 999

Factory setting

0

Additional information

Description

The write protection affects all parameters in the document marked with the symbol.

Once the access code has been defined, write-protected parameters can only be modified if the access code is entered in the **Enter access code** parameter (→ 13).

If you lose the access code, please contact your Endress+Hauser Sales Center.

User entry

A message is displayed if the access code is not in the input range.

Factory setting

If the factory setting is not changed or 0 is defined as the access code, the parameters are not write-protected and the device configuration data can be modified. The user is logged on in the "Maintenance" role.

Device reset

Navigation

Expert → System → Administration → Device reset (0000)

Description

Use this function to choose whether to reset the device configuration - either entirely or in part - to a defined state.

Selection

- Cancel
- To fieldbus defaults **
- To factory defaults
- To delivery settings
- Restart device

Factory setting

Cancel

Additional information

"Cancel" option

No action is executed and the user exits the parameter.

Visibility depends on communication
"To fieldbus defaults" option
Every parameter is reset to fieldbus default values.

"To factory defaults" option
Every parameter is reset to its factory setting.

"To delivery settings" option
Every parameter for which a customer-specific default setting was ordered is reset to this customer-specific value. All other parameters are reset to the factory setting.

This option is not visible if no customer-specific settings have been ordered.

"Restart device" option
The restart resets every parameter whose data are in the volatile memory (RAM) to the factory setting (e.g. measured value data). The device configuration remains unchanged.

Activate SW option

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Administration → Activate SW opt. (0029)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter an activation code to enable an additional, ordered software option.</td>
</tr>
<tr>
<td>User entry</td>
<td>Max. 10-digit string consisting of numbers.</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
<tr>
<td>Additional information</td>
<td>User entry</td>
</tr>
</tbody>
</table>

Endress+Hauser provides the corresponding activation code for the software option with the order.

NOTICE! This activation code varies depending on the measuring device and the software option. If an incorrect or invalid code is entered, this can result in the loss of software options that are already been activated. After commissioning the measuring device: in this parameter only enter activation codes which Endress+Hauser has provided (e.g. when a new software option was ordered). If an incorrect or invalid activation code is entered, enter the activation code from the parameter protocol again and contact your Endress+Hauser sales organization, quoting the serial number of your device.

Example for a software option

Order code for "Application package", option EA "Extended HistoROM"

Software option overview

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Administration → SW option overv. (0015)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays all the software options that are enabled in the device.</td>
</tr>
</tbody>
</table>
User interface

- Extended HistoROM
- Mass flow
- Natural gas
- Air + industrial gas
- Wet steam detection
- Wet steam measurement
- Heartbeat Verification

Additional information

Description
Displays all the options that are available if ordered by the customer.

"Extended HistoROM" option
Order code for "Application package", option EA "Extended HistoROM"

"Mass flow" option
Order code for "Sensor version"
- For Prowirl D, F, R: option 3 "Mass flow (integrated temperature measurement)"
- For Prowirl C, O: option 6 "Mass flow Alloy 718"

"Natural gas" option
Order code for "Application package", option EN "Natural gas"

"Air + industrial gas" option
Order code for "Application package", option ET "Air+industrial gases (single gas+gas mixtures)"

"Wet steam detection" option
Only available for Prowirl F.
Order code for "Application package", option ES "Wet steam detection"

"Wet steam measurement" option
Only available for Prowirl F.
Order code for "Application package", option EU "Wet steam measurement"

"Heartbeat Verification" option
Order code for "Application package", option EB "Heartbeat Verification"

Activate sensor emergency mode

Navigation
Expert → System → Administration → Sens. emerg.mode (7712)

Prerequisite
The device has identified an error during verification of the characteristics in the sensor data storage or electronics module. A diagnostic message of status type F is output.

Description
Use this function to switch on the emergency mode of the sensor to use the backup of the sensor characteristics or main electronics characteristics stored in the HistoROM.

Selection
- Cancel
- Ok
Additional information

Description

This parameter becomes visible if the data in the S-DAT or on-board memory cannot be read on account of a defect or error. There is a copy of the data on the HistoROM (FT10). If the emergency mode is activated, this copy is used and the device measure correctly again at least up until the next device switch-off/switch-on. After switch-on/switch-off, the emergency mode would have to be reactivated again. This ensures that the client can operate the device until a new spare part arrives.

The status signal of the output diagnostic message changes from \textbf{F} (failure) to \textbf{M} (maintenance required), the diagnostic behavior changes from Alarm to Warning: \textit{\textDelta}M. The diagnostic message is output until the characteristics in the sensor data storage are again correct.

Information on what is causing the diagnostic message, and remedy measures, can be viewed by pressing the \textit{\textbslash}-button.

Information on status signals and diagnostic behavior: Operating Instructions about the device, 'Diagnostic message' chapter

3.2 "Sensor" submenu

Navigation \quad \textbullet\textbullet\ Expert \rightarrow Sensor

\begin{itemize}
 \item [\textbullet Sensor]
 \begin{itemize}
 \item [\textbullet Measured values] \rightarrow \textbullet 47
 \item [\textbullet System units] \rightarrow \textbullet 61
 \item [\textbullet Process parameters] \rightarrow \textbullet 74
 \item [\textbullet Measurement mode] \rightarrow \textbullet 78
 \item [\textbullet External compensation] \rightarrow \textbullet 104
 \item [\textbullet Sensor adjustment] \rightarrow \textbullet 109
 \item [\textbullet Calibration] \rightarrow \textbullet 111
 \end{itemize}
\end{itemize}

3.2.1 "Measured values" submenu

Navigation \quad \textbullet\textbullet\ Expert \rightarrow Sensor \rightarrow Measured val.

\begin{itemize}
 \item [\textbullet Measured values]
 \begin{itemize}
 \item [\textbullet Process variables] \rightarrow \textbullet 48
 \end{itemize}
\end{itemize}
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

"Process variables" submenu

Navigation

<table>
<thead>
<tr>
<th>Process variables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume flow (1838)</td>
<td>49</td>
</tr>
<tr>
<td>Corrected volume flow (1850)</td>
<td>49</td>
</tr>
<tr>
<td>Mass flow (1847)</td>
<td>50</td>
</tr>
<tr>
<td>Flow velocity (1865)</td>
<td>50</td>
</tr>
<tr>
<td>Temperature (1851)</td>
<td>51</td>
</tr>
<tr>
<td>Calculated saturated steam pressure (1852)</td>
<td>51</td>
</tr>
<tr>
<td>Steam quality (1853)</td>
<td>52</td>
</tr>
<tr>
<td>Total mass flow (1854)</td>
<td>52</td>
</tr>
<tr>
<td>Condensate mass flow (1857)</td>
<td>52</td>
</tr>
<tr>
<td>Energy flow (1872)</td>
<td>53</td>
</tr>
<tr>
<td>Heat flow difference (1863)</td>
<td>53</td>
</tr>
<tr>
<td>Reynolds number (1864)</td>
<td>53</td>
</tr>
<tr>
<td>Density (7607)</td>
<td>54</td>
</tr>
<tr>
<td>Specific volume (7739)</td>
<td>54</td>
</tr>
<tr>
<td>Pressure (7696)</td>
<td>55</td>
</tr>
<tr>
<td>Saturation temperature (7709)</td>
<td>55</td>
</tr>
<tr>
<td>Degrees of superheat (7738)</td>
<td>56</td>
</tr>
<tr>
<td>Compressibility factor (7729)</td>
<td>56</td>
</tr>
<tr>
<td>Vortex frequency (7722)</td>
<td>56</td>
</tr>
</tbody>
</table>
Volume flow

Navigation

Description
Use this function to view the volume flow currently measured.

User interface
Signed floating-point number

Additional information
Dependency
- The unit is taken from the **Volume flow unit** parameter (→ 62)

Corrected volume flow

Navigation

Description
Displays the corrected volume flow currently calculated.

User interface
Signed floating-point number

Additional information
Description
To calculate the corrected volume flow, the measured volume flow is multiplied by the ratio of the density (Density parameter (→ 54)) to the reference density. The density and reference density here depend on the sensor version and the selected medium (see table). Outputting the corrected volume flow cannot be used for gases that condense (e.g. steam).

<table>
<thead>
<tr>
<th>Sensor version</th>
<th>Medium</th>
<th>Medium type</th>
<th>Density</th>
<th>Reference density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume flow</td>
<td>All</td>
<td>-</td>
<td>ρ</td>
<td>ρ_{ref}</td>
</tr>
<tr>
<td>Mass flow</td>
<td>Steam</td>
<td>-</td>
<td>$f(p, T)$</td>
<td>~</td>
</tr>
<tr>
<td></td>
<td>Gas</td>
<td>All except</td>
<td>$f(p, T)$</td>
<td>$f(p_{ref}, T_{ref})$</td>
</tr>
<tr>
<td></td>
<td>Liquid</td>
<td>All except</td>
<td>$f(T)$</td>
<td>$f(T_{ref})$</td>
</tr>
<tr>
<td></td>
<td>Gas</td>
<td>2)</td>
<td>$f(p, T, z, p_{ref}, T_{ref}, z_{ref}, \rho_{ref})$</td>
<td>ρ_{ref}</td>
</tr>
<tr>
<td></td>
<td>Liquid</td>
<td>2)</td>
<td>$f(T, a_{lin}, T_{ref}, \rho_{ref})$</td>
<td>ρ_{ref}</td>
</tr>
</tbody>
</table>

- ρ_{ref}: Reference density (→ 106)
- p_{ref}: Reference pressure (→ 87)
- T_{ref}: Reference temperature (→ 88)
- z_{ref}: Reference Z-factor (→ 88)
- a_{lin}: Linear expansion coefficient (→ 82)

1) Outputting the corrected volume flow cannot be used for gases that condense.
2) User-specific gas or liquid

Dependency
- The unit is taken from the **Corrected volume flow unit** parameter (→ 65)
Mass flow

Navigation

Description
Displays the mass flow currently calculated.

User interface
Signed floating-point number

Additional information

To calculate the mass flow, the measured volume flow is multiplied by the density (Density parameter (→ 54)). The density depends on the sensor version and the selected medium (see table).

<table>
<thead>
<tr>
<th>Sensor version</th>
<th>Medium</th>
<th>Medium type</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume flow</td>
<td>All</td>
<td>–</td>
<td>ρ</td>
</tr>
<tr>
<td>Mass flow</td>
<td>Steam</td>
<td>–</td>
<td>f(p, T)</td>
</tr>
<tr>
<td></td>
<td>Gas</td>
<td>All except 1</td>
<td>f(p, T)</td>
</tr>
<tr>
<td></td>
<td>Liquid</td>
<td>All except 1</td>
<td>f(T)</td>
</tr>
<tr>
<td></td>
<td>Gas</td>
<td>1)</td>
<td>f(p, T, z, p_{Ref}, T_{Ref}, z_{Ref}, ρ_{Ref})</td>
</tr>
<tr>
<td></td>
<td>Liquid</td>
<td>1)</td>
<td>f(T, a_{lin}, T_{Ref}, ρ_{Ref})</td>
</tr>
</tbody>
</table>

ρ, ρ_{Ref}, p, p_{Ref}, T, T_{Ref}, z, z_{Ref}, a_{lin}, f(…)

1) User-specific gas or liquid

Dependency

The unit is taken from the Mass flow unit parameter (→ 64)

Flow velocity

Navigation

Description
Displays the flow velocity currently calculated.

User interface
Signed floating-point number

Additional information

The flow velocity is calculated based on the aspect ratio of the vortex measuring tube (DS) to the process connection of the sensor (DI), or to the Mating pipe diameter parameter (→ 110) (DM) if this has been entered by the customer; the DS and DI are production data that are defined by the shape and size of the meter body.
Temperature

Navigation

Description
Displays the temperature currently measured.

User interface
Signed floating-point number

Additional information

Dependency
The unit is taken from the Temperature unit parameter (→ 67).

Calculated saturated steam pressure

Navigation

Prerequisite
The following conditions are met:
- Order code for "Sensor version", option "Mass flow"
- In the Select medium parameter (→ 78), the Steam option is selected.

Description
Displays the saturated steam pressure currently calculated.

User interface
Signed floating-point number

Additional information

Dependency
The unit is taken from the Pressure unit parameter (→ 66)
Steam quality

Navigation

Prerequisite

The following conditions are met:
1. Order code for "Sensor version", option "Mass flow"
2. In the Select medium parameter (→ 78), the Steam option is selected.

Description

Displays the current steam quality. Depends on the compensation mode of the steam quality (Steam quality parameter (→ 108)).

User interface

Signed floating-point number

Total mass flow

Navigation

Prerequisite

The following conditions are met:
1. Order code for "Application package", option EU "Wet steam measurement"
2. In the Select medium parameter (→ 78), the Steam option is selected.

Description

Displays the total mass flow (steam and condensate) currently calculated.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Mass flow unit parameter (→ 64)

Condensate mass flow

Navigation

Prerequisite

The following conditions are met:
1. Order code for "Application package", option EU "Wet steam measurement"
2. In the Select medium parameter (→ 78), the Steam option is selected.

Description

Displays the condensate mass flow currently calculated.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Mass flow unit parameter (→ 64)
Energy flow

Navigation

Prerequisite

For the following order code:
"Sensor version", option 'Mass flow'

Description

Displays the energy flow currently calculated.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Energy flow unit parameter (→ 68)

Heat flow difference

Navigation

Prerequisite

The following conditions are met:
Order code for "Sensor version", option 'Mass flow'

One of the following options is selected in the Select gas type parameter (→ 78):

- Single gas
- Gas mixture
- Natural gas
- User-specific gas

Description

Displays the heat flow difference currently calculated.

User interface

Signed floating-point number

Additional information

Description

The measuring device requires the following to calculate the heat flow difference correctly:

1. Select the type of calculation in the Delta heat calculation parameter (→ 106).
2. Enter the value in the 2nd temperature delta heat parameter (→ 107).

Dependency

The unit is taken from the Energy flow unit parameter (→ 68)

Reynolds number

Navigation

Prerequisite

For the following order code:
"Sensor version", option 'Mass flow'
Description
Displays the Reynolds number currently calculated.

User interface
Signed floating-point number

Additional information
\[Re = \frac{\rho \cdot v \cdot d}{\eta} \]

Where:
- \(\rho \) is the density of the medium (Density parameter \(\rightarrow \) 54)
- \(v \) is the flow velocity of the fluid in relation to the body (Flow velocity parameter \(\rightarrow \) 50)
- \(d \) is the characteristic length of the body
- \(\eta \) is the viscosity of the medium
 - For gases: Dynamic viscosity parameter \(\rightarrow \) 85
 - For liquids: Dynamic viscosity parameter \(\rightarrow \) 84
- The mating pipe diameter is taken as the characteristic length (Mating pipe diameter parameter \(\rightarrow \) 110)

Density

Navigation
Expert \(\rightarrow \) Sensor \(\rightarrow \) Measured val. \(\rightarrow \) Process variab. \(\rightarrow \) Density (7607)

Prerequisite
For the following order code:
'Sensor version', option 'Mass flow'

Description
Displays the density currently calculated.

User interface
Positive floating-point number

Additional information
Depending on the selected medium the density is calculated with pressure and temperature and the corresponding method (e.g. IAPWS, NEL40...).

User interface
The unit is taken from the Density unit parameter \(\rightarrow \) 71

Specific volume

Navigation
Expert \(\rightarrow \) Sensor \(\rightarrow \) Measured val. \(\rightarrow \) Process variab. \(\rightarrow \) Specific volume (7739)

Prerequisite
For the following order code:
'Sensor version', option 'Mass flow'

Description
Displays the current value for the specific volume.

User interface
Positive floating-point number
Additional information

Description

The specific volume is a process variable that is common in steam applications.

For the calculation: reciprocal value of the density (*Density* parameter → 54)

Dependency

The unit is taken from the *Specific volume unit* parameter (→ 72)

Pressure

Navigation

Prerequisite

For the following order code:
- "Sensor version", option "Mass flow"
- In the *External value* parameter (→ 105), the *Pressure* option is selected.

Description

Displays the current process pressure.

User interface

0 to 250 bar

Additional information

The value of the pressure which is read in (e.g. via the current input module) is displayed.

If the *Pressure* option is not selected as the external value in the *External value* parameter (→ 105), the input value for the fixed process pressure (*Fixed process pressure* parameter (→ 108)) is displayed.

Dependency

The unit is taken from the *Pressure unit* parameter (→ 66)

Saturation temperature

Navigation

Prerequisite

In the *Select medium* parameter (→ 78), the *Steam* option is selected.

Description

Displays the saturation temperature currently calculated.

User interface

Country-specific:
- °C
- °F

Additional information

The saturation temperature describes the temperature limit at which steam begins to condense. This value is calculated using the current process pressure (*Pressure* parameter (→ 55)) according to IAPWS-IF97.
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

Dependency

The unit is taken from the Temperature unit parameter (→ 67).

Degrees of superheat

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>In the Select medium parameter (→ 78), the Steam option is selected.</td>
</tr>
<tr>
<td>Description</td>
<td>Displays the degree of superheating currently calculated.</td>
</tr>
<tr>
<td>User interface</td>
<td>0 to 500 K</td>
</tr>
</tbody>
</table>

Additional information

Description

The degree of superheating describes the difference between the temperature (Temperature parameter (→ 51)) and the saturation temperature (Saturation temperature parameter (→ 55)). If the temperature is below the current saturation temperature, the degree of superheating has the value 0.

Compressibility factor

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>The following conditions are met:</td>
</tr>
<tr>
<td></td>
<td>Order code for "Sensor version", option "Mass flow"</td>
</tr>
<tr>
<td></td>
<td>In the Select medium parameter (→ 78), the Gas option or Steam option is selected.</td>
</tr>
<tr>
<td>Description</td>
<td>Displays the compressibility factor currently calculated.</td>
</tr>
<tr>
<td>User interface</td>
<td>0 to 2</td>
</tr>
</tbody>
</table>

Additional information

Description

The compressibility factor describes the deviation of the medium from the ideal behavior under the current process conditions. If the medium is a user-specific gas/liquid, the compressibility factor is entered as the Z-factor (Z-factor parameter (→ 86)).

Vortex frequency

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the measured variable for the flow in the measuring tube which is recorded directly with the DSC sensor.</td>
</tr>
</tbody>
</table>
Measuring range depending on the nominal diameter:
0.1 to 3 100 Hz

Description of device parameters

Filter settings for liquids

<table>
<thead>
<tr>
<th>Nominal diameter</th>
<th>Minimum vortex frequency</th>
<th>Maximum vortex frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f_{min} [Hz]</td>
<td>f_{max} [Hz]</td>
</tr>
<tr>
<td>DN 15 (½")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 25 (1") > DN 15 (½")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 40 (1½") >> DN 15 (½")</td>
<td>11.5</td>
<td>666.5</td>
</tr>
<tr>
<td>DN 25 (1")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 40 (1½") > DN 25 (1")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 50 (2") >> DN 25 (1")</td>
<td>6.7</td>
<td>388.8</td>
</tr>
<tr>
<td>DN 40 (1½")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 50 (2") > DN 40 (1½")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 80 (3") >> DN 40 (1½")</td>
<td>3.9</td>
<td>224.3</td>
</tr>
<tr>
<td>DN 50 (2")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 80 (3") > DN 50 (2")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 100 (4") >> DN 50 (2")</td>
<td>3.0</td>
<td>172.8</td>
</tr>
<tr>
<td>DN 80 (3")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 100 (4") > DN 80 (3")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN150 (6") >> DN 80 (3")</td>
<td>2.1</td>
<td>122.8</td>
</tr>
<tr>
<td>DN 100 (4")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN150 (6") > DN 100 (4")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 200 (8") >> DN 100 (4")</td>
<td>1.7</td>
<td>101.4</td>
</tr>
<tr>
<td>DN150 (6")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 200 (8") > DN 150 (6")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 250 (10") >> DN 150 (6")</td>
<td>1.1</td>
<td>66.6</td>
</tr>
<tr>
<td>DN 200 (8")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 250 (10")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 300 (12")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 200 (8") > DN 300 (12")</td>
<td>0.7</td>
<td>41.7</td>
</tr>
<tr>
<td>DN 250 (10")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 300 (12")</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Filter settings for gases/steam

<table>
<thead>
<tr>
<th>DN [mm (in)]</th>
<th>Minimum vortex frequency</th>
<th>Maximum vortex frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f_{min} [Hz]</td>
<td>f_{max} [Hz]</td>
</tr>
<tr>
<td>DN 15 (½")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 25 (1") > DN 15 (½")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 40 (1½") >> DN 15 (½")</td>
<td>209.9</td>
<td>3 100</td>
</tr>
<tr>
<td>DN 25 (1")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 40 (1½") > DN 25 (1")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 50 (2") >> DN 25 (1")</td>
<td>67.1</td>
<td>3 100</td>
</tr>
<tr>
<td>DN 40 (1½")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 50 (2") > DN 40 (1½")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 80 (3") >> DN 40 (1½")</td>
<td>13.7</td>
<td>1869.1</td>
</tr>
<tr>
<td>DN 50 (2")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 80 (3") > DN 50 (2")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 100 (4") >> DN 50 (2")</td>
<td>10.5</td>
<td>2 303.8</td>
</tr>
</tbody>
</table>
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

Totalizer

Navigation

Expert → Sensor → Measured val. → Totalizer

<table>
<thead>
<tr>
<th>DN [mm (in)]</th>
<th>Minimum vortex frequency (f_{\text{min}}) [Hz]</th>
<th>Maximum vortex frequency (f_{\text{max}}) [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN 80 (3”)</td>
<td>7.5</td>
<td>1636.9</td>
</tr>
<tr>
<td>DN 100 (4”)</td>
<td>6.2</td>
<td>1352.3</td>
</tr>
<tr>
<td>DN 150 (6”)</td>
<td>4.1</td>
<td>888.6</td>
</tr>
<tr>
<td>DN 200 (8”)</td>
<td>2.5</td>
<td>555.4</td>
</tr>
<tr>
<td>DN 250 (10”)</td>
<td>2.1</td>
<td>457.3</td>
</tr>
<tr>
<td>DN 300 (12”)</td>
<td>1.8</td>
<td>385.3</td>
</tr>
</tbody>
</table>

Totalizer value 1 to 3

Navigation

Expert → Sensor → Measured val. → Totalizer → Totalizer val. 1 to 3 (3827–1 to 3)

Prerequisite

In **Target mode** parameter (→ 195), the **Auto** option is selected.

Description

Displays the current reading for totalizer 1-3.

User interface

Signed floating-point number

Additional information

As it is only possible to display a maximum of 7 digits, the current counter value is the sum of the totalizer value and the overflow value from the **Totalizer overflow 1 to 3** parameter if the display range is exceeded.

In the event of an error, the totalizer adopts the mode defined in the **Failure mode** parameter.
User interface
The value of the process variable totalized since measuring began can be positive or negative. This depends on the settings in the **Totalizer operation mode** parameter.

The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 189).

Totalizer status (Hex) 1 to 3

Navigation

Expert → Sensor → Measured val. → Totalizer → Status (Hex) 1 to 3 (3825–1 to 3)

Prerequisite

In **Target mode** parameter (→ 195), the **Auto** option is selected.

Description

Displays the status value (hex) of the particular totalizer.

User interface

0 to 0xFF

Totalizer status 1 to 3

Navigation

Expert → Sensor → Measured val. → Totalizer → Tot. status 1 to 3 (3826–1 to 3)

Description

Displays the status of the particular totalizer.

User interface

- Good
- Uncertain
- Bad

"Output values" submenu

Navigation

Expert → Sensor → Measured val. → Output values

- **Output values**
 - Terminal voltage 1 (0662) → 60
 - Pulse output (0456) → 60
 - Output frequency (0471) → 61
 - Switch status (0461) → 61
Terminal voltage 1

Navigation
Expert → Sensor → Measured val. → Output values → Terminal volt. 1 (0662)

Description
Use this function to view the actual terminal voltage that is present at the current output.

User interface
0.0 to 50.0 V

Pulse output

Navigation
Expert → Sensor → Measured val. → Output values → Pulse output (0456)

Prerequisite
The Pulse option is selected in the Operating mode parameter (→ 114).

Description
Displays the pulse frequency currently output.

User interface
Positive floating-point number

Additional information
* The pulse output is an open collector output.
* This is configured at the factory in such a way that the transistor is conductive for the duration of the pulse (NO contact) and is safety-oriented.
* The Value per pulse parameter (→ 116) and the Pulse width parameter (→ 116) can be used to define the value (i.e. the amount of the measured value that corresponds to a pulse) and the duration of the pulse.

![Pulse Output Diagram](image_url)

0 Non-conductive
1 Conductive
NC NC contact (normally closed)
NO NO contact (normally open)

The output behavior can be reversed via the Invert output signal parameter (→ 131), i.e. the transistor does not conduct for the duration of the pulse.

In addition, the behavior of the output in the event of an error (Failure mode parameter (→ 117)) can be configured.
Output frequency

Navigation
Expert → Sensor → Measured val. → Output values → Output freq. (0471)

Prerequisite
In the **Operating mode** parameter (→ 114), the **Frequency** option is selected.

Description
Displays the actual value of the output frequency which is currently measured.

User interface
0 to 1,250 Hz

Switch status

Navigation
Expert → Sensor → Measured val. → Output values → Switch status (0461)

Prerequisite
The **Switch** option is selected in the **Operating mode** parameter (→ 114).

Description
Displays the current switch status of the status output.

User interface
- Open
- Closed

Additional information
User interface
- Open
The switch output is not conductive.
- Closed
The switch output is conductive.

3.2.2 "System units" submenu

Navigation
Expert → Sensor → System units

<table>
<thead>
<tr>
<th>System units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume flow unit (0553)</td>
</tr>
<tr>
<td>Volume unit (0563)</td>
</tr>
<tr>
<td>Mass flow unit (0554)</td>
</tr>
<tr>
<td>Mass unit (0574)</td>
</tr>
<tr>
<td>Corrected volume flow unit (0558)</td>
</tr>
<tr>
<td>Corrected volume unit (0575)</td>
</tr>
</tbody>
</table>
Volume flow unit

Navigation

Expert → Sensor → System units → Volume flow unit (0553)

Description

Use this function to select the unit for the volume flow.
Selection

SI units
- m³/s
- m³/min
- m³/h
- m³/d
- dm³/s
- dm³/min
- dm³/h
- dm³/d
- m³/s
- m³/min
- m³/h
- m³/d
- ml/s
- ml/min
- ml/h
- ml/d
- l/s
- l/min
- l/h
- l/d
- hl/s
- hl/min
- hl/h
- hl/d
- Ml/s
- Ml/min
- Ml/h
- Ml/d

US units
- af/s
- af/min
- af/h
- af/d
- ft³/s
- ft³/min
- ft³/h
- ft³/d
- fl oz/s (us)
- fl oz/min (us)
- fl oz/h (us)
- fl oz/d (us)
- gal/s (us)
- gal/min (us)
- gal/h (us)
- gal/d (us)
- kgal/s (us)
- kgal/min (us)
- kgal/h (us)
- kgal/d (us)
- bbl/s (us;liq.)
- bbl/min (us;liq.)
- bbl/h (us;liq.)
- bbl/d (us;liq.)
- bbl/s (us;beer)
- bbl/min (us;beer)
- bbl/h (us;beer)
- bbl/d (us;beer)
- bbl/s (us;oil)
- bbl/min (us;oil)
- bbl/h (us;oil)
- bbl/d (us;oil)
- bbl/s (us;tank)
- bbl/min (us;tank)
- bbl/h (us;tank)
- bbl/d (us;tank)

Imperial units
- gal/s (imp)
- gal/min (imp)
- gal/h (imp)
- gal/d (imp)
- Mgal/s (imp)
- Mgal/min (imp)
- Mgal/h (imp)
- Mgal/d (imp)
- bbl/s (imp;beer)
- bbl/min (imp;beer)
- bbl/h (imp;beer)
- bbl/d (imp;beer)
- bbl/s (imp;oil)
- bbl/min (imp;oil)
- bbl/h (imp;oil)
- bbl/d (imp;oil)

Factory setting

Country-specific:
- m³/h
- ft³/min

Additional information

Result

The selected unit applies for:

Volume flow parameter (→ 49)

Selection

For an explanation of the abbreviated units: → 238
Volume unit

Navigation
Expert → Sensor → System units → Volume unit (0563)

Description
Use this function to select the unit for the volume.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm³</td>
<td>af</td>
<td>gal (imp)</td>
</tr>
<tr>
<td>dm³</td>
<td>ft³</td>
<td>Mgal (imp)</td>
</tr>
<tr>
<td>m³</td>
<td>fl oz (us)</td>
<td>bbl (imp;beer)</td>
</tr>
<tr>
<td>ml</td>
<td>gal (us)</td>
<td>bbl (imp;oil)</td>
</tr>
<tr>
<td>l</td>
<td>kg (us)</td>
<td>bbl (us;oil)</td>
</tr>
<tr>
<td>hl</td>
<td>Mgal (us)</td>
<td>bbl (us;liqu.)</td>
</tr>
<tr>
<td>Ml Mega</td>
<td>bbl (us;beer)</td>
<td>bbl (us;tank)</td>
</tr>
</tbody>
</table>

Factory setting
Country-specific:
- m³
- ft³

Additional information
Selection
For an explanation of the abbreviated units: → 238

Mass flow unit

Navigation
Expert → Sensor → System units → Mass flow unit (0554)

Description
Use this function to select the unit for the mass flow.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/s</td>
<td>oz/s</td>
<td>STon/s</td>
</tr>
<tr>
<td>g/min</td>
<td>oz/min</td>
<td>STon/min</td>
</tr>
<tr>
<td>g/h</td>
<td>oz/h</td>
<td>STon/h</td>
</tr>
<tr>
<td>g/d</td>
<td>oz/d</td>
<td>STon/d</td>
</tr>
<tr>
<td>kg/s</td>
<td>lb/s</td>
<td>STon/s</td>
</tr>
<tr>
<td>kg/min</td>
<td>lb/min</td>
<td>STon/min</td>
</tr>
<tr>
<td>kg/h</td>
<td>lb/h</td>
<td>STon/h</td>
</tr>
<tr>
<td>kg/d</td>
<td>lb/d</td>
<td>STon/d</td>
</tr>
</tbody>
</table>

Factory setting
Country-specific:
- kg/h
- lb/min
Additional information
Result

The selected unit applies for:
- Mass flow parameter (→ 50)
- Total mass flow parameter (→ 52)
- Condensate mass flow parameter (→ 52)

Selection

For an explanation of the abbreviated units: → 238

Mass unit

Navigation

Expert → Sensor → System units → Mass unit (0574)

Description

Use this function to select the unit for the mass.

Selection

SI units
- g
- kg
- t

US units
- oz
- lb
- STon

Factory setting

Country-specific:
- kg
- lb

Additional information
Selection

For an explanation of the abbreviated units: → 238

Corrected volume flow unit

Navigation

Expert → Sensor → System units → Cor.volflow unit (0558)

Description

Use this function to select the unit for the corrected volume flow.

Selection

SI units
- Nl/s
- Nl/min
- Nl/h
- Nl/d
- Nm³/s
- Nm³/min
- Nm³/h
- Nm³/d
- Sm³/s
- Sm³/min
- Sm³/h
- Sm³/d

US units
- Sft³/s
- Sft³/min
- Sft³/h
- Sft³/d
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

Factory setting
Country-specific:
- Nm³/h
- Sft³/h

Additional information
Result
The selected unit applies for:
Corrected volume flow parameter (→ 49)

Selection
For an explanation of the abbreviated units: → 238

Corrected volume unit

Navigation
Expert → Sensor → System units → Corr. vol. unit (0575)

Description
Use this function to select the unit for the corrected volume.

Selection
SI units
- Nl
- Nm³
- Sm³

US units
- Sft³

Factory setting
Country-specific:
- Nm³
- Sft³

Additional information
Selection
For an explanation of the abbreviated units: → 238

Pressure unit

Navigation
Expert → Sensor → System units → Pressure unit (0564)

Prerequisite
For the following order code:
"Sensor version", option 'Mass flow"

Description
Use this function to select the unit for the pipe pressure.
Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Other units</th>
</tr>
</thead>
<tbody>
<tr>
<td>• GPa</td>
<td>• psi</td>
<td>• inH20 (4°C)</td>
</tr>
<tr>
<td>• MPa</td>
<td></td>
<td>• inH20 (68°F)</td>
</tr>
<tr>
<td>• kPa</td>
<td></td>
<td>• mmH20 (4°C)</td>
</tr>
<tr>
<td>• Pa</td>
<td></td>
<td>• mmH20 (68°F)</td>
</tr>
<tr>
<td>• mPa</td>
<td></td>
<td>• ftH20 (68°F)</td>
</tr>
<tr>
<td>• µPa</td>
<td></td>
<td>• inHg (0°C)</td>
</tr>
<tr>
<td>• bar</td>
<td></td>
<td>• mmHg (0°C)</td>
</tr>
<tr>
<td>• mbar a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• torr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• atm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• kgf/cm²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• gf/cm²</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Factory setting

<table>
<thead>
<tr>
<th>Country-specific:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• bar</td>
</tr>
<tr>
<td>• psi</td>
</tr>
</tbody>
</table>

Additional information

Result

The unit is taken from:

- **Calculated saturated steam pressure** parameter (→ 51)
- **Atmospheric pressure** parameter (→ 106)
- **Maximum value** parameter (→ 227)
- **Fixed process pressure** parameter (→ 108)
- **Pressure** parameter (→ 55)
- **Reference pressure** parameter (→ 87)

Temperature unit

Navigation

Expert → Sensor → System units → Temperature unit (0557)

Description

Use this function to select the unit for the temperature.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>• °C</td>
<td>• °F</td>
</tr>
<tr>
<td>• K</td>
<td>• °R</td>
</tr>
</tbody>
</table>

Factory setting

<table>
<thead>
<tr>
<th>Country-specific:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• °C</td>
</tr>
<tr>
<td>• °F</td>
</tr>
</tbody>
</table>

Additional information

<table>
<thead>
<tr>
<th>Result</th>
</tr>
</thead>
</table>

The selected unit applies for:

- **Temperature** parameter (→ 51)
- **Maximum value** parameter (→ 224)
- **Minimum value** parameter (→ 224)
- **Average value** parameter (→ 224)
- **Maximum value** parameter (→ 225)
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

- **Minimum value** parameter (→ 225)
- **Maximum value** parameter (→ 226)
- **Minimum value** parameter (→ 226)
- **2nd temperature delta heat** parameter (→ 107)
- **Fixed temperature** parameter (→ 107)
- **Reference combustion temperature** parameter (→ 86)
- **Reference temperature** parameter (→ 88)
- **Saturation temperature** parameter (→ 55)

Selection

For an explanation of the abbreviated units: → 238

Energy flow unit

Navigation

Expert → Sensor → System units → Energy flow unit (0565)

Prerequisite

For the following order code:

"Sensor version", option "Mass flow"

Description

Use this function to select the unit for the energy flow.

Selection

SI units

- kW
- MW
- GW
- kJ/s
- kJ/min
- kJ/h
- kJ/d
- MJ/s
- MJ/h
- MJ/min
- MJ/d
- GJ/s
- GJ/min
- GJ/h
- GJ/d
- kcal/s
- kcal/min
- kcal/h
- kcal/d
- Mcal/s
- Mcal/min
- Mcal/h
- Mcal/d
- Gcal/s
- Gcal/min
- Gcal/h
- Gcal/d

Imperial units

- Btu/s
- Btu/min
- Btu/h
- Btu/day
- MBtu/s
- MBtu/min
- MBtu/h
- MBtu/d
- MMBtu/s
- MMBtu/min
- MMBtu/h
- MMBtu/d

Factory setting

Country-specific:

- kW
- Btu/h
Additional information

Result

The selected unit applies for:

- **Heat flow difference** parameter (→ 53)
- **Energy flow** parameter (→ 53)

Selection

For an explanation of the abbreviated units: → 238

Energy unit

Navigation

[Expert → Sensor → System units → Energy unit (0559)]

Prerequisite

For the following order code:

'Sensor version', option 'Mass flow'

Description

Use this function to select the unit for energy.

Selection

SI units

- kWh
- MWh
- GWh
- kJ
- MJ
- GJ
- kcal
- Mcal
- Gcal

Imperial units

- Btu
- MBtu
- MMBtu

Factory setting

Country-specific:

- kWh
- Btu

Additional information

Selection

For an explanation of the abbreviated units: → 238

Calorific value unit

Navigation

[Expert → Sensor → System units → Cal. value unit (0552)]

Prerequisite

The following conditions are met:

- Order code for 'Sensor version', option 'Mass flow'
- The **Gross calorific value volume** option or the **Net calorific value volume** option is selected in the **Calorific value type** parameter (→ 82).

Description

Use this function to select the unit for the calorific value.
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>• kJ/Nm³</td>
<td>• Btu/Sm³</td>
</tr>
<tr>
<td>• MJ/Nm³</td>
<td>• MBtu/Sm³</td>
</tr>
<tr>
<td>• kWh/Nm³</td>
<td>• Btu/Sft³</td>
</tr>
<tr>
<td>• MWh/Sm³</td>
<td>• MBtu/Sft³</td>
</tr>
<tr>
<td>• kJ/Sm³</td>
<td></td>
</tr>
<tr>
<td>• MJ/Sm³</td>
<td></td>
</tr>
<tr>
<td>• kWh/Sm³</td>
<td></td>
</tr>
<tr>
<td>• MWh/Nm³</td>
<td></td>
</tr>
</tbody>
</table>

Factory setting

Country-specific:

• kJ/Nm³
• Btu/Sft³

Additional information

Result

The selected unit applies for:

Reference gross calorific value parameter (→ 87)

Selection

For an explanation of the abbreviated units: → 238

Calorific value unit (Mass)

Navigation

 Jenner Expert → Sensor → System units → Cal. value unit (0606)

Prerequisite

The following conditions are met:

• Order code for "Sensor version", option "Mass flow"
• The Gross calorific value mass option or the Net calorific value mass option is selected in the Calorific value type parameter (→ 82).

Description

Use this function to select the unit for the calorific value (mass).

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>• kJ/kg</td>
<td>• kJ/lb</td>
<td>• Btu/lb</td>
</tr>
<tr>
<td>• MJ/kg</td>
<td>• MJ/lb</td>
<td>• MBtu/lb</td>
</tr>
<tr>
<td>• kWh/kg</td>
<td>• kWh/lb</td>
<td></td>
</tr>
<tr>
<td>• MWh/kg</td>
<td>• MWh/lb</td>
<td></td>
</tr>
</tbody>
</table>

Factory setting

Country-specific:

• kJ/kg
• Btu/lb

Additional information

Selection

For an explanation of the abbreviated units: → 238
Velocity unit

Navigation

Expert → Sensor → System units → Velocity unit (0566)

Description

Use this function to select the unit for the flow velocity.

Selection

- **SI units**
 - m/s
- **US units**
 - ft/s

Factory setting

Country-specific:
- m/s
- ft/s

Additional information

Result

The selected unit applies for:
- **Flow velocity** parameter (→ 50)
- **Maximum value** parameter (→ 227)

Selection

For an explanation of the abbreviated units: → 238

Density unit

Navigation

Expert → Sensor → System units → Density unit (0555)

Description

Use this function to select the unit for the density.

Selection

- **SI units**
 - g/cm³
 - kg/dm³
 - kg/l
 - kg/m³
 - SD4°C
 - SD15°C
 - SD20°C
 - SG4°C
 - SG15°C
 - SG20°C
- **US units**
 - lb/ft³
 - lb/gal (us)
 - lb/bbl (us;liq.)
 - lb/bbl (us;beer)
 - lb/bbl (us;oil)
- **Imperial units**
 - lb/gal (imp)
 - lb/bbl (imp;beer)
 - lb/bbl (imp;oil)

Factory setting

Country-specific:
- kg/m³
- lb/ft³

Additional information

Result

The selected unit applies for:
- **Density** parameter (→ 54)
- **Fixed density** parameter (→ 106)
- **Reference density** parameter (→ 86)
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

Selection
- SD = specific density
 The specific density is the ratio of the fluid density to the water density at a water temperature of +4 °C (+39 °F), +15 °C (+59 °F), +20 °C (+68 °F).
- SG = specific gravity
 The specific gravity is the ratio of the fluid density to the water density at a water temperature of +4 °C (+39 °F), +15 °C (+59 °F), +20 °C (+68 °F).

For an explanation of the abbreviated units: → 238

Specific volume unit

Navigation
Expert → Sensor → System units → Spec. vol. unit (0610)

Prerequisite
For the following order code:
'Sensor version', option 'Mass flow'

Description
Use this function to select the unit for the specific volume.

Selection
Other units
- m³/kg
- ft³/lb

Factory setting
Country-specific:
- m³/kg
- ft³/lb

Additional information
Result
The selected unit applies for:
Specific volume parameter (→ 54)

Dynamic viscosity unit

Navigation
Expert → Sensor → System units → Dyn. visc. unit (0577)

Description
Use this function to select the unit for dynamic viscosity.

Selection
SI units
- Pa s
- cP
- P

Factory setting
Pa s
Additional information Result

The selected unit applies for:
- Dynamic viscosity parameter (→ 85) (gases)
- Dynamic viscosity parameter (→ 84) (liquids)

Additional information Selection

For an explanation of the abbreviated units: → 238

Specific heat capacity unit

Navigation Expert → Sensor → System units → SpecHeatCapaUnit (0604)

Prerequisite The following conditions are met:
- Selected medium:
 - The User-specific gas option is selected in the Select gas type parameter (→ 78).
 Or
 - The User-specific liquid option is selected in the Select liquid type parameter (→ 79).
- The Heat option is selected in the Enthalpy type parameter (→ 82).

Description Use this function to select the unit for the specific heat capacity.

Selection SI units Imperial units
- kJ/(kgK) Btu/(lb°R)
- MJ/(kgK)
- kWh/(kgK)
- kcal/(kgK)

Factory setting kJ/(kgK)

Additional information Result

The selected unit applies for:
Specific heat capacity parameter (→ 89)

Additional information Selection

For an explanation of the abbreviated units: → 238

Length unit

Navigation Expert → Sensor → System units → Length unit (0551)

Description Use this function to select the unit of length for the nominal diameter.
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>• mm</td>
<td>• in</td>
</tr>
<tr>
<td>• m</td>
<td>• ft</td>
</tr>
</tbody>
</table>

Factory setting

Country-specific:
- • mm
- • in

Additional information

Result
The selected unit applies for:
- **Inlet run** parameter (→ 110)
- **Mating pipe diameter** parameter (→ 110)

Selection

For an explanation of the abbreviated units: → 238

Date/time format

Navigation

Expert → Sensor → System units → Date/time format (2812)

Description
Use this function to select the desired time format for calibration history.

Selection

- • dd.mm.yy hh:mm
- • dd.mm.yy hh:mm am/pm
- • mm/dd/yy hh:mm
- • mm/dd/yy hh:mm am/pm

Factory setting

dd.mm.yy hh:mm

Additional information

Selection

For an explanation of the abbreviated units: → 238

3.2.3 "Process parameters" submenu

Navigation

- **Process parameters**

 - Flow override (1839) → 75
 - Flow damping (1802) → 75
 - Low flow cut off → 76
Flow override

Navigation

Description

Use this function to select whether to interrupt the evaluation of measured values. This is useful for the cleaning process of a pipeline, for example.

Selection

- Off
- On

Factory setting

Off

Additional information

Result

This setting affects all the functions and outputs of the measuring device.

Description

Flow override is active

- The diagnostic message diagnostic message \(\text{C453 Flow override} \) is displayed.
- Output values
 - Output: Value at zero flow
 - Temperature: Proceeding output
 - Totalizers 1-3: Stop being totalized

Flow damping

Navigation

Expert → Sensor → Process param. → Flow damping (1802)

Description

Use this function to enter flow damping. Reduction of the variability of the flow measured value (in relation to interference). For this purpose, the depth of the flow filter is adjusted: when the filter setting increases, the reaction time of the device also increases.

User entry

0 to 999.9 s

Factory setting

5 s

Additional information

Result

The damping has an effect on the following variables of the device:

- Outputs
- Low flow cut off → 76
- Totalizer

User entry

- Value = 0: no damping
- Value > 0: damping is increased
"Low flow cut off" submenu

Navigation

Expert → Sensor → Process param. → Low flow cut off

<table>
<thead>
<tr>
<th>Assign process variable (1837)</th>
<th>76</th>
</tr>
</thead>
<tbody>
<tr>
<td>On value low flow cutoff (1805)</td>
<td>76</td>
</tr>
<tr>
<td>Off value low flow cutoff (1804)</td>
<td>77</td>
</tr>
</tbody>
</table>

Assign process variable

Navigation

Expert → Sensor → Process param. → Low flow cut off → Assign variable (1837)

Description

Use this function to select a process variable for low flow cut off.

Selection

- Off
- Volume flow
- Corrected volume flow
- Mass flow
- Reynolds number

Factory setting

Off

On value low flow cutoff

Navigation

Expert → Sensor → Process param. → Low flow cut off → On value (1805)

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 76):

- Volume flow
- Corrected volume flow
- Mass flow
- Reynolds number

Description

Use this function to enter a switch-on value for low flow cut off. Low flow cut off is activated if the value entered is not equal to 0 → 77.

User entry

Positive floating-point number

Factory setting

0

* Visibility depends on order options or device settings
Additional information

Dependency

The unit depends on the process variable selected in the Assign process variable parameter (→ 76).

Off value low flow cutoff

Navigation

Expert → Sensor → Process param. → Low flow cut off → Off value (1804)

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 76):

• Volume flow
• Corrected volume flow
• Mass flow
• Reynolds number *

Description

Use this function to enter a switch-off value for low flow cut off. The off value is entered as a positive hysteresis from the on value → 76.

User entry

0 to 100.0%

Factory setting

50%

Additional information

Example

1 A

Q

2

1

H

3

4

A

A0012887

Q Flow

Q

H Hysteresis

H

A Low flow cut off active

A

1 Low flow cut off is activated

1

2 Low flow cut off is deactivated

2

3 On value entered

3

4 Off value entered

4

* Visibility depends on order options or device settings
3.2.4 "Measurement mode" submenu

Navigation
Expert → Sensor → Measurement mode

<table>
<thead>
<tr>
<th>Measurement mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select medium (7653) → 78</td>
</tr>
<tr>
<td>Select gas type (7635) → 78</td>
</tr>
<tr>
<td>Select liquid type (7636) → 79</td>
</tr>
<tr>
<td>Density calculation (7608) → 80</td>
</tr>
<tr>
<td>Enthalpy calculation (7619) → 80</td>
</tr>
<tr>
<td>Medium properties → 81</td>
</tr>
</tbody>
</table>

Select medium

Navigation
Expert → Sensor → Measurement mode → Select medium (7653)

Description
Use this function to select the type of medium for the measuring application.

Selection
- Gas
- Liquid
- Steam

Factory setting
Steam

Select gas type

Navigation
Expert → Sensor → Measurement mode → Select gas type (7635)

Prerequisite
The following conditions are met:
- Order code
 - "Sensor version", option "Mass flow"
 - "Application package", option "Air + Industrial gases" or option "Natural gas"
- The Gas option is selected in the Select medium parameter → 78.

Description
Use this function to select the type of gas for the measuring application.

Selection
- Single gas
- Gas mixture
- Air
- Natural gas
- User-specific gas
Factory setting
User-specific gas

Additional information
"User-specific gas" option
Applications: calculation of the mass flow of a user-specific gas
Calculated variables: the mass flow, the density, the corrected volume flow and the heat quantity are calculated from the measured volume flow and the measured temperature. Either the specific thermal capacity or the calorific value must be entered for calculating the heat quantity.

Formulae for calculation:
- Mass flow: \(m = q \cdot \rho (T) \)
- Density: \(\rho = \rho_1 (T_1) / (1 + \beta_p \cdot (T - T_1)) \)
- Corrected volume flow: \(v_n = q \cdot \rho (T) / \rho_{ref} \)
- Heat quantity in the case of delta heat: \(E = q \cdot \rho (T) \cdot c_p \cdot \Delta T \)
- Heat quantity in the case of combustion: \(E = q \cdot \rho (T) \cdot h \)

\(m \) = Mass flow
\(q \) = Volume flow (measured)
\(v_n \) = Corrected volume flow
\(T \) = Process temperature (measured)
\(T_1 \) = Temperature (→ 51) at which the value for \(\rho_1 \) applies.
\(\rho \) = Density
\(\rho_{ref} \) = Reference density
\(\rho_{ref} = \text{Density (→ 54) at which the value for } T_1 \text{ applies.} \)
\(\beta_p \) = Linear expansion coefficient (→ 82) of the liquid at \(T_1 \)

Possible combinations of these values: Linear expansion coefficient parameter (→ 82)

Select liquid type

Navigation
Expert → Sensor → Measurement mode → Sel. liquid type (7636)

Prerequisite
The following conditions are met:
- Order code for "Sensor version", option 'Mass flow'
- The Liquid option is selected in the Select medium parameter (→ 78) parameter.

Description
Use this function to select the type of liquid for the measuring application.

Selection
- Water
- LPG (Liquefied Petroleum Gas)
- User-specific liquid

Factory setting
Water

Additional information
"User-specific liquid" option
Applications: calculation of the mass flow of a user-specific liquid, such as thermal oil.
Calculated variables: the mass flow, the density, the corrected volume flow and the heat quantity are calculated from the measured volume flow and the measured temperature. Either the specific thermal capacity or the calorific value must be entered for calculating the heat quantity.
Formulae for calculation:
- Mass flow: \(m = q \cdot \rho(T) \)
- Density: \(\rho = \rho_1(T_1) / (1 + \beta_p \cdot |T - T_1|) \)
- Corrected volume flow: \(v_n = q \cdot \rho(T) / \rho_{ref} \)
- Heat quantity in the case of delta heat: \(E = q \cdot \rho(T) \cdot c_p \cdot \Delta T \)
- Heat quantity in the case of combustion: \(E = q \cdot \rho(T) \cdot h \)

- \(m \) = Mass flow
- \(q \) = Volume flow (measured)
- \(v_n \) = Corrected volume flow
- \(T \) = Process temperature (measured)
- \(T_1 \) = Temperature (→ 51) at which the value for \(\rho_1 \) applies.
- \(\rho \) = Density
- \(\rho_{ref} \) = Reference density
- \(\rho \) = Density (→ 54) at which the value for \(T_1 \) applies.
- \(\beta_p \) = Linear expansion coefficient (→ 82) of the liquid at \(T_1 \)

Possible combinations of these values: Linear expansion coefficient parameter (→ 82)

Density calculation

Navigation

Expert → Sensor → Measurement mode → Density calc. (7608)

Prerequisite

The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Natural gas option is selected.

Description

Use this function to select the standard on the basis of which the density is calculated.

Selection

- AGA Nx19
- ISO 12213-2
- ISO 12213-3

Factory setting

AGA Nx19

Enthalpy calculation

Navigation

Expert → Sensor → Measurement mode → Enthalpy calc. (7619)

Prerequisite

The following conditions are met:
- Order code
 - "Sensor version", option 'Mass flow (integrated temperature measurement)"
 - "Application package", option 'Natural gas'
- In the Select medium parameter (→ 78), the Gas option is selected and in the Select gas type parameter (→ 78), the Natural gas option is selected.

Description

Use this function to select the standard on the basis of which the enthalpy is calculated.
Selection

- AGA5
- ISO 6976

Factory setting
AGA5

"Medium properties" submenu

Navigation

Expert → Sensor → Measurement mode → Medium property

<table>
<thead>
<tr>
<th>Medium properties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Enthalpy type (7620)</td>
<td>→ 82</td>
</tr>
<tr>
<td>Calorific value type (7698)</td>
<td>→ 82</td>
</tr>
<tr>
<td>Reference combustion temperature (7699)</td>
<td>→ 86</td>
</tr>
<tr>
<td>Reference density (7700)</td>
<td>→ 86</td>
</tr>
<tr>
<td>Reference gross calorific value (7701)</td>
<td>→ 87</td>
</tr>
<tr>
<td>Reference pressure (7702)</td>
<td>→ 87</td>
</tr>
<tr>
<td>Reference temperature (7703)</td>
<td>→ 88</td>
</tr>
<tr>
<td>Reference Z-factor (7704)</td>
<td>→ 88</td>
</tr>
<tr>
<td>Linear expansion coefficient (7621)</td>
<td>→ 82</td>
</tr>
<tr>
<td>Relative density (7705)</td>
<td>→ 88</td>
</tr>
<tr>
<td>Specific heat capacity (7716)</td>
<td>→ 89</td>
</tr>
<tr>
<td>Calorific value (7626)</td>
<td>→ 84</td>
</tr>
<tr>
<td>Z-factor (7631)</td>
<td>→ 86</td>
</tr>
<tr>
<td>Dynamic viscosity (7733)</td>
<td>→ 84</td>
</tr>
<tr>
<td>Dynamic viscosity (7732)</td>
<td>→ 85</td>
</tr>
</tbody>
</table>

| Gas composition | → 89 |
Calorific value type

Navigation

Expert → Sensor → Measurement mode → Medium property → Cal. value type (7698)

Prerequisite

The **Calorific value type** parameter (→ 82) is visible.

Description

Use this function to select whether the net calorific value or the gross calorific value is used as the basis for calculation.

Selection

- Gross calorific value volume
- Net calorific value volume
- Gross calorific value mass
- Net calorific value mass

Factory setting

Gross calorific value mass

Enthalpy type

Navigation

Expert → Sensor → Measurement mode → Medium property → Enthalpy type (7620)

Prerequisite

The following conditions are met:

- In the **Select gas type** parameter (→ 78), the **User-specific gas** option is selected. Or
- In the **Select liquid type** parameter (→ 79), the **User-specific liquid** option is selected.

Description

Use this function to select the type of enthalpy.

Selection

- Heat
- Calorific value

Factory setting

Heat

Linear expansion coefficient

Navigation

Expert → Sensor → Measurement mode → Medium property → Linear exp coeff (7621)

Prerequisite

The following conditions are met:

- The **Liquid** option is selected in the **Select medium** parameter (→ 78).
- The **User-specific liquid** option is selected in the **Select liquid type** parameter (→ 79).

Description

Use this function to enter the linear, medium-specific expansion coefficient for calculating the reference density for user-specific liquids.

User entry

1.0×10^{-6} to 2.0×10^{-3}
Factory setting

2.06×10⁻⁴

Additional information

User entry

- If the value in this parameter is changed, it is advisable to reset the totalizer.
- The expansion coefficient can be determined using the Applicator.
- If two density and temperature value pairs are known (density \(\rho_1 \) at temperature \(T_1 \) and density \(\rho_2 \) at temperature \(T_2 \)), the expansion coefficient can be calculated according to the following formula:
 \[\beta_p = \frac{(\rho_1 / \rho_2 - 1)}{(T_1 - +T_2)} \]

Sample values

The closer the process temperature is to the specific temperature value, the better the calculation of the density for application-specific liquids. If the process temperature deviates greatly from the value indicated, the expansion coefficient should be calculated according to the formula (see above).

<table>
<thead>
<tr>
<th>Medium (liquid)</th>
<th>Temperature value [K]</th>
<th>Density value [kg/m³]</th>
<th>Expansion coefficient ([10^{-4} \ 1/K])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>123.15</td>
<td>594</td>
<td>18.76</td>
</tr>
<tr>
<td>Ammonia</td>
<td>298.15</td>
<td>602</td>
<td>25</td>
</tr>
<tr>
<td>Argon</td>
<td>133.15</td>
<td>1028</td>
<td>111.3</td>
</tr>
<tr>
<td>n-butane</td>
<td>298.15</td>
<td>573</td>
<td>20.7</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>298.15</td>
<td>713</td>
<td>106.6</td>
</tr>
<tr>
<td>Chlorine</td>
<td>298.15</td>
<td>1398</td>
<td>21.9</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>298.15</td>
<td>773</td>
<td>11.6</td>
</tr>
<tr>
<td>n-decane</td>
<td>298.15</td>
<td>728</td>
<td>10.2</td>
</tr>
<tr>
<td>Ethane</td>
<td>298.15</td>
<td>315</td>
<td>175.3</td>
</tr>
<tr>
<td>Ethylene</td>
<td>298.15</td>
<td>386</td>
<td>87.7</td>
</tr>
<tr>
<td>n-heptane</td>
<td>298.15</td>
<td>351</td>
<td>12.4</td>
</tr>
<tr>
<td>n-hexane</td>
<td>298.15</td>
<td>656</td>
<td>13.8</td>
</tr>
<tr>
<td>Hydrogen chloride</td>
<td>298.15</td>
<td>796</td>
<td>70.9</td>
</tr>
<tr>
<td>l-butane</td>
<td>298.15</td>
<td>552</td>
<td>22.5</td>
</tr>
<tr>
<td>Methane</td>
<td>163.15</td>
<td>331</td>
<td>73.5</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>93.15</td>
<td>729</td>
<td>75.3</td>
</tr>
<tr>
<td>n-octane</td>
<td>298.15</td>
<td>699</td>
<td>11.1</td>
</tr>
<tr>
<td>Oxygen</td>
<td>133.15</td>
<td>876</td>
<td>95.4</td>
</tr>
<tr>
<td>n-pentane</td>
<td>298.15</td>
<td>621</td>
<td>16.2</td>
</tr>
<tr>
<td>Propane</td>
<td>298.15</td>
<td>493</td>
<td>32.1</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>298.15</td>
<td>903</td>
<td>19.3</td>
</tr>
</tbody>
</table>

Table values according to Carl L. Yaws (2001): Matheson Gas Data Book, 7th edition
Calorific value

Navigation

Expert → Sensor → Measurement mode → Medium property → Calorific value (7626)

Prerequisite

The following conditions are met:
- Selected medium:
 - In the Select gas type parameter (→ 78), the User-specific gas option is selected.
 - Or
 - In the Select liquid type parameter (→ 79), the User-specific liquid option is selected.
- In the Enthalpy type parameter (→ 82), the Calorific value option is selected.
- In the Calorific value type parameter (→ 82), the Gross calorific value volume option or Gross calorific value mass option is selected.

Description

Use this function to enter the calorific value for calculating the energy flow.

User entry

Positive floating-point number

Factory setting

50 000 kJ/kg

Dynamic viscosity (Liquids)

Navigation

Expert → Sensor → Measurement mode → Medium property → Dynam. viscosity (7733)

Prerequisite

The following conditions are met:
- Order code for "Sensor version", option "Volume flow"
- The Liquid option is selected in the Select medium parameter (→ 78) parameter.
 - Or
 - The User-specific liquid option is selected in the Select liquid type parameter (→ 79).

Description

Use this function to enter a fixed value for the dynamic viscosity for a liquid.

User entry

Positive floating-point number

Factory setting

1 cP

Additional information

The viscosity entered is used to linearize the measured error in the lower Reynolds number range if the calculated viscosity is not available e.g. "Volume flow" sensor version or the fluid is a user-specific liquid (see table).

Dependencies

<table>
<thead>
<tr>
<th>Sensor version</th>
<th>Medium</th>
<th>Dyn. viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume flow</td>
<td>All</td>
<td>x</td>
</tr>
<tr>
<td>Mass flow</td>
<td>All except 1)</td>
<td>–</td>
</tr>
</tbody>
</table>
Dynamic viscosity (Gases)

Navigation

Expert → Sensor → Measurement mode → Medium property → Dynam. viscosity (7732)

Prerequisite

The following conditions are met:
- Order code for "Sensor version", option "Volume flow"
- The Gas option or the Steam option is selected in the Select medium parameter (→ 78).
- Or
 - The User-specific gas option is selected in the Select gas type parameter (→ 78).

Description

Use this function to enter a fixed value for the dynamic viscosity for a gas or steam.

User entry

Positive floating-point number

Factory setting

0.015 cP

Additional information

Description

The viscosity entered is used to linearize the measured error in the lower Reynolds number range if the calculated viscosity is not available e.g. "Volume flow" sensor version or the fluid is a user-specific gas (see table).

Dependencies

<table>
<thead>
<tr>
<th>Sensor version</th>
<th>Medium</th>
<th>Dyn. viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume flow</td>
<td>All</td>
<td>x</td>
</tr>
<tr>
<td>Mass flow</td>
<td>All except 1)</td>
<td>- x</td>
</tr>
<tr>
<td>1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>Dynamic viscosity as the input value</td>
<td></td>
</tr>
</tbody>
</table>

1) User-specific gas

Dependency

The unit is taken from the Dynamic viscosity unit parameter (→ 72)
Z-factor

Navigation

Expert → Sensor → Measurement mode → Medium property → Z-factor (7631)

Prerequisite

In the Select gas type parameter (→ 78), the User-specific gas option is selected.

Description

Use this function to enter the real gas constant Z for gas under operating conditions.

User entry

0.1 to 2.0

Factory setting

1

Reference combustion temperature

Navigation

Expert → Sensor → Measurement mode → Medium property → Ref. comb. temp. (7699)

Prerequisite

The Reference combustion temperature parameter (→ 86) is visible.

Description

Use this function to enter the reference combustion temperature for calculating the natural gas energy value.

User entry

–200 to 450 °C

Factory setting

20 °C

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 67)

Reference density

Navigation

Expert → Sensor → Measurement mode → Medium property → Ref. density (7700)

Prerequisite

The following conditions are met:

- In the Select gas type parameter (→ 78), the User-specific gas option is selected.
- Or
- In the Select liquid type parameter (→ 79), the Water option or User-specific liquid option is selected.

Description

Use this function to enter a fixed value for the reference density.

User entry

0.01 to 15 000 kg/m³

Factory setting

1 000 kg/m³
Reference gross calorific value

Navigation

Expert → Sensor → Measurement mode → Medium property → Ref. Gross Cal Val (7701)

Prerequisite

The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Natural gas option is selected.
- In the Density calculation parameter (→ 80), the ISO 12213-3 option is selected.

Description

Use this function to enter the reference gross calorific value of the natural gas.

User entry

Positive floating-point number

Factory setting

50000 kJ/Nm³

Additional information

Dependency

The unit is taken from the Calorific value unit parameter (→ 69)

Reference pressure

Navigation

Expert → Sensor → Measurement mode → Medium property → Ref. pressure (7702)

Prerequisite

The following conditions are met:
- Order code for "Sensor version", option 'Mass flow (integrated temperature measurement)"
- The Gas option is selected in the Select medium parameter (→ 78).

Description

Use this function to enter the reference pressure for calculating the reference density.

User entry

0 to 250 bar

Factory setting

1.01325 bar

Additional information

Dependency

The unit is taken from the Pressure unit parameter (→ 66)
Reference temperature

Navigation

Expert → Sensor → Measurement mode → Medium property → Ref. temperature (7703)

Prerequisite

The following conditions are met:
- The *Gas* option is selected in the Select medium parameter (→ 78).
- Or
- The *Liquid* option is selected in the Select medium parameter (→ 78).

Description

Use this function to enter the reference temperature for calculating the reference density.

User entry

-200 to 450 °C

Factory setting

20 °C

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 67)

Reference Z-factor

Navigation

Expert → Sensor → Measurement mode → Medium property → Ref. Z-factor (7704)

Prerequisite

In the Select gas type parameter (→ 78), the User-specific gas option is selected.

Description

Use this function to enter the real gas constant Z for gas under reference conditions.

User entry

0.1 to 2

Factory setting

1

Relative density

Navigation

Expert → Sensor → Measurement mode → Medium property → Relative density (7705)

Prerequisite

The following conditions are met:
- In the Select medium parameter (→ 78), the *Gas* option is selected.
- In the Select gas type parameter (→ 78), the Natural gas option is selected.
- In the Density calculation parameter (→ 80), the ISO 12213-3 option is selected.

Description

Use this function to enter the relative density of the natural gas.

User entry

0.55 to 0.9

Factory setting

0.664
Specific heat capacity

Navigation

Expert → Sensor → Measurement mode → Medium property → Spec. heat cap. (7716)

Prerequisite

The following conditions are met:

- In the Select gas type parameter (→ 78), the User-specific gas option is selected.
 Or
- In the Select liquid type parameter (→ 79), the User-specific liquid option is selected.
- In the Enthalpy type parameter (→ 82), the Heat option is selected.

Description

Use this function to enter the specific heat capacity of the medium.

User entry

0 to 50 kJ/(kgK)

Factory setting

4.187 kJ/(kgK)

Additional information

Dependency

The unit is taken from the Specific heat capacity unit parameter (→ 73)

'Gas composition' submenu

Navigation

Expert → Sensor → Measurement mode → Medium property → Gas composition

Gas type (7714) → 91
Gas mixture (7640) → 91
Mol% Ar (7663) → 92
Mol% C2H3Cl (7664) → 92
Mol% C2H4 (7665) → 93
Mol% C2H6 (7666) → 93
Mol% C3H8 (7667) → 94
Mol% CH4 (7668) → 94
Mol% Cl2 (7707) → 94
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mol% CO (7669)</td>
<td>95</td>
</tr>
<tr>
<td>Mol% CO2 (7670)</td>
<td>95</td>
</tr>
<tr>
<td>Mol% H2 (7671)</td>
<td>96</td>
</tr>
<tr>
<td>Mol% H2O (7672)</td>
<td>96</td>
</tr>
<tr>
<td>Mol% H2S (7673)</td>
<td>96</td>
</tr>
<tr>
<td>Mol% HCl (7674)</td>
<td>97</td>
</tr>
<tr>
<td>Mol% He (7675)</td>
<td>97</td>
</tr>
<tr>
<td>Mol% i-C4H10 (7676)</td>
<td>98</td>
</tr>
<tr>
<td>Mol% i-C5H12 (7677)</td>
<td>98</td>
</tr>
<tr>
<td>Mol% Kr (7678)</td>
<td>98</td>
</tr>
<tr>
<td>Mol% N2 (7679)</td>
<td>99</td>
</tr>
<tr>
<td>Mol% n-C10H22 (7680)</td>
<td>99</td>
</tr>
<tr>
<td>Mol% n-C4H10 (7681)</td>
<td>100</td>
</tr>
<tr>
<td>Mol% n-C5H12 (7682)</td>
<td>100</td>
</tr>
<tr>
<td>Mol% n-C6H14 (7683)</td>
<td>100</td>
</tr>
<tr>
<td>Mol% n-C7H16 (7684)</td>
<td>101</td>
</tr>
<tr>
<td>Mol% n-C8H18 (7685)</td>
<td>101</td>
</tr>
<tr>
<td>Mol% n-C9H20 (7686)</td>
<td>101</td>
</tr>
<tr>
<td>Mol% Ne (7687)</td>
<td>102</td>
</tr>
<tr>
<td>Mol% NH3 (7688)</td>
<td>102</td>
</tr>
<tr>
<td>Mol% O2 (7689)</td>
<td>103</td>
</tr>
<tr>
<td>Mol% SO2 (7691)</td>
<td>103</td>
</tr>
<tr>
<td>Mol% Xe (7692)</td>
<td>103</td>
</tr>
<tr>
<td>Mol% other gas (7690)</td>
<td>104</td>
</tr>
<tr>
<td>Relative humidity (7731)</td>
<td>104</td>
</tr>
</tbody>
</table>
Endress+Hauser

Gas type

Navigation

Expert → Sensor → Measurement mode → Medium property → Gas composition → Gas type (7714)

Prerequisite

The following conditions are met:

- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Single gas option is selected.

Description

Use this function to select the type of gas for the measuring application.

Selection

- Hydrogen H2
- Helium He
- Neon Ne
- Argon Ar
- Krypton Kr
- Xenon Xe
- Nitrogen N2
- Oxygen O2
- Chlorine Cl2
- Ammonia NH3
- Carbon monoxide CO
- Carbon dioxide CO2
- Sulfur dioxide SO2
- Hydrogen sulfide H2S
- Hydrogen chloride HCl
- Methane CH4
- Ethane C2H6
- Propane C3H8
- Butane C4H10
- Ethylene C2H4
- Vinyl Chloride C2H3Cl

Factory setting

Methane CH4

Gas mixture

Navigation

Expert → Sensor → Measurement mode → Medium property → Gas composition → Gas mixture (7640)

Prerequisite

The following conditions are met:

- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Gas mixture option is selected.

Description

Use this function to select the gas mixture for the measuring application.

Selection

- Hydrogen H2
- Helium He
- Neon Ne
- Argon Ar
- Krypton Kr
- Xenon Xe
- Nitrogen N2
Description of device parameters

- Oxygen O2
- Chlorine Cl2
- Ammonia NH3
- Carbon monoxide CO
- Carbon dioxide CO2
- Sulfur dioxide SO2
- Hydrogen sulfide H2S
- Hydrogen chloride HCl
- Methane CH4
- Ethane C2H6
- Propane C3H8
- Butane C4H10
- Ethylene C2H4
- Vinyl Chloride C2H3Cl
- Others

Factory setting

Methane CH4

Mol% Ar

Navigation

Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% Ar (7663)

Prerequisite

The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Gas mixture option is selected and in the Gas mixture parameter (→ 91), the Argon Ar option is selected.

Or
- In the Select gas type parameter (→ 78), the Natural gas option is selected and in the Density calculation parameter (→ 80), the ISO 12213-2 option is selected.

Description

Use this function to enter the amount of the gas constituent in the gas mixture.

User entry

0 to 100 %

Factory setting

0 %

Mol% C2H3Cl

Navigation

Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% C2H3Cl (7664)

Prerequisite

The following conditions are met:

- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Gas mixture option is selected.
- In the Gas mixture parameter (→ 91), the Vinyl Chloride C2H3Cl option is selected.

Description

Use this function to enter the amount of the gas constituent in the gas mixture.

User entry

0 to 100 %
Description of device parameters

Factory setting
0 %

Mol% C2H4

Navigation
Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% C2H4 (7665)

Prerequisite
The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Gas mixture option is selected.
- In the Gas mixture parameter (→ 91), the Ethylene C2H4 option is selected.

Description
Use this function to enter the amount of the gas constituent in the gas mixture.

User entry
0 to 100 %

Factory setting
0 %

Mol% C2H6

Navigation
Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% C2H6 (7666)

Prerequisite
The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
 - In the Select gas type parameter (→ 78), the Gas mixture option is selected and in the Gas mixture parameter (→ 91), the Ethane C2H6 option is selected.
 - Or
 - In the Select gas type parameter (→ 78), the Natural gas option is selected and in the Density calculation parameter (→ 80), the ISO 12213-2 option is selected.

Description
Use this function to enter the amount of the gas constituent in the gas mixture.

User entry
0 to 100 %

Factory setting
0 %
Description of device parameters

<table>
<thead>
<tr>
<th>Mol% C3H8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% C3H8 (7667)</td>
</tr>
<tr>
<td>Prerequisite</td>
</tr>
<tr>
<td>The following conditions are met:</td>
</tr>
<tr>
<td>In the Select medium parameter (→ 78), the Gas option is selected.</td>
</tr>
<tr>
<td>- In the Select gas type parameter (→ 78), the Gas mixture option is selected and in the Gas mixture parameter (→ 91), the Propane C3H8 option is selected.</td>
</tr>
<tr>
<td>Or</td>
</tr>
<tr>
<td>- In the Select gas type parameter (→ 78), the Natural gas option is selected and in the Density calculation parameter (→ 80), the ISO 12213-2 option is selected.</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Use this function to enter the amount of the gas constituent in the gas mixture.</td>
</tr>
<tr>
<td>User entry</td>
</tr>
<tr>
<td>0 to 100 %</td>
</tr>
<tr>
<td>Factory setting</td>
</tr>
<tr>
<td>0 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mol% CH4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% CH4 (7668)</td>
</tr>
<tr>
<td>Prerequisite</td>
</tr>
<tr>
<td>The following conditions are met:</td>
</tr>
<tr>
<td>In the Select medium parameter (→ 78), the Gas option is selected.</td>
</tr>
<tr>
<td>- In the Select gas type parameter (→ 78), the Gas mixture option is selected and in the Gas mixture parameter (→ 91), the Methane CH4 option is selected.</td>
</tr>
<tr>
<td>Or</td>
</tr>
<tr>
<td>- In the Select gas type parameter (→ 78), the Natural gas option is selected.</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Use this function to enter the amount of the gas constituent in the gas mixture.</td>
</tr>
<tr>
<td>User entry</td>
</tr>
<tr>
<td>0 to 100 %</td>
</tr>
<tr>
<td>Factory setting</td>
</tr>
<tr>
<td>100 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mol% Cl2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% Cl2 (7707)</td>
</tr>
<tr>
<td>Prerequisite</td>
</tr>
<tr>
<td>The following conditions are met:</td>
</tr>
<tr>
<td>- In the Select medium parameter (→ 78), the Gas option is selected.</td>
</tr>
<tr>
<td>- In the Select gas type parameter (→ 78), the Gas mixture option is selected.</td>
</tr>
<tr>
<td>- In the Gas mixture parameter (→ 91), the Chlorine Cl2 option is selected.</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Use this function to enter the amount of the gas constituent in the gas mixture.</td>
</tr>
</tbody>
</table>
Mol% CO

Navigation

Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% CO (7669)

Prerequisite

The following conditions are met:

- In the **Select medium** parameter (→ 78), the **Gas** option is selected.
- In the **Select gas type** parameter (→ 78), the **Gas mixture** option is selected and in the **Gas mixture** parameter (→ 91), the **Carbon monoxide CO** option is selected.
- Or
 - In the **Select gas type** parameter (→ 78), the **Natural gas** option is selected and in the **Density calculation** parameter (→ 80), the **ISO 12213-2** option is selected.

Description

Use this function to enter the amount of the gas constituent in the gas mixture.

User entry

0 to 100 %

Factory setting

0 %

Mol% CO2

Navigation

Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% CO2 (7670)

Prerequisite

The following conditions are met:

- In the **Select medium** parameter (→ 78), the **Gas** option is selected.
- In the **Select gas type** parameter (→ 78), the **Gas mixture** option is selected and in the **Gas mixture** parameter (→ 91), the **Carbon dioxide CO2** option is selected.
- Or
 - In the **Select gas type** parameter (→ 78), the **Natural gas** option is selected.

Description

Use this function to enter the amount of the gas constituent in the gas mixture.

User entry

0 to 100 %

Factory setting

0 %
Mol% H2

Navigation
Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% H2 (7671)

Prerequisite
The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Gas mixture option is selected and in the Gas mixture parameter (→ 91), the Hydrogen H2 option is selected.

Or
- In the Select gas type parameter (→ 78), the Natural gas option is selected and in the Density calculation parameter (→ 80), the AGA Nx19 option is not selected.

Description
Use this function to enter the amount of the gas constituent in the gas mixture.

User entry
0 to 100 %

Factory setting
0 %

Mol% H2O

Navigation
Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% H2O (7672)

Prerequisite
The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Natural gas option is selected.
- In the Density calculation parameter (→ 80), the ISO 12213-2 option is selected.

Description
Use this function to enter the amount of the gas constituent in the gas mixture.

User entry
0 to 100 %

Factory setting
0 %

Mol% H2S

Navigation
Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% H2S (7673)

Prerequisite
The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Gas mixture option is selected and in the Gas mixture parameter (→ 91), the Hydrogen sulfide H2S option is selected.

Or
- In the Select gas type parameter (→ 78), the Natural gas option is selected and in the Density calculation parameter (→ 80), the ISO 12213-2 option is selected.

Description
Use this function to enter the amount of the gas constituent in the gas mixture.
Proline Prowirl 200 PROFIBUS PA

User entry
0 to 100 %

Factory setting
0 %

Mol% HCl

Navigation
Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% HCl (7674)

Prerequisite
The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Gas mixture option is selected.
- In the Gas mixture parameter (→ 91), the Hydrogen chloride HCl option is selected.

Description
Use this function to enter the amount of the gas constituent in the gas mixture.

User entry
0 to 100 %

Factory setting
0 %

Mol% He

Navigation
Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% He (7675)

Prerequisite
The following conditions are met:
In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Gas mixture option is selected and in the Gas mixture parameter (→ 91), the Helium He option is selected.
- Or
- In the Select gas type parameter (→ 78), the Natural gas option is selected and in the Density calculation parameter (→ 80), the ISO 12213-2 option is selected.

Description
Use this function to enter the amount of the gas constituent in the gas mixture.

User entry
0 to 100 %

Factory setting
0 %
Mol% i-C4H10

Navigation
Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% i-C4H10 (7676)

Prerequisite
The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Natural gas option is selected.
- In the Density calculation parameter (→ 80), the ISO 12213-2 option is selected.

Description
Use this function to enter the amount of the gas constituent in the gas mixture.

User entry
0 to 100 %

Factory setting
0 %

Mol% i-C5H12

Navigation
Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% i-C5H12 (7677)

Prerequisite
The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Natural gas option is selected.
- In the Density calculation parameter (→ 80), the ISO 12213-2 option is selected.

Description
Use this function to enter the amount of the gas constituent in the gas mixture.

User entry
0 to 100 %

Factory setting
0 %

Mol% Kr

Navigation
Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% Kr (7678)

Prerequisite
The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Gas mixture option is selected.
- In the Gas mixture parameter (→ 91), the Krypton Kr option is selected.

Description
Use this function to enter the amount of the gas constituent in the gas mixture.

User entry
0 to 100 %

Factory setting
0 %
Mol% N2

Navigation
Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% N2 (7679)

Prerequisite
The following conditions are met:
- In the Select medium parameter (→ 7679), the Gas option is selected.
 - In the Select gas type parameter (→ 7679), the Gas mixture option is selected and in the Gas mixture parameter (→ 91), the Nitrogen N2 option is selected.
 - Or, In the Select gas type parameter (→ 7679), the Natural gas option is selected and in the Density calculation parameter (→ 80), the AGA Nx19 option or the ISO 12213-2 option is selected.

Description
Use this function to enter the amount of the gas constituent in the gas mixture.

User entry
0 to 100 %

Factory setting
0 %

Mol% n-C10H22

Navigation
Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% n-C10H22 (7680)

Prerequisite
The following conditions are met:
- In the Select medium parameter (→ 7679), the Gas option is selected.
 - In the Select gas type parameter (→ 7679), the Natural gas option is selected.
 - In the Density calculation parameter (→ 80), the ISO 12213-2 option is selected.

Description
Use this function to enter the amount of the gas constituent in the gas mixture.

User entry
0 to 100 %

Factory setting
0 %
Mol% n-C4H10

Navigation

Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% n-C4H10 (7681)

Prerequisite

The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Gas mixture option is selected and in the Gas mixture parameter (→ 91), the Butane C4H10 option is selected.
- Or
 - In the Select gas type parameter (→ 78), the Natural gas option is selected and in the Density calculation parameter (→ 80), the ISO 12213-2 option is selected.
- Or
 - In the Select medium parameter (→ 78), the Liquid option is selected and in the Select liquid type parameter (→ 79), the LPG option is selected.

Description

Use this function to enter the amount of the gas constituent in the gas mixture.

User entry

0 to 100 %

Factory setting

0 %

Mol% n-C5H12

Navigation

Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% n-C5H12 (7682)

Prerequisite

The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Natural gas option is selected.
- In the Density calculation parameter (→ 80), the ISO 12213-2 option is selected.

Description

Use this function to enter the amount of the gas constituent in the gas mixture.

User entry

0 to 100 %

Factory setting

0 %

Mol% n-C6H14

Navigation

Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% n-C6H14 (7683)

Prerequisite

The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Natural gas option is selected.
- In the Density calculation parameter (→ 80), the ISO 12213-2 option is selected.

Description

Use this function to enter the amount of the gas constituent in the gas mixture.
User entry	0 to 100 %
Factory setting | 0 %

Mol% n-C7H16

Navigation | Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% n-C7H16 (7684)
Prerequisite | The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Natural gas option is selected.
- In the Density calculation parameter (→ 80), the ISO 12213-2 option is selected.
Description | Use this function to enter the amount of the gas constituent in the gas mixture.
User entry | 0 to 100 %
Factory setting | 0 %

Mol% n-C8H18

Navigation | Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% n-C8H18 (7685)
Prerequisite | The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Natural gas option is selected.
- In the Density calculation parameter (→ 80), the ISO 12213-2 option is selected.
Description | Use this function to enter the amount of the gas constituent in the gas mixture.
User entry | 0 to 100 %
Factory setting | 0 %

Mol% n-C9H20

Navigation | Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% n-C9H20 (7686)
Prerequisite | The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Natural gas option is selected.
- In the Density calculation parameter (→ 80), the ISO 12213-2 option is selected.
Description | Use this function to enter the amount of the gas constituent in the gas mixture.
Mol% Ne

Navigation

Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% Ne (7687)

Prerequisite

The following conditions are met:

- In the **Select medium** parameter (→ 78), the **Gas** option is selected.
- In the **Select gas type** parameter (→ 78), the **Gas mixture** option is selected.
- In the **Gas mixture** parameter (→ 91), the **Neon Ne** option is selected.

Description

Use this function to enter the amount of the gas constituent in the gas mixture.

User entry

0 to 100 %

Factory setting

0 %

Mol% NH3

Navigation

Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% NH3 (7688)

Prerequisite

The following conditions are met:

- In the **Select medium** parameter (→ 78), the **Gas** option is selected.
- In the **Select gas type** parameter (→ 78), the **Gas mixture** option is selected.
- In the **Gas mixture** parameter (→ 91), the **Ammonia NH3** option is selected.

Description

Use this function to enter the amount of the gas constituent in the gas mixture.

User entry

0 to 100 %

Factory setting

0 %
Mol% O₂

Navigation

Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% O₂ (7689)

Prerequisite

The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Gas mixture option is selected and in the Gas mixture parameter (→ 91), the Oxygen O₂ option is selected.
- Or
- In the Select gas type parameter (→ 78), the Natural gas option is selected and in the Density calculation parameter (→ 80), the ISO 12213-2 option is selected.

Description

Use this function to enter the amount of the gas constituent in the gas mixture.

User entry

0 to 100 %

Factory setting

0 %

Mol% SO₂

Navigation

Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% SO₂ (7691)

Prerequisite

The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Gas mixture option is selected.
- In the Gas mixture parameter (→ 91), the Sulfur dioxide SO₂ option is selected.

Description

Use this function to enter the amount of the gas constituent in the gas mixture.

User entry

0 to 100 %

Factory setting

0 %

Mol% Xe

Navigation

Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% Xe (7692)

Prerequisite

The following conditions are met:
- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Gas mixture option is selected.
- In the Gas mixture parameter (→ 91), the Xenon Xe option is selected.

Description

Use this function to enter the amount of the gas constituent in the gas mixture.

User entry

0 to 100 %
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

Factory setting

0 %

Mol% other gas

Navigation

Expert → Sensor → Measurement mode → Medium property → Gas composition → Mol% other gas (7690)

Prerequisite
The following conditions are met:

- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Gas mixture option is selected.
- In the Gas mixture parameter (→ 91), the Others option is selected.

Description

Use this function to enter the amount of the gas constituent in the gas mixture.

User entry

0 to 100 %

Factory setting

0 %

Relative humidity

Navigation

Expert → Sensor → Measurement mode → Medium property → Gas composition → Rel. humidity (7731)

Prerequisite
The following conditions are met:

- In the Select medium parameter (→ 78), the Gas option is selected.
- In the Select gas type parameter (→ 78), the Air option is selected.

Description

Use this function to enter the humidity content of the air in %.

User entry

0 to 100 %

Factory setting

0 %

3.2.5 "External compensation" submenu

Navigation

<table>
<thead>
<tr>
<th>External compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>External value (7622)</td>
</tr>
<tr>
<td>Atmospheric pressure (7601)</td>
</tr>
<tr>
<td>Delta heat calculation (7736)</td>
</tr>
</tbody>
</table>
Proline Prowirl 200 PROFIBUS PA

Description of device parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed density (7627)</td>
<td>106</td>
</tr>
<tr>
<td>Fixed temperature (7628)</td>
<td>107</td>
</tr>
<tr>
<td>2nd temperature delta heat (7625)</td>
<td>107</td>
</tr>
<tr>
<td>Fixed process pressure (7629)</td>
<td>108</td>
</tr>
<tr>
<td>Steam quality (7605)</td>
<td>108</td>
</tr>
<tr>
<td>Steam quality value (7630)</td>
<td>109</td>
</tr>
</tbody>
</table>

External value

Navigation

Expert → Sensor → External comp. → External value (7622)

Prerequisite

For the following order code:

"Sensor version", option "Mass flow"

Description

Use this function to select the process variable which is taken from an external device.

For detailed information on setting the parameter in steam applications, see the Special Documentation for the Wet Steam Detection and Wet Steam Measurement application package.

Selection

- Off
- Pressure
- Relative pressure
- Density
- Temperature
- 2nd temperature delta heat

Factory setting

Off

Additional information

The Fixed process pressure parameter (→ 108) is set to the value 0 bar abs. (ex works). In this case, the measuring device ignores the pressure read in via PROFIBUS PA. For the measuring device to use the external (read-in) pressure, a value > 0 bar abs. must be entered in the Fixed process pressure parameter (→ 108).

NOTE!

If pressure is the selected option, the pressure is read in externally by means of a pressure transmitter.

The pressure must be read in the unit Pascal so that pressure compensation can be read in correctly.

- Select the Pa option in the Pressure unit parameter (→ 66).
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

Atmospheric pressure

Navigation

Prerequisite

In the External value parameter (→ 105), the Relative pressure option is selected.

Description

Use this function to enter the value for the ambient pressure to be used for pressure correction.

User entry

0 to 250 bar

Factory setting

1.01325 bar

Additional information

Dependency

The unit is taken from the Pressure unit parameter (→ 66)

Delta heat calculation

Navigation

Prerequisite

The Delta heat calculation parameter (→ 106) is visible.

Description

Use this function to select the option for calculating the heat transferred via a heat exchanger (=delta heat).

Selection

• Off
• Device on cold side
• Device on warm side

Factory setting

Device on warm side

Fixed density

Navigation

Expert → Sensor → External comp. → Fixed density (7627)

Prerequisite

For the following order code:
"Sensor version", option "Volume flow"

Description

Use this function to enter a fixed value for the density.

User entry

0.01 to 15000 kg/m³

Factory setting

1000 kg/m³
Additional information

Description
The density entered is used to linearize the measured error in the lower Reynolds number range if the calculated density is not available e.g. "Volume flow" sensor version or the fluid is a user-specific gas (see table).

Dependency

The unit is taken from the Density unit parameter (→ 71)

Fixed temperature

Navigation

Expert → Sensor → External comp. → Fixed temp. (7628)

Description
Use this function to enter a fixed value for the process temperature.

User entry

–200 to 450 °C

Factory setting

20 °C

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 67)

2nd temperature delta heat

Navigation

Expert → Sensor → External comp. → 2ndTempDeltaHeat (7625)

Prerequisite

The 2nd temperature delta heat parameter (→ 107) is visible.

Description
Use this function to enter the second temperature value for calculating the delta heat.

User entry

–200 to 450 °C

Factory setting

20 °C

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 67)
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

Fixed process pressure

Navigation

Prerequisite

The following conditions are met:
- Order code for "Sensor version", option "Mass flow (integrated temperature measurement)"
- In the External value parameter (→ 105) the Pressure option is not selected.

Description

Use this function to enter a fixed value for the process pressure.

User entry

0 to 250 bar abs.

Factory setting

0 bar abs.

Additional information

User entry

For detailed information on setting the parameter in steam applications, see the Special Documentation for the Wet Steam Detection and Wet Steam Measurement application package.

Dependency

The unit is taken from the Pressure unit parameter (→ 66)

Steam quality

Navigation

Expert → Sensor → External comp. → Steam quality (7605)

Prerequisite

The following conditions are met:
- Order code for "Application package":
 - Option ES "Wet steam detection"
 - Option EU "Wet steam measurement"
- In the Select medium parameter (→ 78) the Steam option is selected.
- The software options currently enabled are displayed in the Software option overview parameter (→ 45).

Description

Use this function to select the compensation mode for the steam quality.

Selection

- Fixed value
- Calculated value

Factory setting

Fixed value

Additional information

Selection

For detailed information on setting the parameter in steam applications, see the Special Documentation for the Wet Steam Detection and Wet Steam Measurement application package.
Steam quality value

Navigation

Expert → Sensor → External comp. → Steam qual. val. (7630)

Prerequisite

The following conditions are met:
- In the Select medium parameter (→ 78) the Steam option is selected.
- In the Steam quality parameter (→ 108) the Fixed value option is selected.

Description

Use this function to enter a fixed value for the steam quality.

User entry

0 to 100 %

Factory setting

100 %

Additional information

User entry

For detailed information on setting the parameter in steam applications, see the Special Documentation for the Wet Steam Detection and Wet Steam Measurement application package.

3.2.6 "Sensor adjustment" submenu

Navigation

Sensor adjustment

Inlet configuration (7641) → 109
Inlet run (7642) → 110
Mating pipe diameter (7648) → 110
Installation factor (7616) → 111

Inlet configuration

Navigation

Expert → Sensor → Sensor adjustm. → Inlet config. (7641)

Prerequisite

The inlet run correction feature:
- Is a standard feature and can only be used in Prowirl F 200.
- Can be used for the following pressure ratings and nominal diameters:
 DN 15 to 150 (1 to 6”)
 - EN (DIN)
 - ASME B16.5, Sch. 40/80

Description

Use this function to select the inlet configuration.
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

Selection

- Off
- Single elbow
- Double elbow
- Double elbow 3D
- Reduction

Factory setting

Off

Inlet run

Navigation

Expert → Sensor → Sensor adjustm. → Inlet run

Prerequisite

The inlet run correction feature:
- Is a standard feature and can only be used in Prowirl F 200.
- Can be used for the following pressure ratings and nominal diameters:
 - DN 15 to 150 (1 to 6"
 - EN (DIN)
 - ASME B16.5, Sch. 40/80

Description

Use this function to enter the length of the straight inlet run.

User entry

0 to 20 m

Factory setting

0 m

Additional information

Dependency

The unit is taken from the Length unit parameter (→ 73)

Mating pipe diameter

Navigation

Expert → Sensor → Sensor adjustm. → D mating pipe

Description

Use this function to enter the diameter of the mating pipe to enable diameter mismatch correction.

User entry

0 to 1 m (0 to 3 ft)

Factory setting

Country-specific:
- 0 m
- 0 ft

Additional information

The device has diameter mismatch correction. This can be enabled by entering the actual internal diameter of the mating pipe in the Mating pipe diameter parameter.

User entry

If the value entered is 0, diameter mismatch correction is disabled. If the standard internal diameter of the ordered process connection differs from the internal diameter of the
mating pipe, an additional measuring uncertainty of up to 2 % must be expected if diameter mismatch correction is disabled.

Limit values
Diameter mismatch correction should be enabled only within the following limit values:

Flange connection:
- DN 15 (½\"): ±20 % of the internal diameter
- DN 25 (1\") : ±15 % of the internal diameter
- DN 40 (1½\") : ±12 % of the internal diameter
- DN ≥ 50 (2\") : ±10 % of the internal diameter

Disc (wafer version):
- DN 15 (¼\") : ±15 % of the internal diameter
- DN 25 (1\") : ±12 % of the internal diameter
- DN 40 (1½\") : ±9 % of the internal diameter
- DN ≥ 50 (2\") : ±8 % of the internal diameter

Dependency

The unit is taken from the **Length unit** parameter (→ 112)

<table>
<thead>
<tr>
<th>Installation factor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
<td>▼▼ Expert → Sensor → Sensor adjusm. → Install. factor (7616)</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to enter the factor to adjust installation conditions.</td>
</tr>
<tr>
<td>User entry</td>
<td>Positive floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>1.0</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description</td>
</tr>
</tbody>
</table>

The calculated volume flow and all measured variables derived from this are multiplied by the installation factor.

3.2.7 "Calibration" submenu

Navigation ▼▼ Expert → Sensor → Calibration

<table>
<thead>
<tr>
<th>▶ Calibration</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration factor (7604)</td>
<td>→ 112</td>
</tr>
<tr>
<td>Meter body properties (7658)</td>
<td>→ 112</td>
</tr>
</tbody>
</table>
Calibration factor

Navigation

Expert → Sensor → Calibration → Cal. factor (7604)

Description
Displays the calibration factor. The calibration factor is determined during device calibration.

User interface
Positive floating-point number

Factory setting
This value is always > 0 when the device is delivered from the factory.

Additional information

Description
Factor by which the measured vortex frequency must be divided in order to calculate the volume flow.

Unit
In 1/m³, or vortex pulses per cubic meter

Meter body properties

Navigation

Expert → Sensor → Calibration → Meter body prop. (7658)

Description
Displays informative text about the measuring tube.

User interface
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /)

Factory setting

Additional information

Description
Summarized information about the meter body.

Example
DN25F-PN40: nominal diameter DN25, flange type, pressure rating 40 bar

3.3 "Output" submenu

Navigation

Expert → Output

<table>
<thead>
<tr>
<th>Output</th>
<th>Pulse/frequency/switch output</th>
</tr>
</thead>
</table>

→ 113
3.3.1 "Pulse/frequency/switch output" submenu

Navigation

Expert → Output → PFS output

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating mode (0469)</td>
<td>114</td>
</tr>
<tr>
<td>Assign pulse output (0460)</td>
<td>115</td>
</tr>
<tr>
<td>Value per pulse (0455)</td>
<td>116</td>
</tr>
<tr>
<td>Pulse width (0452)</td>
<td>116</td>
</tr>
<tr>
<td>Failure mode (0480)</td>
<td>117</td>
</tr>
<tr>
<td>Pulse output (0456)</td>
<td>118</td>
</tr>
<tr>
<td>Assign frequency output (0478)</td>
<td>119</td>
</tr>
<tr>
<td>Minimum frequency value (0453)</td>
<td>120</td>
</tr>
<tr>
<td>Maximum frequency value (0454)</td>
<td>120</td>
</tr>
<tr>
<td>Measuring value at minimum frequency (0476)</td>
<td>121</td>
</tr>
<tr>
<td>Measuring value at maximum frequency (0475)</td>
<td>121</td>
</tr>
<tr>
<td>Damping output (0477)</td>
<td>122</td>
</tr>
<tr>
<td>Response time (0491)</td>
<td>123</td>
</tr>
<tr>
<td>Failure mode (0451)</td>
<td>123</td>
</tr>
<tr>
<td>Failure frequency (0474)</td>
<td>124</td>
</tr>
<tr>
<td>Output frequency (0471)</td>
<td>125</td>
</tr>
<tr>
<td>Switch output function (0481)</td>
<td>125</td>
</tr>
<tr>
<td>Assign diagnostic behavior (0482)</td>
<td>126</td>
</tr>
<tr>
<td>Assign limit (0483)</td>
<td>126</td>
</tr>
<tr>
<td>Switch-on value (0466)</td>
<td>128</td>
</tr>
<tr>
<td>Switch-off value (0464)</td>
<td>128</td>
</tr>
</tbody>
</table>
Operating mode

Navigation

Expert → Output → PFS output → Operating mode (0469)

Description

Use this function to select the operating mode of the output as a pulse, frequency or switch output.

Selection

- Pulse
- Frequency
- Switch

Factory setting

Pulse

Additional information

"Pulse" option

Quantity-dependent pulse with configurable pulse width
- Whenever a specific volume, corrected volume, mass, total mass, energy or heat is reached (pulse value), a pulse is output, the duration of which was set previously (pulse width).
- The pulses are never shorter than the set duration.

Example

- Total flow approx. 100 g/s
- Pulse value 0.1 g
- Pulse width 0.05 ms
- Pulse rate 1 000 Impuls/s
"Frequency" option
Flow-proportional frequency output with 1:1 on/off ratio
An output frequency is output that is proportional to the value of a process variable, such as volume flow, corrected volume flow, mass flow, flow velocity, temperature, calculated saturated steam pressure, steam quality, total mass flow, energy flow or heat flow difference.
Example
- Total flow approx. 100 g/s
- Max. frequency 10 kHz
- Flow rate at max. frequency 1000 g/s
- Output frequency approx. 1000 Hz

![Flow-proportional frequency output](image)

5 Flow-proportional frequency output

"Switch" option
Contact for displaying a condition (e.g. alarm or warning if a limit value is reached)
Example
Alarm response without alarm

![No alarm, high level](image)

6 No alarm, high level

Example
Alarm response in case of alarm

![Alarm, low level](image)

7 Alarm, low level

Assign pulse output

Navigation
Expert → Output → PFS output → Assign pulse (0460)

Prerequisite
The Pulse option is selected in the Operating mode parameter (→ 114).
Description
Use this function to select the process variable for the pulse output.

Selection
- Off
- Volume flow
- Corrected volume flow
- Mass flow
- Total mass flow
- Energy flow
- Heat flow difference

Factory setting
Volume flow

Value per pulse

Navigation
Expert → Output → PFS output → Value per pulse (0455)

Prerequisite
The Pulse option is selected in the Operating mode parameter (→ 114), and one of the following options is selected in the Assign pulse output parameter (→ 115):
- Volume flow
- Corrected volume flow
- Mass flow
- Total mass flow
- Energy flow
- Heat flow difference

Description
Use this function to enter the value for the measured value that a pulse is equivalent to.

User entry
Positive floating-point number

Factory setting
Depends on country and nominal diameter → 235

Additional information
User entry
Weighting of the pulse output with a quantity.
The lower the pulse value, the
- better the resolution.
- the higher the frequency of the pulse response.

Pulse width

Navigation
Expert → Output → PFS output → Pulse width (0452)

Prerequisite
In the Operating mode parameter (→ 114), the Pulse option is selected and one of the following options is selected in the Assign pulse output parameter (→ 115):
- Volume flow
- Corrected volume flow
- Mass flow

* Visibility depends on order options or device settings
• Total mass flow *
• Energy flow *
• Heat flow difference *

Description
Use this function to enter the duration of the output pulse.

User entry
5 to 2000 ms

Factory setting
100 ms

Additional information

Description

• Define how long a pulse is (duration).
• The maximum pulse rate is defined by \(f_{\text{max}} = \frac{1}{2 \times \text{pulse width}} \).
• The interval between two pulses lasts at least as long as the set pulse width.
• The maximum flow is defined by \(Q_{\text{max}} = f_{\text{max}} \times \text{pulse value} \).
• If the flow exceeds these limit values, the measuring device displays the diagnostic message \(\Delta S443 \text{ Pulse output 1 to 2} \).

Example

• Pulse value: 0.1 g
• Pulse width: 0.1 ms
• \(f_{\text{max}} = \frac{1}{2 \times 0.1 \text{ ms}} = 5 \text{ kHz} \)
• \(Q_{\text{max}} = 5 \text{ kHz} \times 0.1 \text{ g} = 0.5 \text{ kg/s} \)

The pulse width is not relevant for Automatic pulse option.

Failure mode

Navigation

Expert → Output → PFS output → Failure mode (0480)

Prerequisite

In the Operating mode parameter (→ 114), the Pulse option is selected and one of the following options is selected in the Assign pulse output parameter (→ 115):

• Volume flow
• Corrected volume flow
• Mass flow
• Total mass flow *
• Energy flow *
• Heat flow difference *

* Visibility depends on order options or device settings
Description
Use this function to select the failure mode of the pulse output in the event of a device alarm.

Selection
- Actual value
- No pulses

Factory setting
No pulses

Additional information
Description
The dictates of safety render it advisable to ensure that the pulse output shows a predefined behavior in the event of a fault.

Options
- Actual value
 In the event of a device alarm, the pulse output continues on the basis of the current flow measurement. The fault is ignored.
- No pulses
 In the event of a device alarm, the pulse output is "switched off".

NOTICE! A device alarm is a measuring device error that must be taken seriously. It can affect the measurement quality such that the quality can no longer be guaranteed. The Actual value option is only recommended if it can be guaranteed that all possible alarm conditions will not affect the measurement quality.

Pulse output

Navigation
Expert → Output → PFS output → Pulse output (0456)

Prerequisite
The Pulse option is selected in the Operating mode parameter (→ 114).

Description
Displays the pulse frequency currently output.

User interface
Positive floating-point number

Additional information
- The pulse output is an open collector output.
- This is configured at the factory in such a way that the transistor is conductive for the duration of the pulse (NO contact) and is safety-oriented.
- The Value per pulse parameter (→ 116) and the Pulse width parameter (→ 116) can be used to define the value (i.e. the amount of the measured value that corresponds to a pulse) and the duration of the pulse.
The output behavior can be reversed via the Invert output signal parameter (→ 131), i.e. the transistor does not conduct for the duration of the pulse.

In addition, the behavior of the output in the event of an error (Failure mode parameter (→ 117)) can be configured.

Assign frequency output

Navigation

Expert → Output → PFS output → Assign freq. (0478)

Prerequisite

The Frequency option is selected in the Operating mode parameter (→ 114).

Description

Use this function to select the process variable for the frequency output.

Selection

- Off
- Volume flow
- Corrected volume flow
- Mass flow
- Flow velocity
- Temperature
- Calculated saturated steam pressure *
- Steam quality *
- Total mass flow *
- Energy flow *
- Heat flow difference *

Factory setting

Off

* Visibility depends on order options or device settings
Minimum frequency value

Navigation

Expert → Output → PFS output → Min. freq. value (0453)

Prerequisite

The **Frequency** option is selected in the **Operating mode** parameter (→ 114), and one of the following options is selected in the **Assign frequency output** parameter (→ 119):

- Volume flow
- Corrected volume flow
- Mass flow
- Flow velocity
- Temperature
- Calculated saturated steam pressure *
- Steam quality *
- Total mass flow *
- Energy flow *
- Heat flow difference *

Description

Use this function to enter the start value frequency.

User entry

0 to 1 000 Hz

Factory setting

0 Hz

Maximum frequency value

Navigation

Expert → Output → PFS output → Max. freq. value (0454)

Prerequisite

The **Frequency** option is selected in the **Operating mode** parameter (→ 114), and one of the following options is selected in the **Assign frequency output** parameter (→ 119):

- Volume flow
- Corrected volume flow
- Mass flow
- Flow velocity
- Temperature
- Calculated saturated steam pressure *
- Steam quality *
- Total mass flow *
- Energy flow *
- Heat flow difference *

Description

Use this function to enter the end value frequency.

User entry

0 to 1 000 Hz

Factory setting

1 000 Hz

* Visibility depends on order options or device settings
Measuring value at minimum frequency

Navigation

Expert → Output → PFS output → Val. at min.freq (0476)

Prerequisite

The **Frequency** option is selected in the **Operating mode** parameter (→ 114), and one of the following options is selected in the **Assign frequency output** parameter (→ 119):

- Volume flow
- Corrected volume flow
- Mass flow
- Flow velocity
- Temperature
- Calculated saturated steam pressure *
- Steam quality *
- Total mass flow *
- Energy flow *
- Heat flow difference *

Description

Use this function to enter the measured value for the start value frequency.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter

Additional information

Visibility depends on order options or device settings
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

Factory setting
- Depends on country and nominal diameter

Additional information

Description
- Use this function to enter the maximum measured value at the maximum frequency. The selected process variable is output as a proportional frequency.

Dependency
- The entry depends on the process variable selected in the **Assign frequency output** parameter (→ p. 119).

Damping output

Navigation
- Expert → Output → PFS output → Damping out. (0477)

Prerequisite
- The **Frequency** option is selected in the **Operating mode** parameter (→ p. 114), and one of the following options is selected in the **Assign frequency output** parameter (→ p. 119):
 - Volume flow
 - Corrected volume flow
 - Mass flow
 - Flow velocity
 - Temperature
 - Calculated saturated steam pressure *
 - Steam quality *
 - Total mass flow *
 - Energy flow *
 - Heat flow difference *

*Visibility depends on order options or device settings

Description
- Use this function to enter the reaction time of the output signal to fluctuations in the measured value.

User entry
- 0 to 999.9 s

Factory setting
- 5.0 s

Additional information

Description
- Use this function to enter a time constant (PT1 element) for frequency output damping. The frequency output is subject to separate damping that is independent of all preceding time constants.
Response time

Navigation

Expert → Output → PFS output → Response time (0491)

Prerequisite

The **Frequency** option is selected in the **Operating mode** parameter (→ 114), and one of the following options is selected in the **Assign frequency output** parameter (→ 119):

- Volume flow
- Corrected volume flow
- Mass flow
- Flow velocity
- Temperature
- Calculated saturated steam pressure
- Steam quality
- Total mass flow
- Energy flow
- Heat flow difference

Description

Displays the response time. This specifies how quickly the pulse/frequency/switch output reaches the measured value change of 63 % of 100 % of the measured value change.

User interface

Positive floating-point number

Additional information

* Description

The response time is made up of the time specified for the following dampings:

- Damping of pulse/frequency/switch output
 - Depending on the measured variable assigned to the output.
 - Flow damping

Failure mode

Navigation

Expert → Output → PFS output → Failure mode (0451)

Prerequisite

The **Frequency** option is selected in the **Operating mode** parameter (→ 114), and one of the following options is selected in the **Assign frequency output** parameter (→ 119):

- Volume flow
- Corrected volume flow
- Mass flow
- Flow velocity
- Temperature
- Calculated saturated steam pressure
- Steam quality
- Total mass flow
- Energy flow
- Heat flow difference

Description

Use this function to select the failure mode of the frequency output in the event of a device alarm.

* Visibility depends on order options or device settings
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

Selection

- Actual value
- Defined value
- 0 Hz

Factory setting

0 Hz

Additional information

Selection

- Actual value
 In the event of a device alarm, the frequency output continues on the basis of the current flow measurement. The fault is ignored.
- Defined value
 In the event of a device alarm, the frequency output continues on the basis of a predefined value. This Failure frequency (→ 124) replaces the current measured value and the alarm can be bypassed in this way. The actual measurement is switched off for the duration of the alarm.
- 0 Hz
 In the event of a device alarm, the frequency output is "switched off".

NOTICE! A device alarm is a measuring device error that must be taken seriously. It can affect the measurement quality such that the quality can no longer be guaranteed. The Actual value option is only recommended if it can be guaranteed that all possible alarm conditions will not affect the measurement quality.

Failure frequency

Navigation

Expert → Output → PFS output → Failure freq. (0474)

Prerequisite

The Frequency option is selected in the Operating mode parameter (→ 114), and one of the following options is selected in the Assign frequency output parameter (→ 119):

- Volume flow
- Corrected volume flow
- Mass flow
- Flow velocity
- Temperature
- Calculated saturated steam pressure *
- Steam quality *
- Total mass flow *
- Energy flow *
- Heat flow difference *

Description

Use this function to enter the value for the frequency output in the event of a device alarm in order to bypass the alarm.

User entry

0.0 to 1250.0 Hz

Factory setting

0.0 Hz

* Visibility depends on order options or device settings
Output frequency

Navigation

Expert → Output → PFS output → Output freq. (0471)

Prerequisite

In the Operating mode parameter (→ 114), the Frequency option is selected.

Description

Displays the actual value of the output frequency which is currently measured.

User interface

0 to 1 250 Hz

Switch output function

Navigation

Expert → Output → PFS output → Switch out funct (0481)

Prerequisite

The Switch option is selected in the Operating mode parameter (→ 114).

Description

Use this function to select a function for the switch output.

Selection

- Off
- On
- Diagnostic behavior
- Limit
- Status

Factory setting

Off

Additional information

Options

- Off
 The switch output is permanently switched off (open, non-conductive).
- On
 The switch output is permanently switched on (closed, conductive).
- Diagnostic behavior
 Indicates if the diagnostic event is present or not. Is used to output diagnostic information and to react to it appropriately at the system level.
- Limit
 Indicates if a specified limit value has been reached for the process variable. Is used to output diagnostic information relating to the process and to react to it appropriately at the system level.
- Flow direction check
 Indicates the flow direction (forward or reverse flow).
- Status
 Indicates the device status depending on whether empty pipe detection or low flow cut off is selected.
Assign diagnostic behavior

Navigation

![Navigation]

Prerequisite

- The **Switch** option is selected in the **Operating mode** parameter (→ 114).
- The **Diagnostic behavior** option is selected in the **Switch output function** parameter (→ 125).

Description

Use this function to select the diagnostic event category that is displayed for the switch output.

Selection

- Alarm
- Alarm or warning
- Warning

Factory setting

Alarm

Additional information

Description

If no diagnostic event is pending, the switch output is closed and conductive.

Options

- **Alarm**
 The switch output signals only diagnostic events in the alarm category.
- **Alarm or warning**
 The switch output signals diagnostic events in the alarm and warning category.
- **Warning**
 The switch output signals only diagnostic events in the warning category.

Assign limit

Navigation

![Navigation]

Prerequisite

- The **Switch** option is selected in the **Operating mode** parameter (→ 114).
- The **Limit** option is selected in the **Switch output function** parameter (→ 125).

Description

Use this function to select a process variable for the limit function.

Selection

- Volume flow
- Corrected volume flow
- Mass flow
- Flow velocity
- Temperature
- Calculated saturated steam pressure *
- Steam quality *
- Total mass flow *
- Energy flow *
- Heat flow difference *
- Reynolds number *

* Visibility depends on order options or device settings
Factory setting

Volume flow

Additional information

Description

Behavior of status output when Switch-on value > Switch-off value:
- Process variable > Switch-on value: transistor is conductive
- Process variable < Switch-off value: transistor is non-conductive

Behavior of status output when Switch-on value < Switch-off value:
- Process variable < Switch-on value: transistor is conductive
- Process variable > Switch-off value: transistor is non-conductive

Behavior of status output when Switch-on value = Switch-off value:
- Process variable > Switch-on value: transistor is conductive
- Process variable < Switch-off value: transistor is non-conductive

Totalizer 1
Totalizer 2
Totalizer 3
Switch-on value

Navigation

Expert → Output → PFS output → Switch-on value (0466)

Prerequisite

- The **Switch** option is selected in the Operating mode parameter (→ 114).
- The **Limit** option is selected in the **Switch output function** parameter (→ 125).

Description

Use this function to enter the measured value for the switch-on point.

User entry

Signed floating-point number

Factory setting

Country-specific:

- 0 m³/h
- 0 ft³/h

Additional information

Description

Use this function to enter the limit value for the switch-on value (process variable > switch-on value = closed, conductive).

When using a hysteresis: Switch-on value > Switch-off value.

Dependency

The unit depends on the process variable selected in the **Assign limit** parameter (→ 126).

Switch-off value

Navigation

Expert → Output → PFS output → Switch-off value (0464)

Prerequisite

- The **Switch** option is selected in the Operating mode parameter (→ 114).
- The **Limit** option is selected in the **Switch output function** parameter (→ 125).
Description
Use this function to enter the measured value for the switch-off point.

User entry
Signed floating-point number

Factory setting
Country-specific:
- 0 m³/h
- 0 ft³/h

Additional information
Description
Use this function to enter the limit value for the switch-off value (process variable < switch-off value = open, non-conductive).

When using a hysteresis: Switch-on value > Switch-off value.

Dependency
The unit depends on the process variable selected in the Assign limit parameter (→ 126).

Assign flow direction check

Navigation
Expert → Output → PFS output → Assign dir.check (0484)

Prerequisite
- The Switch option is selected in the Operating mode parameter (→ 114).
- The Flow direction check option is selected in the Switch output function parameter (→ 125).

Description
Use this function to select a process variable for monitoring the flow direction.

Selection
- Off
- Volume flow
- Mass flow
- Corrected volume flow

Factory setting
Volume flow

Assign status

Navigation
Expert → Output → PFS output → Assign status (0485)

Prerequisite
- The Switch option is selected in the Operating mode parameter (→ 114).
- The Status option is selected in the Switch output function parameter (→ 125).

Description
Use this function to select a device status for the switch output.

Selection
- Low flow cut off
- Digital output 2

Factory setting
Low flow cut off
Additional information

Options

If empty pipe detection or low flow cut off are enabled, the output is conductive. Otherwise, the switch output is non-conductive.

Switch-on delay

Navigation

Expert → Output → PFS output → Switch-on delay (0467)

Prerequisite

- The Switch option is selected in the Operating mode parameter (→ 114).
- The Limit option is selected in the Switch output function parameter (→ 125).

Description

Use this function to enter a delay time for switching on the switch output.

User entry

0.0 to 100.0 s

Factory setting

0.0 s

Switch-off delay

Navigation

Expert → Output → PFS output → Switch-off delay (0465)

Prerequisite

- The Switch option is selected in the Operating mode parameter (→ 114).
- The Limit option is selected in the Switch output function parameter (→ 125).

Description

Use this function to enter a delay time for switching off the switch output.

User entry

0.0 to 100.0 s

Factory setting

0.0 s

Failure mode

Navigation

Expert → Output → PFS output → Failure mode (0486)

Description

Use this function to select a failsafe mode for the switch output in the event of a device alarm.

Selection

- Actual status
- Open
- Closed

Factory setting

Open
Additional information

Options

- **Actual status**

 In the event of a device alarm, faults are ignored and the current behavior of the input value is output by the switch output. The **Actual status** option behaves in the same way as the current input value.

- **Open**

 In the event of a device alarm, the switch output's transistor is set to **non-conductive**.

- **Closed**

 In the event of a device alarm, the switch output's transistor is set to **conductive**.

Switch status

Navigation

Expert → Output → PFS output → Switch status (0461)

Prerequisite

The **Switch** option is selected in the **Operating mode** parameter (→ 114).

Description

Displays the current switch status of the status output.

User interface

- Open
- Closed

Additional information

- **Open**

 The switch output is not conductive.

- **Closed**

 The switch output is conductive.

Invert output signal

Navigation

Expert → Output → PFS output → Invert outp.sig. (0470)

Description

Use this function to select whether to invert the output signal.

Selection

- No
- Yes

Factory setting

No

Additional information

- **No** option (passive - negative)

![Diagram](image.png)

Yes option (passive - positive)
3.4 "Communication" submenu

Navigation ⚙️ Expert → Communication

- Communication
 - PROFIBUS PA configuration → 132
 - PROFIBUS PA info → 134
 - Physical block → 135

3.4.1 "PROFIBUS PA configuration" submenu

Navigation ⚙️ Expert → Communication → PROFIBUS PA conf

- PROFIBUS PA configuration
 - Address mode (1468) → 132
 - Device address (1462) → 133
 - Ident number selector (1461) → 133

Address mode

Navigation ⚙️ Expert → Communication → PROFIBUS PA conf → Address mode (1468)

Description Displays the configured address mode.

User interface
 - Hardware
 - Software

Factory setting Software

Additional information

- For detailed information, see the "Setting the device address" section of the Operating Instructions.
Device address

Navigation
Expert → Communication → PROFIBUS PA conf → Device address (1462)

Description
Use this function to enter the device address.

User entry
0 to 126

Factory setting
126

Additional information

Description
The address must always be configured for a PROFIBUS device. The valid address range is between 1 and 126. In a PROFIBUS network, each address can only be assigned once. If an address is not configured correctly, the device is not recognized by the master. All measuring devices are delivered from the factory with the device address 126 and with the software addressing method.

[Displays the configured address mode: Address mode parameter (→ ☰ 132)]

Ident number selector

Navigation
Expert → Communication → PROFIBUS PA conf → Ident num select (1461)

Description
Use this function to select the device master file (GSD).

Selection
- Automatic mode
- Prowirl 200 (0x1564)
- Prowirl 73 (0x153C)
- Prowirl 72 (0x153B)
- 3 AI, 1 Totalizer (0x9742)
- 2 AI, 1 Totalizer (0x9741)
- 1 AI, 1 Totalizer (0x9740)

Factory setting
Automatic mode

Additional information

Description
In order to integrate the field devices into the bus system, the PROFIBUS system needs a description of the device parameters, such as output data, input data, data format, data volume and supported transmission rate. These data are available in the device master file (GSD) which is provided to the PROFIBUS Master when the communication system is commissioned.
3.4.2 "PROFIBUS PA info" submenu

Navigation

Expert → Communication → PROFIBUS PA info

Status PROFIBUS Master Config

Navigation

Expert → Communication → PROFIBUS PA info → Stat Master Conf (1465)

Description

For displaying the status of the PROFIBUS Master configuration.

User interface

- Active
- Not active

Factory setting

Not active

PROFIBUS ident number

Navigation

Expert → Communication → PROFIBUS PA info → Ident number (1464)

Description

For displaying the PROFIBUS identification number.

User interface

0 to FFFF

Factory setting

0x1564

Profile version

Navigation

Expert → Communication → PROFIBUS PA info → Profile version (1463)

Description

Displays the profile version.

User interface

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).
Factory setting
3.02

Base current

Navigation
Expert → Communication → PROFIBUS PA info → Base current (1466)

Description
Displays the basic current: Every PA measuring device taps a constant basic current from the MBP cable. This base current must be at least 10 mA. The base current enables power to be supplied to the measuring device.

User interface
15 mA

Terminal voltage 1

Navigation
Expert → Communication → PROFIBUS PA info → Terminal volt. 1 (0662)

Description
Use this function to view the actual terminal voltage that is present at the current output.

User interface
0.0 to 50.0 V

3.4.3 "Physical block" submenu

Navigation
Expert → Communication → Physical block

<table>
<thead>
<tr>
<th>Physical block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device tag (1496)</td>
</tr>
<tr>
<td>Static revision (1495)</td>
</tr>
<tr>
<td>Strategy (1494)</td>
</tr>
<tr>
<td>Alert key (1473)</td>
</tr>
<tr>
<td>Target mode (1497)</td>
</tr>
<tr>
<td>Mode block actual (1472)</td>
</tr>
<tr>
<td>Mode block permitted (1493)</td>
</tr>
<tr>
<td>Mode block normal (1492)</td>
</tr>
<tr>
<td>Alarm summary (1474)</td>
</tr>
</tbody>
</table>
Description of device parameters

The table below lists the parameters for the Proline Prowirl 200 PROFIBUS PA device:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software revision (1478)</td>
<td>139</td>
</tr>
<tr>
<td>Hardware revision (1479)</td>
<td>139</td>
</tr>
<tr>
<td>Manufacturer ID (1502)</td>
<td>140</td>
</tr>
<tr>
<td>Device ID (1480)</td>
<td>140</td>
</tr>
<tr>
<td>Serial number (1481)</td>
<td>140</td>
</tr>
<tr>
<td>Diagnostics (1482)</td>
<td>140</td>
</tr>
<tr>
<td>Diagnostics mask (1484)</td>
<td>141</td>
</tr>
<tr>
<td>Device certification (1486)</td>
<td>142</td>
</tr>
<tr>
<td>Factory reset (1488)</td>
<td>142</td>
</tr>
<tr>
<td>Descriptor (1489)</td>
<td>142</td>
</tr>
<tr>
<td>Device message (1490)</td>
<td>142</td>
</tr>
<tr>
<td>Device install date (1491)</td>
<td>143</td>
</tr>
<tr>
<td>Ident number selector (1461)</td>
<td>143</td>
</tr>
<tr>
<td>Hardware lock (1499)</td>
<td>143</td>
</tr>
<tr>
<td>Feature supported (1477)</td>
<td>144</td>
</tr>
<tr>
<td>Feature enabled (1476)</td>
<td>144</td>
</tr>
<tr>
<td>Condensed status diagnostic (1500)</td>
<td>144</td>
</tr>
</tbody>
</table>

Device tag

Navigation

- Expert → Communication → Physical block → Device tag (1496)

Description

Use this function to enter the name for the measuring point.

User entry

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Factory setting

Prowirl 200 PA
Static revision

Navigation
> Expert → Communication → Physical block → Static revision (1495)

Description
Displays the event counter: every write access to a static block parameter is counted.

User interface
0 to FFFF

Additional information
(description)

Strategy

Navigation
> Expert → Communication → Physical block → Strategy (1494)

Description
Use this function to enter the strategy: makes it possible to group blocks by entering identical numbers.

User entry
0 to FFFF

Factory setting
0

Alert key

Navigation
> Expert → Communication → Physical block → Alert key (1473)

Description
Use this function to enter the alert key: identifies the section of the plant where the transmitter is located. This helps in pinpointing events.

User entry
0 to 0xFF

Factory setting
0

Target mode

Navigation
> Expert → Communication → Physical block → Target mode (1497)

Description
Displays the Target mode: The target mode indicates which mode of operation is used for this function block. This mode is generally set by a control application.

User interface
- Auto
- Out of service
Mode block actual

Navigation

[Expert] → Communication → Physical block → Mode block act (1472)

Description

Displays the Mode block actual: Under certain conditions, it is possible that a function block will not operate in the required mode. In this case, the Mode block actual shows the actual mode in which the function block is currently operating. A comparison of the Mode block actual with the Target mode indicates whether it was possible to reach the Target mode (→ [137]).

User interface

- Auto
- Out of service

Additional information

A comparison of the current mode with the target mode ([Target mode](#)) parameter (→ [137]) indicates whether it was possible to reach the target mode.

Mode block permitted

Navigation

[Expert] → Communication → Physical block → Mode block perm (1493)

Description

Displays the Mode block permitted: This defines which modes of operation in the Target mode (→ [137]) are available for the function block. The operating modes that are supported vary depending on the type and function of the block.

User interface

0 to 255

Mode block normal

Navigation

[Expert] → Communication → Physical block → Mode blk norm (1492)

Description

Displays the Mode block normal: This is available to allow the operator to select the Mode block normal from the available modes of operation. This can be set using an operating tool in order to help the user configure the operating mode of a function block.

User interface

- Auto
- Out of service

Alarm summary

Navigation

[Expert] → Communication → Physical block → Alarm summary (1474)

Description

Displays the alarm summary: the current status of the block alarms is displayed. A summary of up to 16 statuses can be displayed.
User interface
- Discrete alarm
- Alarm state HiHi limit
- Alarm state Hi limit
- Alarm state LoLo limit
- Alarm state Lo limit
- Update Event

Additional information

Description
Currently, the system only displays a change in a static parameter for 10 seconds, and violations of the early warning and alarm limits in the Physical Block function block.

User interface
- Discrete alarm
 Alarm or warning message with a discrete value.
- Alarm state HiHi limit
 Upper alarm limit
- Alarm state Hi limit
 Upper warning limit
- Alarm state LoLo limit
 Lower alarm limit
- Alarm state Lo limit
 Lower warning limit
- Update Event
 This option constitutes a special alarm that is triggered if a static parameter is changed. If such a parameter is modified, the associated bit is set in the Alarm summary parameter (→ 138), the output of the block switches to “GOOD (NC) Active Update Event” (if the current status has a lower priority than this), and the block remains in this state for a duration of 10 s. The block then reverts to the normal state (the output has the last status and the Update Event option bit in the Alarm summary parameter (→ 138) is deleted again).

Software revision

Navigation
- Expert → Communication → Physical block → Software rev. (1478)

Description
Displays the firmware version of the measuring device.

User interface
Max. 16 characters such as letters, numbers or special characters (e.g. @, %, /).

Hardware revision

Navigation
- Expert → Communication → Physical block → Hardware rev. (1479)

Description
Displays the hardware revision of the measuring device.

User interface
Max. 16 characters such as letters, numbers or special characters (e.g. @, %, /).
Manufacturer ID

Navigation
Expert → Communication → Physical block → Manufacturer ID (1502)

Description
Displays the manufacturer ID with which the measuring device has been registered with the PNO (PROFIBUS User Organization).

User interface
0 to FFFF

Factory setting
0x11

Device ID

Navigation
Expert → Communication → Physical block → Device ID (1480)

Description
Displays the device ID for identifying the measuring device in a PROFIBUS network.

User interface
Max. 16 characters such as letters, numbers or special characters (e.g. @, %, /).

Factory setting
Prowirl 200 PA

Serial number

Navigation
Expert → Communication → Physical block → Serial number (1481)

Description
Displays the serial number of the measuring device. It can also be found on the nameplate of the sensor and transmitter.

User interface
Max. 11-digit character string comprising letters and numbers.

Additional information

Uses of the serial number
- To identify the measuring device quickly, e.g. when contacting Endress+Hauser.
- To obtain specific information on the measuring device using the Device Viewer: www.endress.com/deviceviewer

Diagnostics

Navigation
Expert → Communication → Physical block → Diagnostics (1482)

Description
Displays the diagnostic messages.

User interface
- Hardware failure electronics
- Hardware failure mechanics
- Temperature motor
- Electronic temperature
- Memory checksum error
- Measurement error
- Device not initialized
- Initialization error
- Zero point error
- Power supply
- Configuration invalid
- On warmstart
- On coldstart
- Maintenance required
- Characterization invalid
- Ident number violation
- More information available
- Maintenance alarm
- Maintenance demanded
- Function check or simulation
- Invalid process condition

Diagnostics mask

Navigation

Expert → Communication → Physical block → Diagnostics mask (1484)

Description

Displays the diagnostic messages supported by the measuring device.

User interface

- Hardware failure electronics
- Hardware failure mechanics
- Temperature motor
- Electronic temperature
- Memory checksum error
- Measurement error
- Device not initialized
- Initialization error
- Zero point error
- Power supply
- Configuration invalid
- On warmstart
- On coldstart
- Maintenance required
- Characterization invalid
- Ident number violation
- More information available
- Maintenance alarm
- Maintenance demanded
- Function check or simulation
- Invalid process condition
Device certification

Navigation
Expert → Communication → Physical block → Dev certificate (1486)

Description
Displays certificates of the measuring device, e.g. Ex certificate.

User interface
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Factory reset

Navigation
Expert → Communication → Physical block → Factory reset (1488)

Description
Use this function to reset a certain set of parameters in a block.

Selection
- to defaults
- warmstart device
- reset bus address
- Cancel

Factory setting
Cancel

Descriptor

Navigation
Expert → Communication → Physical block → Descriptor (1489)

Description
Use this function to enter a user-specific string to describe the device within the application.

User entry
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Device message

Navigation
Expert → Communication → Physical block → Device message (1490)

Description
Use this function to enter a user-definable message (a string) to describe the device within the application or in the plant.

User entry
Max. 32 Zeichen wie Buchstaben, Zahlen oder Sonderzeichen (Z.B. @, %, /).
Device install date

Navigation

Expert → Communication → Physical block → Device inst.date (1491)

Description

Use this function to enter the date of installation of the device.

User entry

Max. 16 Zeichen wie Buchstaben, Zahlen oder Sonderzeichen (z.B. @, %, /).

Ident number selector

Navigation

Expert → Communication → Physical block → Ident num select (1461)

Description

Use this function to select the device master file (GSD).

Selection

- Automatic mode
- Prowirl 200 (0x1564)
- Prowirl 73 (0x153C)
- Prowirl 72 (0x153B)
- 3 AI, 1 Totalizer (0x9742)
- 2 AI, 1 Totalizer (0x9741)
- 1 AI, 1 Totalizer (0x9740)

Factory setting

Automatic mode

Additional information

Description

In order to integrate the field devices into the bus system, the PROFIBUS system needs a description of the device parameters, such as output data, input data, data format, data volume and supported transmission rate. These data are available in the device master file (GSD) which is provided to the PROFIBUS Master when the communication system is commissioned.

Hardware lock

Navigation

Expert → Communication → Physical block → Hardware lock (1499)

Description

Displays the hardware write protection.

User interface

- Unprotected
- Protected

Additional information

Description

Indicates whether it is possible to write-access the measuring device via PROFIBUS (acyclic data transmission, e.g. via the “FieldCare” operating program).

For detailed information on hardware write protection, see the "Write protection via write protection switch" section of the Operating Instructions.
Feature supported

Navigation
- **Expert → Communication → Physical block → Feature support (1477)**

Description
Displays the PROFIBUS features that are supported by the measuring device.

User interface
- **Condensed status**
- **Classic status diagnosis**
- **Data exchange broadcast**
- **MS1 application relationship**
- **PROFIsafe communication**

Feature enabled

Navigation
- **Expert → Communication → Physical block → Feature enabled (1476)**

Description
Displays the PROFIBUS features that are enabled in the measuring device.

User interface
- **Condensed status**
- **Classic status diagnosis**
- **Data exchange broadcast**
- **MS1 application relationship**
- **PROFIsafe communication**

Condensed status diagnostic

Navigation
- **Expert → Communication → Physical block → Condensed status (1500)**

Description
Use this function to switch the condensed status diagnostic on and off.

Selection
- **Off**
- **On**

Factory setting
- **On**
3.5 "Analog inputs" submenu

Navigation Expert → Analog inputs

3.5.1 "Analog input 1 to 4" submenu

Navigation Expert → Analog inputs → Analog input 1 to 4

<table>
<thead>
<tr>
<th>Channel (1561–1 to 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV filter time (1524–1 to 4)</td>
</tr>
<tr>
<td>Fail safe type (1525–1 to 4)</td>
</tr>
<tr>
<td>Fail safe value (1526–1 to 4)</td>
</tr>
<tr>
<td>Out value (1552–1 to 4)</td>
</tr>
<tr>
<td>Out status (1564–1 to 4)</td>
</tr>
<tr>
<td>Out status (1549–1 to 4)</td>
</tr>
</tbody>
</table>

Channel

Navigation Expert → Analog inputs → Analog input 1 to 4 → Channel (1561–1 to 4)

Description For selecting the process variable.

Selection

- Volume flow
- Mass flow
- Corrected volume flow
- Flow velocity
- Temperature
- Calculated saturated steam pressure *
- Steam quality *
- Total mass flow *
- Energy flow *
- Heat flow difference *
- Reynolds number *
- Density *

* Visibility depends on order options or device settings
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

- Pressure *
- Specific volume *
- Degrees of superheat *

Factory setting

Volume flow

PV filter time

Navigation

Expert → Analog inputs → Analog input 1 to 4 → PV filter time (1524–1 to 4)

Description

Use this function to enter a time to suppress signal peaks. During the specified time the Analog input does not respond to an erratic increase in the process variable.

User entry

Positive floating-point number

Factory setting

0

Fail safe type

Navigation

Expert → Analog inputs → Analog input 1 to 4 → Fail safe type (1525–1 to 4)

Description

Use this function to select the failure mode.

Selection

- Fail safe value
- Fallback value
- Off

Factory setting

Off

Additional information

Selection

If an input or simulation value has the status BAD, the function block uses this predefined failure value:

- Fail safe value
 A substitute value is used. This is specified in the Fail safe value parameter (→ 146).
- Fallback value
 If the value was good at one point, then this last valid value is used.
- Off
 The system continues to use the bad value.

Fail safe value

Navigation

Expert → Analog inputs → Analog input 1 to 4 → Fail safe value (1526–1 to 4)

Prerequisite

In Fail safe type parameter (→ 146), the Fail safe value option is selected.

* Visibility depends on order options or device settings
Description

Use this function to enter a failure value. The value entered is displayed as the output value (Out value parameter (→ 147)) in the event of an error.

User entry

Signed floating-point number

Factory setting

0

Out value

Navigation

Expert → Analog inputs → Analog input 1 to 4 → Out value (1552–1 to 4)

Prerequisite

In Target mode parameter (→ 148), the Auto option is selected.

Description

Displays the analog value which is calculated when the function is executed.

User interface

Signed floating-point number

Out status

Navigation

Expert → Analog inputs → Analog input 1 to 4 → Out status (1564–1 to 4)

Description

Displays the current output status (Good, Bad, Uncertain).

User interface

• Good
• Uncertain
• Bad

Out status

Navigation

Expert → Analog inputs → Analog input 1 to 4 → Out status (1549–1 to 4)

Prerequisite

In Target mode parameter (→ 148), the Auto option is selected.

Description

Displays the current output status (hex value).

User interface

0 to 0xFF

Tag description

Navigation

Expert → Analog inputs → Analog input 1 to 4 → Tag description (1562–1 to 4)

Description

Use this function to enter a string to identify the block.
User entry
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

<table>
<thead>
<tr>
<th>Static revision</th>
</tr>
</thead>
</table>

Navigation
Expert → Analog inputs → Analog input 1 to 4 → Static revision (1560–1 to 4)

Description
Displays the event counter: every write access to a static block parameter is counted.

User interface
0 to FFFF

Additional information
Description
Static parameters are parameters that are not changed by the process.

Strategy

Navigation
Expert → Analog inputs → Analog input 1 to 4 → Strategy (1559–1 to 4)

Description
Use this function to enter the strategy: makes it possible to group blocks by entering identical numbers.

User entry
0 to FFFF

Factory setting
0

Alert key

Navigation
Expert → Analog inputs → Analog input 1 to 4 → Alert key (1522–1 to 4)

Description
Use this function to enter the alert key: identifies the section of the plant where the transmitter is located. This helps in pinpointing events.

User entry
0 to 0xFF

Factory setting
0

Target mode

Navigation
Expert → Analog inputs → Analog input 1 to 4 → Target mode (1563–1 to 4)

Description
Displays the Target mode: The target mode indicates which mode of operation is used for this function block. This mode is generally set by a control application.
User interface

- Auto
- Man
- Out of service

Mode block actual

Navigation

Expert → Analog inputs → Analog input 1 to 4 → Mode block act (1521–1 to 4)

Description
Displays the Mode block actual: Under certain conditions, it is possible that a function block will not operate in the required mode. In this case, the Mode block actual shows the actual mode in which the function block is currently operating. A comparison of the Mode block actual with the Target mode indicates whether it was possible to reach the Target mode (→ 148).

User interface

- Auto
- Man
- Out of service

Additional information

Description
A comparison of the current mode with the target mode (Target mode parameter (→ 148)) indicates whether it was possible to reach the target mode.

Mode block permitted

Navigation

Expert → Analog inputs → Analog input 1 to 4 → Mode block perm (1553–1 to 4)

Description
Displays the Mode block permitted: This defines which modes of operation in the Target mode (→ 148) are available for the function block. The operating modes that are supported vary depending on the type and function of the block.

User interface

0 to 255

Mode block normal

Navigation

Expert → Analog inputs → Analog input 1 to 4 → Mode blk norm (1546–1 to 4)

Description
Displays the Mode block normal: This is available to allow the operator to select the Mode block normal from the available modes of operation. This can be set using an operating tool in order to help the user configure the operating mode of a function block.

User interface

- Auto
- Man
- Out of service
Alarm summary

Navigation

- Expert → Analog inputs → Analog input 1 to 4 → Alarm summary (1537–1 to 4)

Description

Displays the alarm summary: the current status of the block alarms is displayed. A summary of up to 16 statuses can be displayed.

User interface

- Discrete alarm
- Alarm state HiHi limit
- Alarm state Hi limit
- Alarm state LoLo limit
- Alarm state Lo limit
- Update Event

Additional information

Currently, the system only displays a change in a static parameter for 10 seconds, and violations of the early warning and alarm limits in the Analog Inputs function block.

Batch ID

Navigation

- Expert → Analog inputs → Analog input 1 to 4 → Batch ID (1533–1 to 4)

Description

Use this function to enter the batch ID: identification of a specific batch to make it possible to assign device-specific information (e.g. errors, alarm conditions etc.) to the batching process.

User entry

Positive integer

Batch operation

Navigation

- Expert → Analog inputs → Analog input 1 to 4 → Batch operation (1534–1 to 4)

Description

Use this function to enter the batch operation: control recipe operation number to identify the active control recipe operation.

User entry

0 to 65535

Factory setting

0

Batch phase

Navigation

- Expert → Analog inputs → Analog input 1 to 4 → Batch phase (1535–1 to 4)

Description

Use this function to enter the batch phase: control recipe phase number to identify the active control recipe operation.
Batch Recipe Unit Procedure

Navigation

Expert → Analog inputs → Analog input 1 to 4 → Batch Recipe (1536–1 to 4)

Description

Use this function to enter the batch recipe unit procedure (RUP): identification of the active control recipe unit procedure or the associated unit (e.g. inductor, centrifuge, drying agent).

User entry

0 to 65535

Factory setting

0

Additional information

Description

The unit is defined in IEC61512 Part1/ISA S88 but its meaning is different to that of the parameter unit, such as system units.

PV scale lower range

Navigation

Expert → Analog inputs → Analog input 1 to 4 → PVscale lo range (1554–1 to 4)

Description

Use this function to enter the lower value range for the input value (Process Value Scale) in system units. The process value scale normalizes the input value to a user-specific range.

User entry

Signed floating-point number

Factory setting

0

PV scale upper range

Navigation

Expert → Analog inputs → Analog input 1 to 4 → PVscale up range (1555–1 to 4)

Description

Use this function to enter the upper value range for the input value (Process Value Scale) in system units. The process value scale normalizes the input value to a user-specific range.

User entry

Signed floating-point number

Factory setting

100.0
Out scale lower range

Navigation
- Expert → Analog inputs → Analog input 1 to 4 → Out scale low (1548–1 to 4)

Description
Use this function to enter the lower value range for the output value in system units.

User entry
Signed floating-point number

Factory setting
0

Out scale upper range

Navigation
- Expert → Analog inputs → Analog input 1 to 4 → Out scale up (1551–1 to 4)

Description
Use this function to enter the upper value range for the output value in system units.

User entry
Signed floating-point number

Factory setting
100.0

Lin type

Navigation
- Expert → Analog inputs → Analog input 1 to 4 → Lin type (1523–1 to 4)

Description
Use this function to switch off the linearization type for the input value.

Selection
Off

Factory setting
Off

Out unit

Navigation
- Expert → Analog inputs → Analog input 1 to 4 → Out unit (1550–1 to 4)

Description
Use this function to enter a numerical code (hex) for the system unit.

User entry
0 to 65535

Factory setting
1997
Out decimal point

Navigation

Expert → Analog inputs → Analog input 1 to 4 → Out dec_ point (1547–1 to 4)

Description

Use this function to enter the maximum number of decimal places that are displayed for the output value.

User entry

0 to 7

Factory setting

0

Alarm hysteresis

Navigation

Expert → Analog inputs → Analog input 1 to 4 → Alarm hysteresis (1527–1 to 4)

Description

Use this function to enter the hysteresis value for the upper and lower warning or alarm limit values.

User entry

Signed floating-point number

Factory setting

0

Hi Hi Lim

Navigation

Expert → Analog inputs → Analog input 1 to 4 → Hi Hi Lim (1528–1 to 4)

Description

Use this function to enter the value for the upper alarm limit (*Hi Hi alarm value* parameter → 155).

User entry

Signed floating-point number

Factory setting

Positive floating-point number

Additional information

Description

If the output value Out value (→ 147) exceeds this limit value, the **Hi Hi alarm state** parameter (→ 155) is output.

User entry

The value is entered in the defined units (*Out unit* parameter → 152) and must be in the range defined in the **Out scale lower range** parameter (→ 152) and **Out scale upper range** parameter (→ 152).
Hi Lim

Navigation
Expert → Analog inputs → Analog input 1 to 4 → Hi Lim (1529–1 to 4)

Description
Use this function to enter the value for the upper warning limit (Hi alarm value parameter (→ 155)).

User entry
Signed floating-point number

Factory setting
Positive floating-point number

Additional information
Description
If the output value Out value (→ 147) exceeds this limit value, the Hi alarm state parameter (→ 156) is output.

User entry
The value is entered in the defined units (Out unit parameter (→ 152)) and must be in the range defined in the Out scale lower range parameter (→ 152) and Out scale upper range parameter (→ 152).

Lo Lim

Navigation
Expert → Analog inputs → Analog input 1 to 4 → Lo Lim (1530–1 to 4)

Description
Use this function to enter the value for the lower warning limit (Lo alarm value parameter (→ 156)).

User entry
Signed floating-point number

Factory setting
Negative floating-point number

Additional information
Description
If the output value Out value (→ 147) exceeds this limit value, the Lo alarm state parameter (→ 156) is output.

User entry
The value is entered in the defined units (Out unit parameter (→ 152)) and must be in the range defined in the Out scale lower range parameter (→ 152) and Out scale upper range parameter (→ 152).

Lo Lo Lim

Navigation
Expert → Analog inputs → Analog input 1 to 4 → Lo Lo Lim (1531–1 to 4)

Description
Use this function to enter the value for the lower alarm limit (Lo Lo alarm value parameter (→ 156)).
Proline Prowirl 200 PROFIBUS PA

User entry
Signed floating-point number

Factory setting
Negative floating-point number

Additional information

Description
If the output value Out value (→ 147) exceeds this limit value, the Lo Lo alarm state parameter (→ 157) is output.

User entry
The value is entered in the defined units (Out unit parameter (→ 152)) and must be in the range defined in the Out scale lower range parameter (→ 152) and Out scale upper range parameter (→ 152).

Hi Hi alarm value

Navigation
Expert → Analog inputs → Analog input 1 to 4 → HiHi alarm value (1541–1 to 4)

Description
Displays the alarm value for the upper alarm limit value (Hi Hi Lim parameter (→ 153)).

User interface
Signed floating-point number

Hi Hi alarm state

Navigation
Expert → Analog inputs → Analog input 1 to 4 → HiHi alarm state (1540–1 to 4)

Description
Displays the status for the upper alarm limit value (Hi Hi Lim parameter (→ 153)).

User interface
- No alarm
- Alarm state HiHi limit

Additional information
User interface
The display contains information such as the time of the alarm (date and time) and the value that triggered the alarm.

Hi alarm value

Navigation
Expert → Analog inputs → Analog input 1 to 4 → Hi alarm value (1539–1 to 4)

Description
Displays the alarm value for the upper warning limit value (Hi Lim parameter (→ 154)).

User interface
Signed floating-point number
Hi alarm state

Navigation
Expert → Analog inputs → Analog input 1 to 4 → Hi alarm state (1538–1 to 4)

Description
Displays the status for the upper warning limit value (Hi Lim parameter (→ 154)).

User interface
- No warning
- Alarm state Hi limit

Additional information
User interface
The display contains information such as the time of the warning (date and time) and the value that triggered the alarm.

Lo alarm value

Navigation
Expert → Analog inputs → Analog input 1 to 4 → Lo alarm value (1543–1 to 4)

Description
Displays the alarm value for the lower warning limit value (Lo Lim parameter (→ 154)).

User interface
Signed floating-point number

Lo alarm state

Navigation
Expert → Analog inputs → Analog input 1 to 4 → Lo alarm state (1542–1 to 4)

Description
Displays the status for the lower warning limit value (Lo Lim parameter (→ 154)).

User interface
- No warning
- Alarm state Lo limit

Additional information
User interface
The display contains information such as the time of the warning (date and time) and the value that triggered the alarm.

Lo Lo alarm value

Navigation
Expert → Analog inputs → Analog input 1 to 4 → LoLo alarm value (1545–1 to 4)

Description
Displays the alarm value for the lower alarm limit value (Lo Lo Lim parameter (→ 154)).

User interface
Signed floating-point number
Lo Lo alarm state

Navigation

Expert → Analog inputs → Analog input 1 to 4 → LoLo alarm state (1544–1 to 4)

Description

Displays the status for the lower alarm limit value (Lo Lo Lim parameter → 154).

User interface

- No alarm
- Alarm state LoLo limit

Additional information

User interface

The display contains information such as the time of the alarm (date and time) and the value that triggered the alarm.

Simulate enabled

Navigation

Expert → Analog inputs → Analog input 1 to 4 → Simulate enabled (1556–1 to 4)

Description

Use this function to enable or disable block simulation.

Selection

- Disable
- Enable

Factory setting

Disable

Additional information

Description

The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated discrete I/O channel during operation.

Simulate value

Navigation

Expert → Analog inputs → Analog input 1 to 4 → Simulate value (1558–1 to 4)

Description

Use this function to enter a simulation value for the block.

User entry

Signed floating-point number

Factory setting

0

Additional information

Description

The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated value during operation.
Simulate status

Navigation

Expert → Analog inputs → Analog input 1 to 4 → Simulate status (1557–1 to 4)

Description

Use this function to enter a simulation status for the block.

User entry

0 to 255

Factory setting

0

Additional information

Description

The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated status during operation.

Out unit text

Navigation

Expert → Analog inputs → Analog input 1 to 4 → Out unit text (1532–1 to 4)

Description

Use this function to enter the out unit text: if a specific out unit does not appear in the code list, the user can enter the specific text. The unit code is then equivalent to the definition provided here.

User entry

Max. 16 characters such as letters, numbers or special characters (e.g. @, %, /).

Factory setting

NoUnit

3.6 "Discrete inputs" submenu

Navigation

Expert → Discrete inputs

3.6.1 "Discrete input 1 to 2" submenu

Navigation

Expert → Discrete inputs → Discrete input 1 to 2

- Channel (2187–1 to 2)
- Invert (2188–1 to 2)
Fail safe type (2189–1 to 2) → 159
Fail safe value (2190–1 to 2) → 160
Out value (2194–1 to 2) → 160
Out status (2203–1 to 2) → 160
Out status (2193–1 to 2) → 161

Channel

Navigation
Expert → Discrete inputs → Discrete input 1 to 2 → Channel (2187–1 to 2)

Description Use this function to assign a measured variable to the particular function block.

Selection
• Low flow cut off
• Switch output status
• Verification status *

Factory setting Switch output status

Invert

Navigation
Expert → Discrete inputs → Discrete input 1 to 2 → Invert (2188–1 to 2)

Description Use this function to invert the input signal.

Selection
• Off
• On

Factory setting Off

Fail safe type

Navigation
Expert → Discrete inputs → Discrete input 1 to 2 → Fail safe type (2189–1 to 2)

Description Use this function to select the failure mode.

Selection
• Fail safe value
• Fallback value
• Off

* Visibility depends on order options or device settings
Factory setting
- **Off**

Additional information
- **Selection**

If an input or simulation value has the status BAD, the function block uses this predefined failure value:
- **Fail safe value**
 - A substitute value is used. This is specified in the **Fail safe value** parameter (→ 160).
- **Fallback value**
 - If the value was good at one point, then this last valid value is used.
- **Off**
 - The system continues to use the bad value.

Fail safe value

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Discrete inputs → Discrete input 1 to 2 → Fail safe value (2190–1 to 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>In Fail safe type parameter (→ 159), the Fail safe value option is selected.</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to enter a failure value. The value entered is displayed as the output value (Out value parameter (→ 160)) in the event of an error.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 255</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Out value

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Discrete inputs → Discrete input 1 to 2 → Out value (2194–1 to 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>In Target mode parameter (→ 162), the Auto option is selected.</td>
</tr>
<tr>
<td>Description</td>
<td>Displays the analog value which is calculated when the function is executed.</td>
</tr>
<tr>
<td>User interface</td>
<td>0 to 255</td>
</tr>
</tbody>
</table>

Out status

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Discrete inputs → Discrete input 1 to 2 → Out status (2203–1 to 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the current output status (Good, Bad, Uncertain).</td>
</tr>
</tbody>
</table>
| User interface | • Good
 • Uncertain
 • Bad |
Out status

Navigation

Expert → Discrete inputs → Discrete input 1 to 2 → Out status (2193–1 to 2)

Prerequisite

In **Target mode** parameter (→ 162), the **Auto** option is selected.

Description

Displays the current output status (hex value).

User interface

0 to 0xFF

Tag description

Navigation

Expert → Discrete inputs → Discrete input 1 to 2 → Tag description (2201–1 to 2)

Description

Use this function to enter a string to identify the block.

User entry

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Static revision

Navigation

Expert → Discrete inputs → Discrete input 1 to 2 → Static revision (2200–1 to 2)

Description

Displays the event counter: every write access to a static block parameter is counted.

User interface

0 to FFFF

Additional information

Description

Static parameters are parameters that are not changed by the process.

Strategy

Navigation

Expert → Discrete inputs → Discrete input 1 to 2 → Strategy (2199–1 to 2)

Description

Use this function to enter the strategy: makes it possible to group blocks by entering identical numbers.

User entry

0 to FFFF

Factory setting

0
Alert key

Navigation
Expert → Discrete inputs → Discrete input 1 to 2 → Alert key (2182–1 to 2)

Description
Use this function to enter the alert key: identifies the section of the plant where the transmitter is located. This helps in pinpointing events.

User entry
0 to 0xFF

Factory setting
0

Target mode

Navigation
Expert → Discrete inputs → Discrete input 1 to 2 → Target mode (2202–1 to 2)

Description
Displays the Target mode: The target mode indicates which mode of operation is used for this function block. This mode is generally set by a control application.

User interface
- Auto
- Man
- Out of service

Mode block actual

Navigation
Expert → Discrete inputs → Discrete input 1 to 2 → Mode block act (2181–1 to 2)

Description
Displays the Mode block actual: Under certain conditions, it is possible that a function block will not operate in the required mode. In this case, the Mode block actual shows the actual mode in which the function block is currently operating. A comparison of the Mode block actual with the Target mode indicates whether it was possible to reach the Target mode (→ 162).

User interface
- Auto
- Man
- Out of service

Additional information

Description
A comparison of the current mode with the target mode (Target mode parameter (→ 162)) indicates whether it was possible to reach the target mode.
Mode block permitted

Navigation
Expert → Discrete inputs → Discrete input 1 to 2 → Mode block perm (2195–1 to 2)

Description
Displays the Mode block permitted: This defines which modes of operation in the Target mode (→ 162) are available for the function block. The operating modes that are supported vary depending on the type and function of the block.

User interface
0 to 255

Mode block normal

Navigation
Expert → Discrete inputs → Discrete input 1 to 2 → Mode blk norm (2192–1 to 2)

Description
Displays the Mode block normal: This is available to allow the operator to select the Mode block normal from the available modes of operation. This can be set using an operating tool in order to help the user configure the operating mode of a function block.

User interface
- Auto
- Man
- Out of service

Alarm summary

Navigation
Expert → Discrete inputs → Discrete input 1 to 2 → Alarm summary (2191–1 to 2)

Description
Displays the alarm summary: the current status of the block alarms is displayed. A summary of up to 16 statuses can be displayed.

User interface
- Discrete alarm
- Alarm state HiHi limit
- Alarm state Hi limit
- Alarm state LoLo limit
- Alarm state Lo limit
- Update Event

Additional information
Description
Currently, the system only displays a change in a static parameter for 10 seconds, and violations of the early warning and alarm limits in the Discrete Inputs function block.
Batch ID

Navigation
- Expert → Discrete inputs → Discrete input 1 to 2 → Batch ID (2183–1 to 2)

Description
Use this function to enter the batch ID: identification of a specific batch to make it possible to assign device-specific information (e.g. errors, alarm conditions etc.) to the batching process.

User entry
Positive integer

Batch operation

Navigation
- Expert → Discrete inputs → Discrete input 1 to 2 → Batch operation (2184–1 to 2)

Description
Use this function to enter the batch operation: control recipe operation number to identify the active control recipe operation.

User entry
0 to 65535

Factory setting
0

Batch phase

Navigation
- Expert → Discrete inputs → Discrete input 1 to 2 → Batch phase (2185–1 to 2)

Description
Use this function to enter the batch phase: control recipe phase number to identify the active control recipe operation.

User entry
0 to 65535

Factory setting
0

Batch Recipe Unit Procedure

Navigation
- Expert → Discrete inputs → Discrete input 1 to 2 → Batch Recipe (2186–1 to 2)

Description
Use this function to enter the batch recipe unit procedure (RUP): identification of the active control recipe unit procedure or the associated unit (e.g. inductor, centrifuge, drying agent).

User entry
0 to 65535

Factory setting
0
Proline Prowirl 200 PROFIBUS PA

Description of device parameters

Additional information

Description

The unit is defined in IEC61512 Part1/ISA S88 but its meaning is different to that of the parameter unit, such as system units.

Simulate enabled

Navigation

Expert → Discrete inputs → Discrete input 1 to 2 → Simulate enabled (2196–1 to 2)

Description

Use this function to enable or disable block simulation.

Selection

- Disable
- Enable

Factory setting

Disable

Additional information

Description

The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated discrete I/O channel during operation.

Simulate status

Navigation

Expert → Discrete inputs → Discrete input 1 to 2 → Simulate status (2197–1 to 2)

Description

Use this function to enter a simulation status for the block.

User entry

0 to 255

Factory setting

0

Additional information

Description

The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated status during operation.

Simulate value

Navigation

Expert → Discrete inputs → Discrete input 1 to 2 → Simulate value (2198–1 to 2)

Description

Use this function to enter a simulation value for the block.

User entry

0 to 255

Factory setting

0
Additional information

Description
The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated value during operation.

3.7 "Analog outputs" submenu

Navigation

Expert → Analog outputs

3.7.1 "Analog output 1" submenu

Navigation

Expert → Analog outputs → Analog output 1

Set point value

Navigation

Expert → Analog outputs → Analog output 1 → Set point val (1661–1)

Description
Use this function to enter an analog set point.

User entry
Signed floating-point number

Factory setting
0
Set point status

Navigation

Expert → Analog outputs → Analog output 1 → Set point status (1660–1)

Description

Use this function to enter a status for the analog set point.

User entry

0 to 255

Factory setting

0

Fail safe time

Navigation

Expert → Analog outputs → Analog output 1 → Fail safe time (1635–1)

Description

Use this function to enter a time span within which the criteria for an error must be met continuously before an error message or notice message is generated.

User entry

0 to 999.0

Factory setting

0

Additional information

User entry

NOTE!

If this parameter is used, error messages and notice messages are delayed by the set time before being relayed to the higher-level controller (DCS, etc.).

- Check in advance to ensure that the safety-specific requirements of the process would permit this.
- If the error and notice messages may not be suppressed, a value of 0 seconds must be configured here.

Fail safe type

Navigation

Expert → Analog outputs → Analog output 1 → Fail safe type (1636–1)

Description

Use this function to select the failure mode.

Selection

- Fail safe value
- Fallback value
- Off

Factory setting

Fallback value
Additional information

Selection

If an input or simulation value has the status BAD, the function block uses this predefined failure value:

- Fail safe value
 A substitute value is used. This is specified in the **Fail safe value** parameter (→ 168).
- Fallback value
 If the value was good at one point, then this last valid value is used.
- Off
 The system continues to use the bad value.

Fail safe value

Navigation

Expert → Analog outputs → Analog output 1 → Fail safe value (1637–1)

Prerequisite

In **Fail safe type** parameter (→ 167), the **Fallback value** option is selected.

Description

Use this function to enter a failure value. The value entered is displayed as the output value (**Out value** parameter (→ 168)) in the event of an error.

User entry

Signed floating-point number

Factory setting

0

Out value

Navigation

Expert → Analog outputs → Analog output 1 → Out value (1647–1)

Prerequisite

In **Target mode** parameter (→ 170), the **Auto** option is selected.

Description

Displays the analog value which is calculated when the function is executed.

User interface

Signed floating-point number

Out status

Navigation

Expert → Analog outputs → Analog output 1 → Out status (1669–1)

Description

Displays the current output status (Good, Bad, Uncertain).

User interface

- Good
- Uncertain
- Bad
Out status

Navigation

Expert → Analog outputs → Analog output 1 → Out status (1645–1)

Prerequisite

In Target mode parameter (→ 170), the Auto option is selected.

Description

Displays the current output status (hex value).

User interface

0 to 0xFF

Tag description

Navigation

Expert → Analog outputs → Analog output 1 → Tag description (1667–1)

Description

Use this function to enter a string to identify the block.

User entry

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Static revision

Navigation

Expert → Analog outputs → Analog output 1 → Static revision (1666–1)

Description

Displays the event counter: every write access to a static block parameter is counted.

User interface

0 to FFFF

Additional information

Description

Static parameters are parameters that are not changed by the process.

Strategy

Navigation

Expert → Analog outputs → Analog output 1 → Strategy (1665–1)

Description

Use this function to enter the strategy: makes it possible to group blocks by entering identical numbers.

User entry

0 to FFFF

Factory setting

0
Alert key

Navigation
- Expert → Analog outputs → Analog output 1 → Alert key (1632–1)

Description
Use this function to enter the alert key: identifies the section of the plant where the transmitter is located. This helps in pinpointing events.

User entry
0 to 0xFF

Factory setting
0

Target mode

Navigation
- Expert → Analog outputs → Analog output 1 → Target mode (1668–1)

Description
Displays the Target mode: The target mode indicates which mode of operation is used for this function block. This mode is generally set by a control application.

User interface
- Auto
- Local override
- Man
- Out of service
- Remote Cascaded

Mode block actual

Navigation
- Expert → Analog outputs → Analog output 1 → Mode block act (1631–1)

Description
Displays the Mode block actual: Under certain conditions, it is possible that a function block will not operate in the required mode. In this case, the Mode block actual shows the actual mode in which the function block is currently operating. A comparison of the Mode block actual with the Target mode indicates whether it was possible to reach the Target mode (→ 170).

User interface
- Auto
- Local override
- Man
- Out of service
- Remote Cascaded

Additional information

A comparison of the current mode with the target mode (Target mode parameter (→ 170)) indicates whether it was possible to reach the target mode.
Mode block permitted

Navigation

- Expert → Analog outputs → Analog output 1 → Mode block perm (1648–1)

Description

Displays the Mode block permitted: This defines which modes of operation in the Target mode (→ 170) are available for the function block. The operating modes that are supported vary depending on the type and function of the block.

User interface

- 0 to 255

Mode block normal

Navigation

- Expert → Analog outputs → Analog output 1 → Mode blk norm (1643–1)

Description

Displays the Mode block normal: This is available to allow the operator to select the Mode block normal from the available modes of operation. This can be set using an operating tool in order to help the user configure the operating mode of a function block.

User interface

- Auto
- Local override
- Man
- Out of service
- Remote Cascaded

Alarm summary

Navigation

- Expert → Analog outputs → Analog output 1 → Alarm summary (1642–1)

Description

Displays the alarm summary: the current status of the block alarms is displayed. A summary of up to 16 statuses can be displayed.

User interface

- Discrete alarm
- Alarm state HiHi limit
- Alarm state Hi limit
- Alarm state LoLo limit
- Alarm state Lo limit
- Update Event

Additional information

Description

Currently, the system only displays a change in a static parameter for 10 seconds, and violations of the early warning and alarm limits in the Analog Outputs function block.
Description of device parameters

<table>
<thead>
<tr>
<th>Batch ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Expert → Analog outputs → Analog output 1 → Batch ID (1633–1)</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Use this function to enter the batch ID: identification of a specific batch to make it possible to assign device-specific information (e.g. errors, alarm conditions etc.) to the batching process.</td>
</tr>
<tr>
<td>User entry</td>
</tr>
<tr>
<td>Positive integer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Batch operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Expert → Analog outputs → Analog output 1 → Batch operation (1639–1)</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Use this function to enter the batch operation: control recipe operation number to identify the active control recipe operation.</td>
</tr>
<tr>
<td>User entry</td>
</tr>
<tr>
<td>0 to 65535</td>
</tr>
<tr>
<td>Factory setting</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Batch phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Expert → Analog outputs → Analog output 1 → Batch phase (1640–1)</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Use this function to enter the batch phase: control recipe phase number to identify the active control recipe operation.</td>
</tr>
<tr>
<td>User entry</td>
</tr>
<tr>
<td>0 to 65535</td>
</tr>
<tr>
<td>Factory setting</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Batch Recipe Unit Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Expert → Analog outputs → Analog output 1 → Batch Recipe (1641–1)</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Use this function to enter the batch recipe unit procedure (RUP): identification of the active control recipe unit procedure or the associated unit (e.g. inductor, centrifuge, drying agent).</td>
</tr>
<tr>
<td>User entry</td>
</tr>
<tr>
<td>0 to 65535</td>
</tr>
<tr>
<td>Factory setting</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
Additional information

Description

The unit is defined in IEC 61512 Part1/ISA S88 but its meaning is different to that of the parameter unit, such as system units.

PV scale lower range

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 → PVscale lo range (1651–1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the lower value range for the input value (Process Value Scale) in system units. The process value scale normalizes the input value to a user-specific range.</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

PV scale upper range

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 → PVscale up range (1652–1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the upper value range for the input value (Process Value Scale) in system units. The process value scale normalizes the input value to a user-specific range.</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Readback value

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 → Readback value (1659–1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the readback value. The readback value indicates the current position of the control element within the travel range (between the open and close position) in PV scale units.</td>
</tr>
<tr>
<td>User interface</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

Readback status

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 → Readback status (1658–1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the readback status. The readback status contains the status information of the slave.</td>
</tr>
<tr>
<td>User interface</td>
<td>0 to 255</td>
</tr>
</tbody>
</table>

RCAS in value

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 → RCAS in value (1655–1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the RCAS (Remote Cascade) in value. The block set point is set by a control application via the remote cascade RCAS in value parameter (→ 174). The normal algorithm calculates the output value of the block on the basis of this set point.</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

RCAS in status

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 → RCAS in status (1654–1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the RCAS (Remote Cascade) in status. Defines the status for the RCAS in value (→ 174).</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 255</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Input channel

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 → Input channel (1670–1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to select the input channel. The number of logical hardware channels from the converter that is connected to this I/O block.</td>
</tr>
<tr>
<td>Selection</td>
<td>None</td>
</tr>
<tr>
<td>Factory setting</td>
<td>None</td>
</tr>
</tbody>
</table>
Output channel

Navigation
Expert → Analog outputs → Analog output 1 → Output channel (1671–1)

Description
Use this function to select the output channel. The number of logical hardware channels to the converter that is connected to this I/O block.

Selection
External compensation

Factory setting
External compensation

RCAS out value

Navigation
Expert → Analog outputs → Analog output 1 → RCAS out value (1657–1)

Description
Displays the RCAS out value. Displays the set point of the block which is made available to the higher-level host for monitoring/back calculation and which makes it possible to take action under certain conditions or in a different mode.

User interface
Signed floating-point number

RCAS out status

Navigation
Expert → Analog outputs → Analog output 1 → RCAS out status (1656–1)

Description
Displays the RCAS out status. Displays the status of the set point.

User interface
0 to 0xFF

Position value

Navigation
Expert → Analog outputs → Analog output 1 → Pos value (1650–1)

Description
Displays the current value of the positioner.

User interface
0 to 255

Position status

Navigation
Expert → Analog outputs → Analog output 1 → Position status (1649–1)

Description
Displays the current status of the positioner.
<table>
<thead>
<tr>
<th>Description of device parameters</th>
<th>Proline Prowirl 200 PROFIBUS PA</th>
</tr>
</thead>
</table>

User interface

| 0 to 255 |

Setpoint deviation

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 → Setp. deviation (1653–1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the deviation between the set point (Set point value parameter (→ 166)) and the actual value (Readback value parameter (→ 173)).</td>
</tr>
<tr>
<td>User interface</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>

Simulate enabled

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 → Simulate enabled (1662–1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enable or disable block simulation.</td>
</tr>
<tr>
<td>Selection</td>
<td>▪ Disable ▪ Enable</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Disable</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated discrete I/O channel during operation.</td>
</tr>
</tbody>
</table>

Simulate value

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 → Simulate value (1664–1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter a simulation value.</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated value during operation.</td>
</tr>
</tbody>
</table>
Simulate status

Navigation
- Expert → Analog outputs → Analog output 1 → Simulate status (1663–1)

Description
Use this function to enter a simulation status for the block.

User entry
0 to 255

Factory setting
0

Additional information
Description
The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated status during operation.

Increase close

Navigation
- Expert → Analog outputs → Analog output 1 → Increase close (1638–1)

Description
Use this function to enter the effective direction of the positioner in automatic mode.

User entry
0 to 255

Factory setting
0

Out scale upper range

Navigation
- Expert → Analog outputs → Analog output 1 → Out scale up (1646–1)

Description
Use this function to enter the upper value range for the output value in system units.

User entry
Signed floating-point number

Factory setting
100.0

Out scale lower range

Navigation
- Expert → Analog outputs → Analog output 1 → Out scale low (1644–1)

Description
Use this function to enter the lower value range for the output value in system units.

User entry
Signed floating-point number

Factory setting
0
3.8 "Discrete outputs" submenu

Navigation

Expert → Discrete outputs

3.8.1 "Discrete output 1 to 3" submenu

Navigation

Expert → Discrete outputs → Discr. out. 1 to 3

Set point value

Navigation

Expert → Discrete outputs → Discr. out. 1 to 3 → Set point val (1715–1 to 3)

Description

Use this function to enter an analog set point.

User entry

0 to 255

Factory setting

0
Set point status

Navigation

Expert → Discrete outputs → Discr. out. 1 to 3 → Set point status (1714–1 to 3)

Description

Use this function to enter a status for the analog set point.

User entry

0 to 255

Factory setting

0

Invert

Navigation

Expert → Discrete outputs → Discr. out. 1 to 3 → Invert (1692–1 to 3)

Description

Use this function to switch inversion on and off. Specifies whether the set point should be inverted before the value is set as the output value or the RCAS value (in the automatic mode).

Selection

- Off
- On

Factory setting

Off

Fail safe time

Navigation

Expert → Discrete outputs → Discr. out. 1 to 3 → Fail safe time (1697–1 to 3)

Description

Use this function to enter a time span within which the criteria for an error must be met continuously before an error message or notice message is generated.

User entry

Signed floating-point number

Factory setting

0

Additional information

User entry

NOTE!

If this parameter is used, error messages and notice messages are delayed by the set time before being relayed to the higher-level controller (DCS, etc.).

- Check in advance to ensure that the safety-specific requirements of the process would permit this.
- If the error and notice messages may not be suppressed, a value of 0 seconds must be configured here.
Fail safe type

Description
Use this function to select the failure mode.

Selection
- Fail safe value
- Fallback value
- Off

Factory setting
Fallback value

Additional information
Selection
If an input or simulation value has the status BAD, the function block uses this predefined failure value:
- Fail safe value
 A substitute value is used. This is specified in the Fail safe value parameter (→ 180).
- Fallback value
 If the value was good at one point, then this last valid value is used.
- Off
 The system continues to use the bad value.

Fail safe value

Description
Use this function to enter a failure value. The value entered is displayed as the output value (Out value parameter (→ 180)) in the event of an error.

User entry
0 to 255

Factory setting
0

Out value

Description
Displays the analog value which is calculated when the function is executed.

User interface
0 to 255
Out status

Navigation

Expert → Discrete outputs → Discr. out. 1 to 3 → Out status (1723–1 to 3)

Description

Displays the current output status (Good, Bad, Uncertain).

User interface

- Good
- Uncertain
- Bad

Tag description

Navigation

Expert → Discrete outputs → Discr. out. 1 to 3 → Tag description (1721–1 to 3)

Description

Use this function to enter a string to identify the block.

User entry

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Static revision

Navigation

Expert → Discrete outputs → Discr. out. 1 to 3 → Static revision (1720–1 to 3)

Description

Displays the event counter: every write access to a static block parameter is counted.

User interface

0 to FFFF

Additional information

Description

Static parameters are parameters that are not changed by the process.
Strategy

Navigation
- Expert → Discrete outputs → Discr. out. 1 to 3 → Strategy (1719–1 to 3)

Description
Use this function to enter the strategy: makes it possible to group blocks by entering identical numbers.

User entry
0 to FFFF

Factory setting
0

Alert key

Navigation
- Expert → Discrete outputs → Discr. out. 1 to 3 → Alert key (1694–1 to 3)

Description
Use this function to enter the alert key: identifies the section of the plant where the transmitter is located. This helps in pinpointing events.

User entry
0 to 0xFF

Factory setting
0

Target mode

Navigation
- Expert → Discrete outputs → Discr. out. 1 to 3 → Target mode (1722–1 to 3)

Description
Displays the Target mode: The target mode specifies which mode of operation is used for this function block. This mode is generally set by a control application.

User interface
- Local override
- Remote Cascaded
- Man
- Out of service
- Auto

Mode block actual

Navigation
- Expert → Discrete outputs → Discr. out. 1 to 3 → Mode block act (1691–1 to 3)

Description
Displays the Mode block actual: Under certain conditions, it is possible that a function block will not operate in the required mode. In this case, the Mode block actual shows the actual mode in which the function block is currently operating. A comparison of the Mode block actual with the Target mode indicates whether it was possible to reach the Target mode (→ 182).
User interface

- Local override
- Remote Cascaded
- Man
- Out of service
- Auto

Additional information

Description

A comparison of the current mode with the target mode (Target mode parameter (→ \(\text{182} \)) indicates whether it was possible to reach the target mode.

Mode block permitted

Navigation

Expert → Discrete outputs → Discr. out. 1 to 3 → Mode block perm (1705–1 to 3)

Description

Displays the Mode block permitted: This defines which modes of operation in the Target mode (→ \(\text{182} \)) are available for the function block. The operating modes that are supported vary depending on the type and function of the block.

User interface

0 to 255

Mode block normal

Navigation

Expert → Discrete outputs → Discr. out. 1 to 3 → Mode blk norm (1702–1 to 3)

Description

Displays the Mode block normal: This is available to allow the operator to select the Mode block normal from the available modes of operation. This can be set using an operating tool in order to help the user configure the operating mode of a function block.

User interface

- Local override
- Remote Cascaded
- Man
- Out of service
- Auto

Alarm summary

Navigation

Expert → Discrete outputs → Discr. out. 1 to 3 → Alarm summary (1701–1 to 3)

Description

Displays the alarm summary: the current status of the block alarms is displayed. A summary of up to 16 statuses can be displayed.

User interface

- Discrete alarm
- Alarm state HiHi limit
- Alarm state Hi limit
- Alarm state LoLo limit
- Alarm state Lo limit
- Update Event
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

Additional information

Description

Currently, the system only displays a change in a static parameter for 10 seconds, and violations of the early warning and alarm limits in the Discrete Outputs function block.

Batch ID

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Discrete outputs → Discr. out. 1 to 3 → Batch ID (1695–1 to 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the batch ID: identification of a specific batch to make it possible to assign device-specific information (e.g. errors, alarm conditions etc.) to the batching process.</td>
</tr>
<tr>
<td>User entry</td>
<td>Positive integer</td>
</tr>
</tbody>
</table>

Batch operation

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Discrete outputs → Discr. out. 1 to 3 → Batch operation (1698–1 to 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the batch operation: control recipe operation number to identify the active control recipe operation.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 65535</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Batch phase

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Discrete outputs → Discr. out. 1 to 3 → Batch phase (1699–1 to 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the batch phase: control recipe phase number to identify the active control recipe operation.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 65535</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>
Batch Recipe Unit Procedure

Navigation
Expert → Discrete outputs → Discr. out. 1 to 3 → Batch Recipe (1700–1 to 3)

Description
Use this function to enter the batch recipe unit procedure (RUP): identification of the active control recipe unit procedure or the associated unit (e.g. inductor, centrifuge, drying agent).

User entry
0 to 65535

Factory setting
0

Additional information
Description
The unit is defined in IEC61512 Part1/ISA S88 but its meaning is different to that of the parameter unit, such as system units.

Readback value

Navigation
Expert → Discrete outputs → Discr. out. 1 to 3 → Readback value (1713–1 to 3)

Description
Displays the readback value. The readback value indicates the current position of the control element and the element's sensors.

User interface
0 to 255

Readback status

Navigation
Expert → Discrete outputs → Discr. out. 1 to 3 → Readback status (1712–1 to 3)

Description
Displays the readback status. Displays the status of the readback value.

User interface
0 to 255

RCAS in value

Navigation
Expert → Discrete outputs → Discr. out. 1 to 3 → RCAS in value (1707–1 to 3)

Description
Use this function to enter the RCAS (Remote Cascade) in value. The block set point is set by a control application via the remote cascade RCAS in value parameter (→ 185). The normal algorithm calculates the output value of the block on the basis of this set point.

User entry
0 to 255

Factory setting
0
RCAS in status

Navigation
- Expert → Discrete outputs → Discr. out. 1 to 3 → RCAS in status (1706–1 to 3)

Description
Use this function to enter the RCAS (Remote Cascade) in status. Defines the status for the RCAS in value (→ 185).

User entry
0 to 255

Factory setting
0

Input channel

Navigation
- Expert → Discrete outputs → Discr. out. 1 to 3 → Input channel (1724–1 to 3)

Description
Use this function to select the input channel. The number of logical hardware channels from the converter that is connected to this I/O block.

Selection
None

Factory setting
None

Output channel

Navigation
- Expert → Discrete outputs → Discr. out. 1 to 3 → Output channel (1725–1 to 3)

Description
Use this function to select the output channel. The number of logical hardware channels to the converter that is connected to this I/O block.

Selection
- Pulse/frequency/switch output *
- Flow override
- Start verification *

Factory setting
Flow override

RCAS out value

Navigation
- Expert → Discrete outputs → Discr. out. 1 to 3 → RCAS out value (1711–1 to 3)

Description
Displays the RCAS out value. Displays the set point of the block which is made available to the higher-level host for monitoring/back calculation and which makes it possible to take action under certain conditions or in a different mode.

* Visibility depends on order options or device settings
User interface

0 to 255

RCAS out status

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Discrete outputs → Discr. out. 1 to 3 → RCAS out status (1708–1 to 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the RCAS out status. Displays the status of the set point.</td>
</tr>
<tr>
<td>User interface</td>
<td>0 to 255</td>
</tr>
</tbody>
</table>

Simulate enabled

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Discrete outputs → Discr. out. 1 to 3 → Simulate enabled (1716–1 to 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enable or disable block simulation.</td>
</tr>
<tr>
<td>Selection</td>
<td>• Disable</td>
</tr>
<tr>
<td></td>
<td>• Enable</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Disable</td>
</tr>
</tbody>
</table>

Additional information

Description

The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated discrete I/O channel during operation.

Simulate value

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Discrete outputs → Discr. out. 1 to 3 → Simulate value (1718–1 to 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter a simulation value.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 255</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Additional information

Description

The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated value during operation.
Description of device parameters

Simulate status

Navigation

Expert → Discrete outputs → Discr. out. 1 to 3 → Simulate status (1717–1 to 3)

Description

Use this function to enter a simulation status for the block.

User entry

0 to 255

Factory setting

0

Additional information

Description

The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated status during operation.

3.9 "Application" submenu

Navigation

Expert → Application

![Application](image)

3.9.1 "Totalizer 1 to 3" submenu

Navigation

Expert → Application → Totalizer 1 to 3

![Totalizer 1 to 3](image)

- Assign process variable (3808–1 to 3) → 189
- Unit totalizer (3835–1 to 3) → 189
- Control Totalizer 1 to 3 (3830–1 to 3) → 191
- Preset value 1 to 3 (3829–1 to 3) → 191
- Totalizer operation mode (3823–1 to 3) → 192
- Failure mode (3810–1 to 3) → 193
- Totalizer value 1 to 3 (3827–1 to 3) → 193
Assign process variable

Navigation

Expert → Application → Totalizer 1 to 3 → Assign variable (3808–1 to 3)

Description

Use this function to select a process variable for the Totalizer 1 to 3.

Selection

- Volume flow
- Mass flow
- Corrected volume flow
- Total mass flow *
- Condensate mass flow *
- Energy flow *
- Heat flow difference *

Factory setting

- Totalizer 1: Volume flow
- Totalizer 2: Mass flow
- Totalizer 3: Corrected volume flow

Additional information

Description

If the option selected is changed, the device resets the totalizer to 0.

Unit totalizer

Navigation

Expert → Application → Totalizer 1 to 3 → Unit totalizer (3835–1 to 3)

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 189):

- Volume flow
- Mass flow
- Corrected volume flow
- Total mass flow *
- Condensate mass flow *
- Energy flow *
- Heat flow difference *

Description

Use this function to select the process variable of a totalizer.

The unit is selected separately for each totalizer. It is independent of the selection made in the System units submenu (→ 61).

* Visibility depends on order options or device settings
Description of device parameters

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>oz</td>
<td>gal (imp)</td>
</tr>
<tr>
<td>kg</td>
<td>lb</td>
<td>Mgal (imp)</td>
</tr>
<tr>
<td>t</td>
<td>STon</td>
<td>bbl (imp; beer)</td>
</tr>
</tbody>
</table>

SI units

- cm³
- dm³
- m³
- ml
- l
- hl
- Ml Mega

US units

- af
- ft³
- fl oz (us)
- gal (us)
- kgal (us)
- bbl (us; liq.)
- bbl (us; beer)
- bbl (us; oil)
- bbl (us; tank)

Imperial units

- gal (imp)
- Mgal (imp)
- bbl (imp; beer)
- bbl (imp; oil)

SI units

- NI
- Nm³
- SI
- Sm³

US units

- Sft³
- Sgal (us)
- Sbbl (us; liq.)

Imperial units

- Sgal (imp)

SI units

- kWh
- MWh
- GWh
- kJ
- MJ
- GJ
- kcal
- Mcal
- Gcal

Factory setting

m³

Additional information

Selection

The selection is independent of the process variable selected in the Assign process variable parameter (→ 189).

Dependency

The following parameters depend on the option selected:

- Alarm hysteresis parameter (→ 198)
- Hi Hi Lim parameter (→ 198)
- Hi Lim parameter (→ 199)
- Lo Lim parameter (→ 199)
- **Lo Lo Lim** parameter (→ 200)
- **Totalizer value** parameter (→ 58)
- **Preset value** parameter (→ 191)

Control Totalizer 1 to 3

Navigation

Expert → Application → Totalizer 1 to 3 → Control Tot. 1 to 3 (3830–1 to 3)

Prerequisite

In the **Assign process variable** parameter (→ 189), one of the following options is selected:

- Volume flow
- Mass flow
- Corrected volume flow
- Total mass flow *
- Condensate mass flow *
- Energy flow *
- Heat flow difference *

Description

Use this function to select the control of totalizer value 1-3.

Selection

- Totalize
- Reset + hold
- Preset + hold

Factory setting

Totalize

Additional information

Selection

- Totalize
 The totalizer is started or continues totalizing with the current counter reading.
- Reset + hold
 The totaling process is stopped and the totalizer is reset to 0.
- Preset + hold
 The totaling process is stopped and the totalizer is set to its defined start value from the **Preset value** parameter.

Preset value 1 to 3

Navigation

Expert → Application → Totalizer 1 to 3 → Preset value 1 to 3 (3829–1 to 3)

Prerequisite

One of the following options is selected in the **Assign process variable** parameter (→ 189):

- Volume flow
- Mass flow
- Corrected volume flow
- Total mass flow *
- Condensate mass flow *
- Energy flow *
- Heat flow difference *

* Visibility depends on order options or device settings
Description
Use this function to enter an initial value for the specific totalizer.

User entry
Signed floating-point number

Factory setting
Country-specific:
- m³
- ft³

Additional information
- **User entry**

 The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 189).

 Example
 This configuration is suitable for applications such as iterative filling processes with a fixed batch quantity.

Totalizer operation mode

Navigation
Expert → Application → Totalizer 1 to 3 → Operation mode (3823–1 to 3)

Prerequisite
In the **Assign process variable** parameter (→ 189), one of the following options is selected:
- Volume flow
- Mass flow
- Corrected volume flow
- Total mass flow
- Condensate mass flow
- Energy flow
- Heat flow difference

Description
Use this function to select how the totalizer summates the flow.

Selection
- Net flow total
- Forward flow total
- Reverse flow total
- Last valid value

Factory setting
Net flow total

Additional information
- **Selection**

 Positive and negative flow values are totalized and balanced against one another. Net flow is registered in the flow direction.
 - Forward flow total
 Only the flow in the forward flow direction is totalized.
 - Reverse flow total
 Only the flow against the forward flow direction is totalized (= reverse flow total).
 - Last valid value
 The value is frozen. Totaling is stopped.

* Visibility depends on order options or device settings
Failure mode

Navigation

Expert → Application → Totalizer 1 to 3 → Failure mode (3810–1 to 3)

Prerequisite

In the Assign process variable parameter (→ 189), one of the following options is selected:
- Volume flow
- Mass flow
- Corrected volume flow
- Total mass flow
- Condensate mass flow
- Energy flow
- Heat flow difference

Description

Use this function to select how a totalizer behaves in an alarm condition.

Selection

- Stop
- Actual value
- Last valid value

Factory setting

Actual value

Additional information

Description

This setting does not affect the error response mode of other totalizers and the outputs. This is specified in separate parameters.

Selection

- Stop
 Totalizing is stopped in an alarm condition.
- Actual value
 The totalizer continues to count based on the actual measured value; the error is ignored.
- Last valid value
 The totalizer continues to count based on the last valid measured value before the error occurred.

Totalizer value 1 to 3

Navigation

Expert → Application → Totalizer 1 to 3 → Totalizer val. 1 to 3 (3827–1 to 3)

Prerequisite

In Target mode parameter (→ 195), the Auto option is selected.

Description

Displays the current reading for totalizer 1-3.

User interface

Signed floating-point number

* Visibility depends on order options or device settings
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

Additional information

Description

As it is only possible to display a maximum of 7 digits, the current counter value is the sum of the totalizer value and the overflow value from the **Totalizer overflow 1 to 3** parameter if the display range is exceeded.

In the event of an error, the totalizer adopts the mode defined in the **Failure mode** parameter.

User interface

The value of the process variable totalized since measuring began can be positive or negative. This depends on the settings in the **Totalizer operation mode** parameter.

The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 189).

Totalizer status 1 to 3

Navigation

[Expert → Application → Totalizer 1 to 3 → Tot. status 1 to 3 (3826–1 to 3)]

Description

Displays the status of the particular totalizer.

User interface

- Good
- Uncertain
- Bad

Totalizer status (Hex) 1 to 3

Navigation

[Expert → Application → Totalizer 1 to 3 → Status (Hex) 1 to 3 (3825–1 to 3)]

Prerequisite

In **Target mode** parameter (→ 195), the **Auto** option is selected.

Description

Displays the status value (hex) of the particular totalizer.

User interface

0 to 0xFF

Tag description

Navigation

[Expert → Application → Totalizer 1 to 3 → Tag description (3833–1 to 3)]

Description

Use this function to enter a string to identify the block.

User entry

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).
Static revision

Navigation

[Expert → Application → Totalizer 1 to 3 → Static revision (3832–1 to 3)]

Description

Displays the event counter: every write access to a static block parameter is counted.

User interface

0 to FFFF

Additional information

Description

Static parameters are parameters that are not changed by the process.

Strategy

Navigation

[Expert → Application → Totalizer 1 to 3 → Strategy (3831–1 to 3)]

Description

Use this function to enter the strategy: makes it possible to group blocks by entering identical numbers.

User entry

0 to FFFF

Factory setting

0

Alert key

Navigation

[Expert → Application → Totalizer 1 to 3 → Alert key (3803–1 to 3)]

Description

Use this function to enter the alert key: identifies the section of the plant where the transmitter is located. This helps in pinpointing events.

User entry

0 to 0xFF

Factory setting

0

Target mode

Navigation

[Expert → Application → Totalizer 1 to 3 → Target mode (3834–1 to 3)]

Description

Displays the Target mode: The target mode indicates which mode of operation is used for this function block. This mode is generally set by a control application.

User interface

- Auto
- Man
- Out of service
Mode block actual

Navigation

Expert → Application → Totalizer 1 to 3 → Mode block act (3801–1 to 3)

Description

Displays the Mode block actual: Under certain conditions, it is possible that a function block will not operate in the required mode. In this case, the Mode block actual shows the actual mode in which the function block is currently operating. A comparison of the Mode block actual with the Target mode indicates whether it was possible to reach the Target mode (→ [195]).

User interface

- Auto
- Man
- Out of service

Additional information

Description

A comparison of the current mode with the target mode ([Target mode](#)) parameter (→ [195]) indicates whether it was possible to reach the target mode.

Mode block permitted

Navigation

Expert → Application → Totalizer 1 to 3 → Mode block perm (3828–1 to 3)

Description

Displays the Mode block permitted: This defines which modes of operation in the Target mode (→ [195]) are available for the function block. The operating modes that are supported vary depending on the type and function of the block.

User interface

0 to 255

Mode block normal

Navigation

Expert → Application → Totalizer 1 to 3 → Mode blk norm (3824–1 to 3)

Description

Displays the Mode block normal: This is available to allow the operator to select the Mode block normal from the available modes of operation. This can be set using an operating tool in order to help the user configure the operating mode of a function block.

User interface

- Auto
- Man
- Out of service

Alarm summary

Navigation

Expert → Application → Totalizer 1 to 3 → Alarm summary (3809–1 to 3)

Description

Displays the alarm summary: the current status of the block alarms is displayed. A summary of up to 16 statuses can be displayed.
User interface
- Discrete alarm
- Alarm state HiHi limit
- Alarm state Hi limit
- Alarm state LoLo limit
- Alarm state Lo limit
- Update Event

Additional information
Description
Currently, the system only displays a change in a static parameter for 10 seconds, and violations of the early warning and alarm limits in the Totalizer function block.

Batch ID

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Totalizer 1 to 3 → Batch ID (3804–1 to 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the batch ID: identification of a specific batch to make it possible to assign device-specific information (e.g. errors, alarm conditions etc.) to the batching process.</td>
</tr>
<tr>
<td>User entry</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Batch operation

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Totalizer 1 to 3 → Batch operation (3805–1 to 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the batch operation: control recipe operation number to identify the active control recipe operation.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 65535</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Batch phase

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Totalizer 1 to 3 → Batch phase (3806–1 to 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the batch phase: control recipe phase number to identify the active control recipe operation.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 65535</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>
Description of device parameters

Batch Recipe Unit Procedure

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Totalizer 1 to 3 → Batch Recipe (3807–1 to 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the batch recipe unit procedure (RUP): identification of the active control recipe unit procedure or the associated unit (e.g. inductor, centrifuge, drying agent).</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 65535</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description</td>
</tr>
</tbody>
</table>

The unit is defined in IEC61512 Part1/ISA S88 but its meaning is different to that of the parameter unit, such as system units.

Alarm hysteresis

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Totalizer 1 to 3 → Alarm hysteresis (3802–1 to 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the hysteresis value for the upper and lower warning or alarm limit values.</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0 m³</td>
</tr>
<tr>
<td>Additional information</td>
<td>User entry</td>
</tr>
</tbody>
</table>

The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 189).

Hi Hi Lim

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Totalizer 1 to 3 → Hi Hi Lim (3815–1 to 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the value for the upper alarm limit of the totalizer (Hi Hi alarm value parameter (→ 200)).</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Positive floating-point number</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description</td>
</tr>
</tbody>
</table>

If the output value Out value (→ 147) exceeds this limit value, the **Hi Hi alarm state** parameter (→ 200) is output.
User entry

The value is entered in the defined units (Out unit parameter (→ 152)) and must be in the range defined in the Out scale lower range parameter (→ 152) and Out scale upper range parameter (→ 152).

The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 189).

Hi Lim

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Totalizer 1 to 3 → Hi Lim (3816–1 to 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the value for the upper warning limit of the totalizer (Hi alarm value parameter (→ 201)).</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Positive floating-point number</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>If the output value Out value (→ 147) exceeds this limit value, the Hi alarm state parameter (→ 201) is output.</td>
</tr>
</tbody>
</table>

Lo Lim

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Totalizer 1 to 3 → Lo Lim (3819–1 to 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the value for the lower warning limit of the totalizer (Lo alarm value parameter (→ 201)).</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Negative floating-point number</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>If the output value Out value (→ 147) exceeds this limit value, the Lo alarm state parameter (→ 201) is output.</td>
</tr>
</tbody>
</table>
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

Lo Lo Lim

Navigation

Expert → Application → Totalizer 1 to 3 → Lo Lo Lim (3822–1 to 3)

Description

Use this function to enter the value for the lower alarm limit of the totalizer (Lo Lo alarm value parameter → 152).

User entry

Signed floating-point number

Factory setting

Negative floating-point number

Additional information

Description

If the output value Out value (→ 147) exceeds this limit value, the Lo Lo alarm state parameter (→ 202) is output.

User entry

The value is entered in the defined units (Out unit parameter → 152) and must be in the range defined in the Out scale lower range parameter (→ 152) and Out scale upper range parameter (→ 152).

The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 189).

Hi Hi alarm value

Navigation

Expert → Application → Totalizer 1 to 3 → HiHi alarm value (3814–1 to 3)

Description

Displays the alarm value for the upper alarm limit value (Hi Hi Lim parameter (→ 198)).

User interface

Signed floating-point number

Hi Hi alarm state

Navigation

Expert → Application → Totalizer 1 to 3 → HiHi alarm state (3813–1 to 3)

Description

Displays the status for the upper alarm limit value (Hi Hi Lim parameter (→ 198)).
User interface

- No alarm
- Alarm state HiHi limit

Additional information

User interface

The display contains information such as the time of the alarm (date and time) and the value that triggered the alarm.

Hi alarm value

Navigation

Expert → Application → Totalizer 1 to 3 → Hi alarm value (3812–1 to 3)

Description

Displays the warning value for the upper warning limit value (Hi Lim parameter (→ 199)).

User interface

Signed floating-point number

Hi alarm state

Navigation

Expert → Application → Totalizer 1 to 3 → Hi alarm state (3811–1 to 3)

Description

Displays the status for the upper warning limit value (Hi Lim parameter (→ 199)).

User interface

- No warning
- Alarm state Hi limit

Additional information

The display contains information such as the time of the warning (date and time) and the value that triggered the alarm.

Lo alarm value

Navigation

Expert → Application → Totalizer 1 to 3 → Lo alarm value (3818–1 to 3)

Description

Displays the warning value for the lower warning limit value (Lo Lim parameter (→ 199)).

User interface

Signed floating-point number

Lo alarm state

Navigation

Expert → Application → Totalizer 1 to 3 → Lo alarm state (3817–1 to 3)

Description

Displays the status for the lower warning limit value (Lo Lim parameter (→ 199)).
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

User interface

- No warning
- Alarm state Lo limit

Additional information

* User interface

 The display contains information such as the time of the warning (date and time) and the value that triggered the alarm.

Lo Lo alarm value

Navigation

Expert → Application → Totalizer 1 to 3 → LoLo alarm value (3821–1 to 3)

Description

Displays the alarm value for the lower alarm limit value (Lo Lo Lim parameter → 200).

User interface

Signed floating-point number

Lo Lo alarm state

Navigation

Expert → Application → Totalizer 1 to 3 → LoLo alarm state (3820–1 to 3)

Description

Displays the status for the lower alarm limit value (Lo Lo Lim parameter → 200).

User interface

- No alarm
- Alarm state LoLo limit

Additional information

* User interface

 The display contains information such as the time of the alarm (date and time) and the value that triggered the alarm.

3.10 "Diagnostics" submenu

Navigation

Expert → Diagnostics

<table>
<thead>
<tr>
<th>Diagnostics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual diagnostics (0691)</td>
</tr>
<tr>
<td>Previous diagnostics (0690)</td>
</tr>
<tr>
<td>Operating time from restart (0653)</td>
</tr>
<tr>
<td>Operating time (0652)</td>
</tr>
</tbody>
</table>
Actual diagnostics

Navigation

Expert → Diagnostics → Actual diagnos. (0691)

Prerequisite

A diagnostic event has occurred.

Description

Displays the current diagnostic message. If two or more messages occur simultaneously, the message with the highest priority is shown on the display.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

User interface

Additional pending diagnostic messages can be displayed in the Diagnostic list submenu (→ 205).

Information on what is causing the diagnostic message, and remedy measures, can be viewed by pressing the -button.

Example

For the display format:

• F271 Main electronic failure

Timestamp

Navigation

Expert → Diagnostics → Timestamp (0667)

Description

Displays the operating time when the current diagnostic message occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)
Additional information

User interface

> The diagnostic message can be displayed via the **Actual diagnostics** parameter (→ 203).

Example

For the display format:
24d12h13m00s

Previous diagnostics

Navigation

> Expert → Diagnostics → Prev.diagnostics (0690)

Prerequisite

Two diagnostic events have already occurred.

Description

Displays the diagnostic message that occurred before the current message.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

User interface

> Information on what is causing the diagnostic message, and remedy measures, can be viewed by pressing the -button.

Example

For the display format:
F271 Main electronic failure

Timestamp

Navigation

> Expert → Diagnostics → Timestamp (0672)

Description

Displays the operating time when the last diagnostic message before the current message occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

User interface

> The diagnostic message can be displayed via the **Previous diagnostics** parameter (→ 204).

Example

For the display format:
24d12h13m00s
Operating time from restart

Navigation

Expert → Diagnostics → Time fr. restart (0653)

Description

Use this function to display the time the device has been in operation since the last device restart.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Operating time

Navigation

Expert → Diagnostics → Operating time (0652)

Description

Use this function to display the length of time the device has been in operation.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

The maximum number of days is 9999, which is equivalent to 27 years.

3.10.1 "Diagnostic list" submenu

Navigation

Expert → Diagnostics → Diagnostic list

[Diagnosis list]

- **Diagnostics 1 (0692)** → 205
- **Diagnostics 2 (0693)** → 206
- **Diagnostics 3 (0694)** → 207
- **Diagnostics 4 (0695)** → 208
- **Diagnostics 5 (0696)** → 208

Diagnostics 1

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 1 (0692)

Description

Use this function to display the current diagnostics message with the highest priority.
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Examples
For the display format:
- ΔS442 Frequency output
- \otimesF276 I/O module failure

Timestamp

Navigation
Expert → Diagnostics → Diagnostic list → Timestamp (0683)

Description
Displays the operating time when the diagnostic message with the highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
User interface

Example
The diagnostic message can be displayed via the **Diagnostics 1** parameter
(\Rightarrow ? 205).

For the display format:
24d12h13m00s

Diagnostics 2

Navigation
Expert → Diagnostics → Diagnostic list → Diagnostics 2 (0693)

Description
Use this function to display the current diagnostics message with the second-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Examples
For the display format:
- ΔS442 Frequency output
- \otimesF276 I/O module failure

Timestamp

Navigation
Expert → Diagnostics → Diagnostic list → Timestamp (0684)

Description
Displays the operating time when the diagnostic message with the second-highest priority occurred.
User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

User interface

The diagnostic message can be displayed via the **Diagnostics 2** parameter (→ 206).

Example

For the display format:
24d12h13m00s

Diagnostics 3

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 3 (0694)

Description

Use this function to display the current diagnostics message with the third-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Examples

- △S442 Frequency output
- ✗F276 I/O module failure

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp (0685)

Description

Displays the operating time when the diagnostic message with the third-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

User interface

The diagnostic message can be displayed via the **Diagnostics 3** parameter (→ 207).

Example

For the display format:
24d12h13m00s
Diagnostics 4

Navigation
Expert → Diagnostics → Diagnostic list → Diagnostics 4 (0695)

Description
Use this function to display the current diagnostics message with the fourth-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Examples
For the display format:
- $\triangle S442$ Frequency output
- $\otimes F276$ I/O module failure

Timestamp

Navigation
Expert → Diagnostics → Diagnostic list → Timestamp (0686)

Description
Displays the operating time when the diagnostic message with the fourth-highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
User interface

\[\text{The diagnostic message can be displayed via the Diagnostics 4 parameter (} \rightarrow \text{ 208).} \]

Example
For the display format:
24d12h13m00s

Diagnostics 5

Navigation
Expert → Diagnostics → Diagnostic list → Diagnostics 5 (0696)

Description
Use this function to display the current diagnostics message with the fifth-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Examples
For the display format:
- $\triangle S442$ Frequency output
- $\otimes F276$ I/O module failure
Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp (0687)

Description

Displays the operating time when the diagnostic message with the fifth-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

User interface

- The diagnostic message can be displayed via the Diagnostics 5 parameter (→ 208).

Example

For the display format:

24d12h13m00s

3.10.2 "Event logbook" submenu

Navigation

Expert → Diagnostics → Event logbook

Filter options

Filter options (0705) → 209

Event list → 210

Filter options

Navigation

Expert → Diagnostics → Event logbook → Filter options (0705)

Description

Use this function to select the category whose event messages are displayed in the event list of the local display.

Selection

- All
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- Information (I)

Factory setting

All
Additional information

The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107:
- **F** = Failure
- **C** = Function Check
- **S** = Out of Specification
- **M** = Maintenance Required

Filter options

Use this function to select the category whose event messages are displayed in the event list of the operating tool.

Selection

- All
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- Information (I)

Factory setting

All

Additional information

The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107:
- **F** = Failure
- **C** = Function Check
- **S** = Out of Specification
- **M** = Maintenance Required

"Event list" submenu

Use this function to select the category whose event messages are displayed in the event list of the operating tool.

Selection

- All
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- Information (I)

Factory setting

All
Event list

Navigation

Expert → Diagnostics → Event logbook → Event list

Description

Use this function to display the history of event messages of the category selected in the Filter options parameter (→ 209).

User interface

- For a 'Category I' event message
 Information event, short message, symbol for event recording and operating time when error occurred
- For a 'Category F, C, S, M' event message (status signal)
 Diagnostics code, short message, symbol for event recording and operating time when error occurred

Additional information

Description

A maximum of 20 event messages are displayed in chronological order. If the advanced HistoROM function is enabled in the device, the event list can contain up to 100 entries.

The following symbols indicate whether an event has occurred or has ended:
- ⊕: Occurrence of the event
- ⊖: End of the event

Examples

For the display format:
- I1091 Configuration modified
 ⊕ 24d12h13m00s
- ΔS442 Frequency output
 ⊕ 01d04h12min30s

Additional information, such as remedial measures, can be retrieved via the ⬤ key.

HistoROM

A HistoROM is a "non-volatile" device memory in the form of an EEPROM.

To order the HistoROM advanced capabilities application package, see the 'Accessories' section of the 'Technical Information' document.

3.10.3 "Device information" submenu

Navigation

Expert → Diagnostics → Device info

Device information

- Device tag (0011) → 212
- Serial number (0009) → 212
- Firmware version (0010) → 213
- Device name (0013) → 213
Device tag

Navigation
- Expert → Diagnostics → Device info → Device tag (0011)

Description
Displays a unique name for the measuring point so it can be identified quickly within the plant. The name is displayed in the header.

User interface
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /)

Factory setting
Prowirl 200 PA

Additional information
User interface

The number of characters displayed depends on the characters used.

Serial number

Navigation
- Expert → Diagnostics → Device info → Serial number (0009)

Description
Displays the serial number of the measuring device.

- The number can be found on the nameplate of the sensor and transmitter.

User interface
A maximum of 11-digit character string comprising letters and numbers.
Addition information

Description

Uses of the serial number
- To identify the measuring device quickly, e.g. when contacting Endress+Hauser.
- To obtain specific information on the measuring device using the Device Viewer: www.endress.com/deviceviewer

Firmware version

Navigation

Expert → Diagnostics → Device info → Firmware version (0010)

Description

Displays the device firmware version installed.

User interface

Character string in the format xx.yy

Factory setting

01.01

Device name

Navigation

Expert → Diagnostics → Device info → Device name (0013)

Description

Displays the name of the transmitter. It can also be found on the nameplate of the transmitter.

User interface

Prowirl

Order code

Navigation

Expert → Diagnostics → Device info → Order code (0008)

Description

Displays the device order code.

User interface

Character string composed of letters, numbers and certain punctuation marks (e.g. /).

Additional information

Description

The order code can be found on the nameplate of the sensor and transmitter in the 'Order code' field.

The order code is generated from the extended order code through a process of reversible transformation. The extended order code indicates the attributes for all the device features in the product structure. The device features are not directly readable from the order code.

Uses of the order code
- To order an identical spare device.
- To identify the device quickly and easily, e.g. when contacting Endress+Hauser.
Extended order code 1

Navigation
Expert → Diagnostics → Device info → Ext. order cd. 1 (0023)

Description
Displays the first part of the extended order code.
On account of length restrictions, the extended order code is split into a maximum of 3 parameters.

User interface
Character string

Additional information
Description
The extended order code indicates the version of all the features of the product structure for the measuring device and thus uniquely identifies the measuring device.

Info
The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field.

Extended order code 2

Navigation
Expert → Diagnostics → Device info → Ext. order cd. 2 (0021)

Description
For displaying the second part of the extended order code.

User interface
Character string

Additional information
For additional information, see Extended order code 1 parameter (→ 214)

Extended order code 3

Navigation
Expert → Diagnostics → Device info → Ext. order cd. 3 (0022)

Description
For displaying the third part of the extended order code.

User interface
Character string

Additional information
For additional information, see Extended order code 1 parameter (→ 214)

ENP version

Navigation
Expert → Diagnostics → Device info → ENP version (0012)

Description
Displays the version of the electronic nameplate.

User interface
Character string
Proline Prowirl 200 PROFIBUS PA

Description of device parameters

Factory setting
2.02.00

Additional information

Description

This electronic nameplate stores a data record for device identification that includes more data than the nameplates attached to the outside of the device.

3.10.4 "Sensor information" submenu

Navigation
Expert → Diagnostics → Sensor info

Sensor information

- **DSC sensor serial number (7728)**

 ➤ 215

DSC sensor serial number

Navigation
Expert → Diagnostics → Sensor info → DSC serial no. (7728)

Description

Displays the serial number of the DSC sensor that is used in the measuring tube.

User interface

Character string

Additional information

Description

The serial number and other individual values of the DSC sensor, such as temperature range and reference values, are stored on the S-DAT.

Info

If the DSC sensor is replaced, the S-DAT must also always be replaced.

3.10.5 "Data logging" submenu

Navigation
Expert → Diagnostics → Data logging

Data logging

- **Assign channel 1 (0851)**
 ➤ 216

- **Assign channel 2 (0852)**
 ➤ 217

- **Assign channel 3 (0853)**
 ➤ 217

- **Assign channel 4 (0854)**
 ➤ 218
Assign channel 1

Navigation

Expert → Diagnostics → Data logging → Assign chan. 1 (0851)

Prerequisite

The Extended HistoROM application package is available.

The software options currently enabled are displayed in the Software option overview parameter (→ 45).

Description

Use this function to select a process variable for the data logging channel.

Selection

- Off
- Volume flow
- Corrected volume flow
- Mass flow
- Flow velocity
- Temperature
- Calculated saturated steam pressure *
- Steam quality *
- Total mass flow *
- Condensate mass flow *
- Energy flow *
- Heat flow difference *
- Reynolds number *
- Density *
- Pressure *
- Specific volume *
- Degrees of superheat *
- Vortex frequency
- Electronic temperature

Factory setting

Off

* Visibility depends on order options or device settings
Additional information

Description

A total of 1000 measured values can be logged. This means:

- 1000 data points if 1 logging channel is used
- 500 data points if 2 logging channels are used
- 333 data points if 3 logging channels are used
- 250 data points if 4 logging channels are used

Once the maximum number of data points is reached, the oldest data points in the data log are cyclically overwritten in such a way that the last 1000, 500, 333 or 250 measured values are always in the log (ring memory principle).

The log contents are cleared if the option selected is changed.

Assign channel 2

Navigation

Expert → Diagnostics → Data logging → Assign chan. 2 (0852)

Prerequisite

The Extended HistoROM application package is available.

The software options currently enabled are displayed in the Software option overview parameter (→ 45).

Description

Options for the assignment of a process variable to the data logging channel.

Selection

Picklist, see Assign channel 1 parameter (→ 216)

Factory setting

Off

Assign channel 3

Navigation

Expert → Diagnostics → Data logging → Assign chan. 3 (0853)

Prerequisite

The Extended HistoROM application package is available.

The software options currently enabled are displayed in the Software option overview parameter (→ 45).

Description

Options for the assignment of a process variable to the data logging channel.

Selection

Picklist, see Assign channel 1 parameter (→ 216)

Factory setting

Off
Assignment channel 4

Navigation

[Expert → Diagnostics → Data logging → Assign chan. 4 (0854)]

Prerequisite

The **Extended HistoROM** application package is available.

- The software options currently enabled are displayed in the **Software option overview** parameter (→ 45).

Description

Options for the assignment of a process variable to the data logging channel.

Selection

Picklist, see **Assign channel 1** parameter (→ 216)

Factory setting

Off

Logging interval

Navigation

[Expert → Diagnostics → Data logging → Logging interval (0856)]

Prerequisite

The **Extended HistoROM** application package is available.

- The software options currently enabled are displayed in the **Software option overview** parameter (→ 45).

Description

Use this function to enter the logging interval t_{log} for data logging.

User entry

1.0 to 3600.0 s

Factory setting

10.0 s

Additional information

Description

This defines the interval between the individual data points in the data log, and thus the maximum loggable process time T_{log}:

- If 1 logging channel is used: $T_{log} = 1000 \times t_{log}$
- If 2 logging channels are used: $T_{log} = 500 \times t_{log}$
- If 3 logging channels are used: $T_{log} = 333 \times t_{log}$
- If 4 logging channels are used: $T_{log} = 250 \times t_{log}$

Once this time elapses, the oldest data points in the data log are cyclically overwritten such that a time of T_{log} always remains in the memory (ring memory principle).

- The log contents are cleared if the length of the logging interval is changed.

Example

If 1 logging channel is used:

- $T_{log} = 1000 \times 1 \text{ s} = 1000 \text{ s} \approx 15 \text{ min}$
- $T_{log} = 1000 \times 10 \text{ s} = 10000 \text{ s} \approx 3 \text{ h}$
- $T_{log} = 1000 \times 80 \text{ s} = 80000 \text{ s} \approx 1 \text{ d}$
- $T_{log} = 1000 \times 3600 \text{ s} = 3600000 \text{ s} \approx 41 \text{ d}$
Clear logging data

Navigation

Expert → Diagnostics → Data logging → Clear logging (0855)

Prerequisite

The **Extended HistoROM** application package is available.

The software options currently enabled are displayed in the **Software option overview** parameter (→ 45).

Description

Option to clear the entire logging data.

Selection

- Cancel
- Clear data

Factory setting

Cancel

Additional information

Selection

- Cancel
 The data is not cleared. All the data is retained.
- Clear data
 The logging data is cleared. The logging process starts from the beginning.

"Display channel 1" submenu

Navigation

Expert → Diagnostics → Data logging → Displ.channel 1

Display channel 1

Display channel 1

→ 219

Display channel 1

Navigation

Expert → Diagnostics → Data logging → Displ.channel 1

Prerequisite

The **Extended HistoROM** application package is available.

The software options currently enabled are displayed in the **Software option overview** parameter (→ 45).

One of the following options is selected in the **Assign channel 1** parameter (→ 216):

- Volume flow
- Corrected volume flow
- Mass flow
- Flow velocity
- Temperature
- Calculated saturated steam pressure*
- Steam quality*

* Visibility depends on order options or device settings
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

- Total mass flow *
- Condensate mass flow *
- Energy flow
- Heat flow difference *
- Reynolds number *
- Density *
- Pressure *
- Specific volume *
- Degrees of superheat *
- Vortex frequency
- Electronic temperature

Description
Displays the measured value trend for the logging channel in the form of a chart.

Additional information

- x-axis: depending on the number of channels selected displays 250 to 1000 measured values of a process variable.
- y-axis: displays the approximate measured value span and constantly adapts this to the ongoing measurement.

"Display channel 2" submenu

Navigation
Expert → Diagnostics → Data logging → Displ.channel 2

Display channel 2

Navigation
Expert → Diagnostics → Data logging → Displ.channel 2

Prerequisite
A process variable is defined in the Assign channel 2 parameter.

Description
See the Display channel 1 parameter → 219

* Visibility depends on order options or device settings
"Display channel 3" submenu

Navigation ➔ Expert → Diagnostics → Data logging → Displ.channel 3

Prerequisite
A process variable is defined in the Assign channel 3 parameter.

Description
See the Display channel 1 parameter → 219

"Display channel 4" submenu

Navigation ➔ Expert → Diagnostics → Data logging → Displ.channel 4

Prerequisite
A process variable is defined in the Assign channel 4 parameter.

Description
See the Display channel 1 parameter → 219

3.10.6 "Min/max values" submenu

Navigation ➔ Expert → Diagnostics → Min/max val.

Prerequisite

Description

Reset min/max values (7706) → 222
Reset min/max values

Navigation
Expert → Diagnostics → Min/max val. → Reset min/max (7706)

Description
Use this function to select measured variables whose minimum, maximum and average measured values are to be reset.

Selection
- Cancel
- Terminal voltage
- Temperature
- Flow velocity
- Pressure

Factory setting
Cancel

"Terminal voltage" submenu

Navigation
Expert → Diagnostics → Min/max val. → Terminal volt.

<table>
<thead>
<tr>
<th>Terminal voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value (0689)</td>
</tr>
<tr>
<td>Maximum value (0663)</td>
</tr>
<tr>
<td>Average value (0698)</td>
</tr>
</tbody>
</table>
Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Terminal volt. → Minimum value (0689)

Description
Use this function to display the smallest previously measured terminal voltage value in Volts.

User interface
0.0 to 50.0 V

Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Terminal volt. → Maximum value (0663)

Description
Use this function to view the largest previously measured terminal voltage value in Volts.

User interface
0.0 to 50.0 V

Average value

Navigation
Expert → Diagnostics → Min/max val. → Terminal volt. → Average value (0698)

Description
Use this function to view the average of all previously measured terminal voltage values in Volts.

User interface
Signed floating-point number

"IO module temperature" submenu

Navigation
Expert → Diagnostics → Min/max val. → IO module temp.

<table>
<thead>
<tr>
<th>▶ IO module temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value (0688)</td>
</tr>
<tr>
<td>Maximum value (0665)</td>
</tr>
<tr>
<td>Average value (0697)</td>
</tr>
</tbody>
</table>
Minimum value

Navigation
> Expert → Diagnostics → Min/max val. → IO module temp. → Minimum value (0688)

Description
Displays the lowest previously measured temperature value of the I/O electronics module.

User interface
Signed floating-point number

Additional information
Dependency
> The unit is taken from the **Temperature unit** parameter (→ 67)

Maximum value

Navigation
> Expert → Diagnostics → Min/max val. → IO module temp. → Maximum value (0665)

Description
Displays the highest previously measured temperature value of the I/O electronics module.

User interface
Signed floating-point number

Additional information
Dependency
> The unit is taken from the **Temperature unit** parameter (→ 67)

Average value

Navigation
> Expert → Diagnostics → Min/max val. → IO module temp. → Average value (0697)

Description
Displays the average value of all previously measured temperature values of the I/O electronics module.

User interface
-1273.15 to 726.85 °C

Additional information
Dependency
> The unit is taken from the **Temperature unit** parameter (→ 67)
Pre-amplifier temperature submenu

Navigation

Expert → Diagnostics → Min/max val. → Pre-amplif. temp

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value (7724)</td>
<td>→ 225</td>
</tr>
<tr>
<td>Maximum value (7723)</td>
<td>→ 225</td>
</tr>
</tbody>
</table>

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Pre-amplif. temp → Minimum value (7724)

Description

Displays the lowest previously measured temperature value of the pre-amplifier module.

User interface

0 to 1 000 °C

Additional information

Dependency

The unit is taken from the **Temperature unit** parameter (→ 67).

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Pre-amplif. temp → Maximum value (7723)

Description

Displays the highest previously measured temperature value of the pre-amplifier module.

User interface

0 to 1 000 °C

Additional information

Dependency

The unit is taken from the **Temperature unit** parameter (→ 67).
"Medium temperature" submenu

Navigation
Expert → Diagnostics → Min/max val. → Medium temp.

<table>
<thead>
<tr>
<th>Medium temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value (7655)</td>
</tr>
<tr>
<td>Maximum value (7654)</td>
</tr>
</tbody>
</table>

Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Medium temp. → Minimum value (7655)

Description
Displays the lowest previously medium temperature.

User interface
0 to 1000 °C

Additional information
Dependency
The unit is taken from the Temperature unit parameter (→ 67).

Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Medium temp. → Maximum value (7654)

Description
Displays the highest previously medium temperature.

User interface
0 to 1000 °C

Additional information
Dependency
The unit is taken from the Temperature unit parameter (→ 67).

"Flow velocity" submenu

Navigation
Expert → Diagnostics → Min/max val. → Flow velocity

<table>
<thead>
<tr>
<th>Flow velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum value (7633)</td>
</tr>
</tbody>
</table>
Maximum value

Navigation

Expand

Description
Displays the highest previously measured flow velocity.

User interface
Positive floating-point number

Additional information

Dependency

The unit is taken from the Velocity unit parameter (→ 71)

"External pressure" submenu

Navigation

Expand

Description
Displays the highest previously measured external pressure.

User interface
Positive floating-point number

Additional information

Dependency

The unit is taken from the Pressure unit parameter (→ 66)

3.10.7 "Heartbeat" submenu

For detailed information on the parameter descriptions of the Heartbeat Verification application package, see the Special Documentation for the device

Navigation

Expand
3.10.8 "Simulation" submenu

Navigation

Expert → Diagnostics → Simulation

Assign simulation process variable

Navigation

Expert → Diagnostics → Simulation → Assign proc.var. (1810)

Description

Use this function to select a process variable for the simulation process that is activated. The display alternates between the measured value and a diagnostic message of the ‘Function check’ category (C) while simulation is in progress.

Selection

- Off
- Volume flow
- Corrected volume flow
- Mass flow
- Flow velocity
- Temperature
• Calculated saturated steam pressure *
• Steam quality *
• Total mass flow *
• Condensate mass flow *
• Energy flow
• Heat flow difference *
• Reynolds number

Factory setting
Off

Additional information

Description

The simulation value of the selected process variable is specified in the Value process variable parameter (→ 229).

Value process variable

Navigation

Expert → Diagnostics → Simulation → Value proc. var. (1811)

Prerequisite

One of the following options is selected in the Assign simulation process variable parameter (→ 228):
• Volume flow
• Corrected volume flow
• Mass flow
• Flow velocity
• Temperature *
• Calculated saturated steam pressure *
• Steam quality *
• Total mass flow *
• Condensate mass flow *
• Energy flow *
• Heat flow difference *
• Reynolds number *

Description

Use this function to enter a simulation value for the selected process variable. Subsequent measured value processing and the signal output use this simulation value. In this way, users can verify whether the measuring device has been configured correctly.

User entry

Depends on the process variable selected

Factory setting

0

Additional information

User entry

The unit of the displayed measured value is taken from the System units submenu (→ 61).

* Visibility depends on order options or device settings
Frequency simulation

Navigation

Expert → Diagnostics → Simulation → Frequency sim. (0472)

Prerequisite

The **Frequency** option is selected in the **Operating mode** parameter (→ 114).

Description

Use this function to switch simulation of the frequency output on and off. The display alternates between the measured value and a diagnostic message of the "Function check" category (C) while simulation is in progress.

Selection

- Off
- On

Factory setting

Off

Additional information

Description

The desired simulation value is defined in the **Frequency value** parameter (→ 230).

Selection

- Off
 Frequency simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- On
 Frequency simulation is active.

Frequency value

Navigation

Expert → Diagnostics → Simulation → Freq. value (0473)

Prerequisite

The **On** option is selected in the **Frequency simulation** parameter (→ 230).

Description

Use this function to enter a frequency value for the simulation. In this way, users can verify the correct adjustment of the frequency output and the correct function of downstream switching units.

User entry

0.0 to 1250.0 Hz

Factory setting

0.0 Hz

Pulse simulation

Navigation

Expert → Diagnostics → Simulation → Pulse sim. (0458)

Prerequisite

The **Pulse** option is selected in the **Operating mode** parameter (→ 114).
Description

Use this function to switch simulation of the pulse output on and off. The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.

Selection

- Off
- Fixed value
- Down-counting value

Factory setting

Off

Additional information

Description

The desired simulation value is specified in the **Pulse value** parameter (→ 231).

Selection

- Off

 Pulse simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- Fixed value

 Pulses with the pulse width specified in the **Pulse width** parameter (→ 116) are output continuously.
- Down-counting value

 The pulses specified in the **Pulse value** parameter (→ 231) are output.

Pulse value

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Simulation → Pulse value (0459)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>In the Pulse simulation parameter (→ 230), the Down-counting value option is selected.</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to enter a pulse value for the simulation. In this way, users can verify the correct adjustment of the pulse output and the correct function of downstream switching units.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 65535</td>
</tr>
</tbody>
</table>
Description of device parameters

Proline Prowirl 200 PROFIBUS PA

Factory setting

- Off

Additional information

- Description
 - The desired simulation value is specified in the Switch status parameter (→ 232).

- Selection
 - Off
 - Switch simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
 - On
 - Switch simulation is active.

Switch status

Navigation

- Expert → Diagnostics → Simulation → Switch status (0463)

Prerequisite

- The On option is selected in the Switch output simulation parameter (→ 231).

Description

- Use this function to select a switch value for the simulation. In this way, users can verify the correct adjustment of the switch output and the correct function of downstream switching units.

- Selection
 - Open
 - Closed

Factory setting

- Open

Additional information

- Options
 - Open
 - Switch simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
 - Closed
 - Switch simulation is active.

Simulation device alarm

Navigation

- Expert → Diagnostics → Simulation → Sim. alarm (0654)

Description

- Use this function to switch the device alarm on and off.

Selection

- Off
 - On

Factory setting

- Off

Additional information

- Description
 - In this way, users can verify the correct function of downstream switching units.
The display alternates between the measured value and a diagnostic message of the “Function check” category (C) while simulation is in progress.

Diagnostic event category

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Simulation → Event category (0738)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to select the category of the diagnostic events that are displayed for the simulation in the Simulation diagnostic event parameter (→ 233).</td>
</tr>
</tbody>
</table>
| Selection | Sensor
- Electronics
- Configuration
- Process |
| Factory setting | Process |

Simulation diagnostic event

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Simulation → Sim. diag. event (0737)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to select a diagnostic event for the simulation process that is activated.</td>
</tr>
</tbody>
</table>
| Selection | Off
- Diagnostic event picklist (depends on the category selected) |
| Factory setting | Off |
| Additional information | For the simulation, you can choose from the diagnostic events of the category selected in the Diagnostic event category parameter (→ 233). |
4 Country-specific factory settings

4.1 SI units

Not valid for USA and Canada.

4.1.1 System units

<table>
<thead>
<tr>
<th>System units</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume flow</td>
<td>m³/h</td>
</tr>
<tr>
<td>Volume</td>
<td>m³</td>
</tr>
<tr>
<td>Mass flow</td>
<td>kg/h</td>
</tr>
<tr>
<td>Mass</td>
<td>kg</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Nm³/h</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Nm³</td>
</tr>
<tr>
<td>Pressure</td>
<td>bar</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>Energy flow</td>
<td>kW</td>
</tr>
<tr>
<td>Energy</td>
<td>kWh</td>
</tr>
<tr>
<td>Calorific value (volume)</td>
<td>kJ/Nm³</td>
</tr>
<tr>
<td>Calorific value (mass)</td>
<td>kJ/kg</td>
</tr>
<tr>
<td>Velocity</td>
<td>m/s</td>
</tr>
<tr>
<td>Density</td>
<td>kg/m³</td>
</tr>
<tr>
<td>Specific volume</td>
<td>m³/kg</td>
</tr>
<tr>
<td>Dynamic viscosity</td>
<td>Pa s</td>
</tr>
<tr>
<td>Specific heat capacity</td>
<td>kJ/(kgK)</td>
</tr>
<tr>
<td>Length</td>
<td>mm</td>
</tr>
</tbody>
</table>

4.1.2 Full scale values

The factory settings apply to the following parameters:

100% bar graph value 1

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>[m³/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>25 > 15</td>
<td></td>
</tr>
<tr>
<td>40 >> 15</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>40 > 25</td>
<td></td>
</tr>
<tr>
<td>50 >> 25</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>308</td>
</tr>
<tr>
<td>50 > 40</td>
<td></td>
</tr>
<tr>
<td>80 >> 40</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>513</td>
</tr>
<tr>
<td>80 > 50</td>
<td></td>
</tr>
<tr>
<td>100 >> 50</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>1152</td>
</tr>
<tr>
<td>100 > 80</td>
<td></td>
</tr>
<tr>
<td>150 >> 80</td>
<td></td>
</tr>
</tbody>
</table>
Nominal diameter

<table>
<thead>
<tr>
<th>[mm]</th>
<th>[m³/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1995</td>
</tr>
<tr>
<td>150</td>
<td>4539</td>
</tr>
<tr>
<td>200</td>
<td>8713</td>
</tr>
<tr>
<td>250</td>
<td>13735</td>
</tr>
<tr>
<td>300</td>
<td>19701</td>
</tr>
</tbody>
</table>

4.1.3 Pulse value

<table>
<thead>
<tr>
<th>Nominal diameter</th>
<th>Volume flow (~ 2 pulse/s) [m³/pulse]</th>
<th>Mass flow (~ 2 pulse/s) [kg/pulse]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mm]</td>
<td>[m³/h]</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.00067</td>
<td>0.0034</td>
</tr>
<tr>
<td>25</td>
<td>0.0035</td>
<td>0.018</td>
</tr>
<tr>
<td>40</td>
<td>0.0085</td>
<td>0.044</td>
</tr>
<tr>
<td>50</td>
<td>0.023</td>
<td>0.12</td>
</tr>
<tr>
<td>80</td>
<td>0.051</td>
<td>0.26</td>
</tr>
<tr>
<td>100</td>
<td>0.089</td>
<td>0.46</td>
</tr>
<tr>
<td>150</td>
<td>0.20</td>
<td>1.04</td>
</tr>
<tr>
<td>200</td>
<td>0.39</td>
<td>1.99</td>
</tr>
<tr>
<td>250</td>
<td>0.61</td>
<td>3.14</td>
</tr>
<tr>
<td>300</td>
<td>0.88</td>
<td>4.51</td>
</tr>
</tbody>
</table>
4.2 US units

Only valid for USA and Canada.

4.2.1 System units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume flow</td>
<td>ft³/min</td>
</tr>
<tr>
<td>Volume</td>
<td>ft³</td>
</tr>
<tr>
<td>Mass flow</td>
<td>lb/min</td>
</tr>
<tr>
<td>Mass</td>
<td>lb</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Sft³/min</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Sft³</td>
</tr>
<tr>
<td>Pressure</td>
<td>psi</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F</td>
</tr>
<tr>
<td>Energy flow</td>
<td>Btu/h</td>
</tr>
<tr>
<td>Energy</td>
<td>Btu</td>
</tr>
<tr>
<td>Calorific value (volume)</td>
<td>Btu/Sft³</td>
</tr>
<tr>
<td>Calorific value (mass)</td>
<td>Btu/lb</td>
</tr>
<tr>
<td>Velocity</td>
<td>ft/s</td>
</tr>
<tr>
<td>Density</td>
<td>lb/ft³</td>
</tr>
<tr>
<td>Specific volume</td>
<td>ft³/lb</td>
</tr>
<tr>
<td>Length</td>
<td>in</td>
</tr>
</tbody>
</table>

4.2.2 Full scale values

The factory settings apply to the following parameters:
100% bar graph value 1

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>[ft³/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>½</td>
<td>882</td>
</tr>
<tr>
<td>1 > ½</td>
<td></td>
</tr>
<tr>
<td>1½ >> ½</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4414</td>
</tr>
<tr>
<td>1½ > 1</td>
<td></td>
</tr>
<tr>
<td>2 >> 1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10876</td>
</tr>
<tr>
<td>2 > 1½</td>
<td></td>
</tr>
<tr>
<td>3 >> 1½</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>18116</td>
</tr>
<tr>
<td>3 > 2</td>
<td></td>
</tr>
<tr>
<td>4 >> 2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>40682</td>
</tr>
<tr>
<td>4 > 3</td>
<td></td>
</tr>
<tr>
<td>6 >> 3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>70452</td>
</tr>
<tr>
<td>6 > 4</td>
<td></td>
</tr>
<tr>
<td>8 >> 4</td>
<td></td>
</tr>
<tr>
<td>6 > 8</td>
<td>160293</td>
</tr>
<tr>
<td>8 > 6</td>
<td></td>
</tr>
<tr>
<td>10 >> 6</td>
<td></td>
</tr>
<tr>
<td>Nominal diameter [in]</td>
<td>[ft³/h]</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>8</td>
<td>307696</td>
</tr>
<tr>
<td>10</td>
<td>485046</td>
</tr>
<tr>
<td>12</td>
<td>695734</td>
</tr>
</tbody>
</table>

4.2.3 Pulse value

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>Volume flow (~ 2) pulse/s ([\text{gal/pulse}])</th>
<th>Volume flow (~ 2) pulse/s ([\text{lb/pulse}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>½</td>
<td>0.18</td>
<td>0.0076</td>
</tr>
<tr>
<td>1</td>
<td>0.92</td>
<td>0.039</td>
</tr>
<tr>
<td>1½</td>
<td>2.25</td>
<td>0.097</td>
</tr>
<tr>
<td>2</td>
<td>6.02</td>
<td>0.26</td>
</tr>
<tr>
<td>3</td>
<td>13.50</td>
<td>0.58</td>
</tr>
<tr>
<td>4</td>
<td>23.42</td>
<td>1.01</td>
</tr>
<tr>
<td>6</td>
<td>53.29</td>
<td>2.29</td>
</tr>
<tr>
<td>8</td>
<td>102.29</td>
<td>4.40</td>
</tr>
<tr>
<td>10</td>
<td>161.26</td>
<td>6.93</td>
</tr>
<tr>
<td>12</td>
<td>231.30</td>
<td>9.94</td>
</tr>
</tbody>
</table>
5 Explanation of abbreviated units

5.1 SI units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calorific value (volume)</td>
<td>kWh/Nm³, MWh/Nm³, kJ/Nm³, MJ/Nm³</td>
<td>Kilowatt hour, megawatt hour, kilojoule, megajoule/standard cubic meter</td>
</tr>
<tr>
<td></td>
<td>kWh/Sm³, MWh/Sm³, kJ/Sm³, MJ/Sm³</td>
<td>Kilowatt hour, megawatt hour, kilojoule, megajoule/standard cubic meter</td>
</tr>
<tr>
<td>Calorific value (mass)</td>
<td>kWh/kg, MWh/kg, kJ/kg, MJ/kg</td>
<td>Kilowatt hour, megawatt hour, kilojoule, megajoule/kilogram</td>
</tr>
<tr>
<td>Density</td>
<td>g/cm³</td>
<td>Gram/volume unit</td>
</tr>
<tr>
<td></td>
<td>kg/dm³, kg/l, kg/m³</td>
<td>Kilogram/volume unit</td>
</tr>
<tr>
<td></td>
<td>SD4°C, SD15°C, SD20°C</td>
<td>Specific density: The specific density is the ratio of the fluid density to the water density at a water temperature of 4°C (39°F), 15°C (59°F), 20°C (68°F).</td>
</tr>
<tr>
<td></td>
<td>SG4°C, SG15°C, SG20°C</td>
<td>Specific gravity: The specific gravity is the ratio of the fluid density to the water density at a water temperature of 4°C (39°F), 15°C (59°F), 20°C (68°F).</td>
</tr>
<tr>
<td>Pressure</td>
<td>Pa, kPa, MPa</td>
<td>Pascal, kilopascal, megapascal</td>
</tr>
<tr>
<td></td>
<td>mbar a</td>
<td>Millibar (absolute)</td>
</tr>
<tr>
<td></td>
<td>bar, torr, atm</td>
<td>Bar, torr, physical atmosphere</td>
</tr>
<tr>
<td></td>
<td>gf/cm², kgf/cm²</td>
<td>Gram force, kilogram force/square centimeter</td>
</tr>
<tr>
<td>Dynamic viscosity</td>
<td>Pa s</td>
<td>Pascal second</td>
</tr>
<tr>
<td></td>
<td>cP, P</td>
<td>Centipoise, poise</td>
</tr>
<tr>
<td>Energy</td>
<td>kWh, MWh, GWh</td>
<td>Kilowatt hour, megawatt hour, gigawatt hour</td>
</tr>
<tr>
<td></td>
<td>kJ, MJ, GJ</td>
<td>Kilojoule, megajoule, gigajoule</td>
</tr>
<tr>
<td></td>
<td>kcal, Mcal, Gcal</td>
<td>Kilocalories, megacalories, gigacalories</td>
</tr>
<tr>
<td>Energy flow</td>
<td>kW, MW, GW</td>
<td>Kilowatt, megawatt</td>
</tr>
<tr>
<td></td>
<td>kJ/s, kJ/min, kJ/h, kJ/d</td>
<td>Kilojoule/time unit</td>
</tr>
<tr>
<td></td>
<td>MJ/s, MJ/min, MJ/h, MJ/d</td>
<td>Megajoule/time unit</td>
</tr>
<tr>
<td></td>
<td>GJ/s, GJ/min, GJ/h, GJ/d</td>
<td>Gigajoule/time unit</td>
</tr>
<tr>
<td></td>
<td>kcal/s, kcal/min, kcal/h, kcal/d</td>
<td>Kilocalories/time unit</td>
</tr>
<tr>
<td></td>
<td>Mcal/s, Mcal/min, Mcal/h, Mcal/d</td>
<td>Megacalories/time unit</td>
</tr>
<tr>
<td></td>
<td>Gcal/s, Gcal/min, Gcal/h, Gcal/d</td>
<td>Gigacalories/time unit</td>
</tr>
<tr>
<td>Velocity</td>
<td>m/s</td>
<td>Meter/time unit</td>
</tr>
<tr>
<td>Length</td>
<td>mm, m</td>
<td>Millimeter, meter</td>
</tr>
<tr>
<td>Mass</td>
<td>g, kg, t</td>
<td>Gram, kilogram, metric ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>g/s, g/min, g/h, g/d</td>
<td>Gram/time unit</td>
</tr>
<tr>
<td></td>
<td>kg/s, kg/min, kg/h, kg/d</td>
<td>Kilogram/time unit</td>
</tr>
<tr>
<td></td>
<td>t/s, t/min, t/h, t/d</td>
<td>Metric ton/time unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Nl, Nm³, Sm³</td>
<td>Normal liter, normal cubic meter, standard cubic meter</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Nl/s, Nl/min, Nl/h, Nl/d</td>
<td>Normal liter/time unit</td>
</tr>
<tr>
<td></td>
<td>Nm³/s, Nm³/min, Nm³/h, Nm³/d</td>
<td>Normal cubic meter/time unit</td>
</tr>
<tr>
<td></td>
<td>Sm³/s, Sm³/min, Sm³/h, Sm³/d</td>
<td>Standard cubic meter/time unit</td>
</tr>
</tbody>
</table>
Process variable

<table>
<thead>
<tr>
<th>Specific heat capacity</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kJ/(kgK), MJ/(kgK)</td>
<td>Kilojoule, megajoule/kilogram Kelvin</td>
</tr>
<tr>
<td></td>
<td>kWh/(kgK)</td>
<td>Kilowatt hour/kilogram Kelvin</td>
</tr>
<tr>
<td></td>
<td>kcal/(kgK)</td>
<td>Kilocalories/kilogram Kelvin</td>
</tr>
</tbody>
</table>

| Temperature | °C, K | Celsius, Kelvin |

<table>
<thead>
<tr>
<th>Volume</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm³, dm³, m³</td>
<td>Cubic centimeter, cubic decimeter, cubic meter</td>
</tr>
<tr>
<td></td>
<td>ml, l</td>
<td>Milliliter, liter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume flow</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm³/s, cm³/min, cm³/h, cm³/d</td>
<td>Cubic centimeter/time unit</td>
</tr>
<tr>
<td></td>
<td>dm³/s, dm³/min, dm³/h, dm³/d</td>
<td>Cubic decimeter/time unit</td>
</tr>
<tr>
<td></td>
<td>m³/s, m³/min, m³/h, m³/d</td>
<td>Cubic meter/time unit</td>
</tr>
<tr>
<td></td>
<td>ml/s, ml/min, ml/h, ml/d</td>
<td>Millilitre/time unit</td>
</tr>
<tr>
<td></td>
<td>l/s, l/min, l/h, l/d</td>
<td>Litre/time unit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m, h, d, y</td>
<td>Minute, hour, day, year</td>
</tr>
</tbody>
</table>

5.2 US units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calorific value</td>
<td>kWh/lb, MWh/lb, kJ/lb, MJ/lb</td>
<td>Kilowatt hour, kilojoule, British thermal unit, thousand British thermal units/pound</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Density</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/ft³, lb/gal (us)</td>
<td>Pound/cubic foot, pound/gallon</td>
</tr>
<tr>
<td></td>
<td>lb/bbl (us;liq.), lb/bbl (us;beer), lb/bbl (us;oil), lb/bbl (us;tank)</td>
<td>Pound/volume unit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>psi a</td>
<td>Psi absolute</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Velocity</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ft/s</td>
<td>Foot/time unit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in, ft</td>
<td>Inch, foot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>oz, lb, STon</td>
<td>Ounce, pound, standard ton</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass flow</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>oz/s, oz/min, oz/h, oz/d</td>
<td>Ounce/time unit</td>
</tr>
<tr>
<td></td>
<td>lb/s, lb/min, lb/h, lb/d</td>
<td>Pound/time unit</td>
</tr>
<tr>
<td></td>
<td>STon/s, STon/min, STon/h, STon/d</td>
<td>Standard ton/time unit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corrected volume</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sft³</td>
<td>Standard cubic foot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corrected volume flow</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sft³/s, Sft³/min, Sft³/h, Sft³/d</td>
<td>Standard cubic foot/time unit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°F, °R</td>
<td>Fahrenheit, Rankine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>af</td>
<td>Acre foot</td>
</tr>
<tr>
<td></td>
<td>ft³</td>
<td>Cubic foot</td>
</tr>
<tr>
<td></td>
<td>fl oz (us), gal (us), kgal (us), Mgal (us)</td>
<td>Fluid ounce, gallon, kilogallon, million gallon</td>
</tr>
<tr>
<td></td>
<td>bbl (us;liq.), bbl (us;beer), bbl (us;oil), bbl (us;tank)</td>
<td>Barrel (normal liquids), barrel (beer), barrel (petrochemicals), barrel (filling tanks)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume flow</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>af/s, af/min, af/h, af/d</td>
<td>Acre foot/time unit</td>
</tr>
<tr>
<td></td>
<td>ft³/s, ft³/min, ft³/h, ft³/d</td>
<td>Cubic foot/time unit</td>
</tr>
<tr>
<td></td>
<td>fl oz/s (us), fl oz/min (us), fl oz/h (us), fl oz/d (us)</td>
<td>Fluid ounce/time unit</td>
</tr>
<tr>
<td></td>
<td>gal/s (us), gal/min (us), gal/h (us), gal/d (us)</td>
<td>Gallon/time unit</td>
</tr>
</tbody>
</table>
Process variable | Units | Explanation
--- | --- | ---
| | kgal/s (us), kgal/min (us), kgal/h (us), kgal/d (us) | Kilogallon/time unit
| | Mgal/s (us), Mgal/min (us), Mgal/h (us), Mgal/d (us) | Million gallon/time unit
| | bbl/s (us;liq.), bbl/min (us;liq.), bbl/h (us;liq.), bbl/d (us;liq.) | Barrel/time unit (normal liquids)
| | | Normal liquids: 3.15 gal/bbl
| | bbl/s (us;beer), bbl/min (us;beer), bbl/h (us;beer), bbl/d (us;beer) | Barrel/time unit (beer)
| | | Beer: 31.0 gal/bbl
| | bbl/s (us;oil), bbl/min (us;oil), bbl/h (us;oil), bbl/d (us;oil) | Barrel/time unit (petrochemicals)
| | | Petrochemicals: 42.0 gal/bbl
| | bbl/s (us;tank), bbl/min (us;tank), bbl/h (us;tank), bbl/d (us;tank) | Barrel/time unit (filling tank)
| | | Filling tanks: 55.0 gal/bbl

Time
- m, h, d, y: Minute, hour, day, year
- am, pm: Ante meridiem (before midday), post meridiem (after midday)

5.3 Imperial units

Process variable	Units	Explanation
Calorific value (volume)	Btu/Sm³, MBtu/Sm³	British thermal unit, thousand British thermal units/standard cubic meter
	Btu/Scf³, MBtu/Scf³	British thermal unit, thousand British thermal units/standard cubic foot
Calorific value (mass)	Btu/lb, MBtu/lb	British thermal unit, thousand British thermal units/pound
Density	lb/gal (imp), lb/bbl (imp;beer), lb/bbl (imp;oil)	Pound/volume unit
Energy	Btu, MBtu, MMBtu	British thermal unit, thousand British thermal units, million British thermal units
Energy flow	Btu/s, Btu/min, Btu/h, Btu/day	British thermal unit/time unit
	MBtu/s, MBtu/min, MBtu/h, MBtu/d	Thousand British thermal units/time unit
	MMBtu/s, MMBtu/min, MMBtu/h, MMBtu/d	Million British thermal units/time unit
Specific heat capacity	Btu/(lb °R)	British thermal unit/pound degree Rankine
Volume	gal (imp), Mgal (imp)	Gallon, mega gallon
	bbl (imp;beer), bbl (imp;oil)	Barrel (beer), barrel (petrochemicals)
Volume flow	gal/s (imp), gal/min (imp), gal/h (imp), gal/d (imp)	Gallon/time unit
	Mgal/s (imp), Mgal/min (imp), Mgal/h (imp), Mgal/d (imp)	Mega gallon/time unit
	bbl/s (imp;beer), bbl/min (imp;beer), bbl/h (imp;beer), bbl/d (imp;beer)	Barrel/time unit (beer)
		Beer: 36.0 gal/bbl
	bbl/s (imp;oil), bbl/min (imp;oil), bbl/h (imp;oil), bbl/d (imp;oil)	Barrel/time unit (petrochemicals)
		Petrochemicals: 34.97 gal/bbl
Time	m, h, d, y	Minute, hour, day, year
	am, pm	Ante meridiem (before midday), post meridiem (after midday)
5.4 Other units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>mmH2O (4°C)</td>
<td>Millimeter of water column (4 °C)</td>
</tr>
<tr>
<td></td>
<td>mmH2O (68°F)</td>
<td>Millimeter of water column (68 °F)</td>
</tr>
<tr>
<td></td>
<td>mmHg (0°C)</td>
<td>Millimeter of mercury column (0 °C)</td>
</tr>
<tr>
<td></td>
<td>inH2O (4°C)</td>
<td>Inch of water column (4 °C)</td>
</tr>
<tr>
<td></td>
<td>inH2O (68°F)</td>
<td>Inch of water column (68 °F)</td>
</tr>
<tr>
<td></td>
<td>ftH2O (68°F)</td>
<td>Foot of water column (68 °F)</td>
</tr>
<tr>
<td></td>
<td>inHg (0°C)</td>
<td>Inch of mercury (0 °C)</td>
</tr>
<tr>
<td>Specific volume</td>
<td>m³/kg</td>
<td>Cubic meter/kilogram</td>
</tr>
<tr>
<td></td>
<td>ft³/lb</td>
<td>Cubic foot/pound</td>
</tr>
</tbody>
</table>
Index

0 ... 9	Assign pulse output (Parameter)	115
0% bargraph value 1 (Parameter)	Assign simulation process variable (Parameter)	228
0% bargraph value 3 (Parameter)	Assign status (Parameter)	129
2nd temperature delta heat (Parameter)	Atmospheric pressure (Parameter)	106
100% bargraph value 1 (Parameter)	Average value (Parameter)	223, 224
100% bargraph value 3 (Parameter)		

A

Access status display (Parameter)	11, 26
Access status tooling (Parameter)	12
Activate sensor emergency mode (Parameter)	46
Activate SW option (Parameter)	45
Actual diagnostics (Parameter)	203
Address mode (Parameter)	132
Administration (Submenu)	42
Alarm delay (Parameter)	30
Alarm hysteresis (Parameter)	153, 198
Alarm summary (Parameter)	138, 150, 163, 171, 183, 196
Alert key (Parameter)	137, 148, 162, 170, 182, 195
Analog input 1 to 4 (Submenu)	145
Analog inputs (Submenu)	145
Analog output 1 (Submenu)	166
Analog outputs (Submenu)	166
Application (Submenu)	188
Assign behavior of diagnostic no. 022 (Parameter)	32
Assign behavior of diagnostic no. 122 (Parameter)	33
Assign behavior of diagnostic no. 350 (Parameter)	33
Assign behavior of diagnostic no. 371 (Parameter)	33
Assign behavior of diagnostic no. 442 (Parameter)	34
Assign behavior of diagnostic no. 443 (Parameter)	34
Assign behavior of diagnostic no. 828 (Parameter)	35
Assign behavior of diagnostic no. 829 (Parameter)	35
Assign behavior of diagnostic no. 832 (Parameter)	35
Assign behavior of diagnostic no. 833 (Parameter)	36
Assign behavior of diagnostic no. 834 (Parameter)	36
Assign behavior of diagnostic no. 835 (Parameter)	36
Assign behavior of diagnostic no. 841 (Parameter)	37
Assign behavior of diagnostic no. 844 (Parameter)	37
Assign behavior of diagnostic no. 870 (Parameter)	37
Assign behavior of diagnostic no. 871 (Parameter)	38
Assign behavior of diagnostic no. 872 (Parameter)	38
Assign behavior of diagnostic no. 873 (Parameter)	38
Assign behavior of diagnostic no. 874 (Parameter)	39
Assign behavior of diagnostic no. 945 (Parameter)	39
Assign behavior of diagnostic no. 947 (Parameter)	40
Assign behavior of diagnostic no. 972 (Parameter)	40
Assign channel 1 (Parameter)	216
Assign channel 2 (Parameter)	217
Assign channel 3 (Parameter)	217
Assign channel 4 (Parameter)	218
Assign diagnostic behavior (Parameter)	126
Assign flow direction check (Parameter)	129
Assign frequency output (Parameter)	119
Assign limit (Parameter)	126
Assign process variable (Parameter)	76, 189
Assign simulation process variable (Parameter)	228
Assign status (Parameter)	129
Atmospheric pressure (Parameter)	106
Average value (Parameter)	223, 224
Activate SW option (Parameter)	45
Analog outputs (Submenu)	166
Analog input 1 to 4 (Submenu)	145
Actual diagnostics (Parameter)	203
Address mode (Parameter)	132
Administration (Submenu)	42
Alarm delay (Parameter)	30
Alarm hysteresis (Parameter)	153, 198
Alarm summary (Parameter)	138, 150, 163, 171, 183, 196
Alert key (Parameter)	137, 148, 162, 170, 182, 195
Analog inputs (Submenu)	145
Analog outputs (Submenu)	166
Application (Submenu)	188
Assign behavior of diagnostic no. 022 (Parameter)	32
Assign behavior of diagnostic no. 122 (Parameter)	33
Assign behavior of diagnostic no. 350 (Parameter)	33
Assign behavior of diagnostic no. 371 (Parameter)	33
Assign behavior of diagnostic no. 442 (Parameter)	34
Assign behavior of diagnostic no. 443 (Parameter)	34
Assign behavior of diagnostic no. 828 (Parameter)	35
Assign behavior of diagnostic no. 829 (Parameter)	35
Assign behavior of diagnostic no. 832 (Parameter)	35
Assign behavior of diagnostic no. 833 (Parameter)	36
Assign behavior of diagnostic no. 834 (Parameter)	36
Assign behavior of diagnostic no. 835 (Parameter)	36
Assign behavior of diagnostic no. 841 (Parameter)	37
Assign behavior of diagnostic no. 844 (Parameter)	37
Assign behavior of diagnostic no. 870 (Parameter)	37
Assign behavior of diagnostic no. 871 (Parameter)	38
Assign behavior of diagnostic no. 872 (Parameter)	38
Assign behavior of diagnostic no. 873 (Parameter)	38
Assign behavior of diagnostic no. 874 (Parameter)	39
Assign behavior of diagnostic no. 945 (Parameter)	39
Assign behavior of diagnostic no. 947 (Parameter)	40
Assign behavior of diagnostic no. 972 (Parameter)	40
Assign channel 1 (Parameter)	216
Assign channel 2 (Parameter)	217
Assign channel 3 (Parameter)	217
Assign channel 4 (Parameter)	218
Assign diagnostic behavior (Parameter)	126
Assign flow direction check (Parameter)	129
Assign frequency output (Parameter)	119
Assign limit (Parameter)	126
Assign process variable (Parameter)	76, 189
Device certification (Parameter)	142
Device ID (Parameter)	140
Device information (Submenu)	211
Device install date (Parameter)	143
Device message (Parameter)	142
Device name (Parameter)	213
Device reset (Parameter)	44
Device tag (Parameter)	136, 212
Diagnostic behavior (Submenu)	31
Diagnostic event category (Parameter)	233
Diagnostic handling (Submenu)	30
Diagnostic limits (Submenu)	40
Diagnostic list (Submenu)	205
Diagnostic (Parameter)	140
Diagnostics (Submenu)	202
Diagnostics 1 (Parameter)	206
Diagnostics 2 (Parameter)	207
Diagnostics 3 (Parameter)	208
Diagnostics 4 (Parameter)	208
Diagnostics 5 (Parameter)	208
Diagnostics mask (Parameter)	141

Direct access

0% bargraph value 1 (0123)	17
0% bargraph value 3 (0124)	21
2nd temperature delta heat (7625)	107
100% bargraph value 1 (0125)	18
100% bargraph value 3 (0126)	21
Access status display (0091)	11, 26
Access status tooling (0005)	12
Activate sensor emergency mode (7712)	46
Activate SW option (0029)	45
Actual diagnostics (0691)	203
Address mode (1468)	132
Alarm delay (0651)	30
Alarm hysteresis	153

Alarm summary

| Analog input 1 to 4 (1527–1 to 4) | 148 |
| Totalizer 1 to 3 (3802–1 to 3) | 198 |

Alarm summary (1474)

Analog input 1 to 4 (1537–1 to 4)	150
Analog output 1 (1642–1)	171
Discrete input 1 to 2 (2191–1 to 2)	163
Discrete output 1 to 3 (1701–1 to 3)	183
Totalizer 1 to 3 (3809–1 to 3)	196

Batch ID

Analog input 1 to 4 (1533–1 to 4)	150
Analog output 1 (1633–1)	172
Discrete input 1 to 2 (2183–1 to 2)	164
Discrete output 1 to 3 (1695–1 to 3)	184
Totalizer 1 to 3 (3804–1 to 3)	197

Batch operation

Analog input 1 to 4 (1534–1 to 4)	150
Analog output 1 (1639–1)	172
Discrete input 1 to 2 (2184–1 to 2)	164
Discrete output 1 to 3 (1698–1 to 3)	184
Totalizer 1 to 3 (3805–1 to 3)	197

Batch phase

Analog input 1 to 4 (1535–1 to 4)	150
Analog output 1 (1640–1)	172
Discrete input 1 to 2 (2185–1 to 2)	164
Discrete output 1 to 3 (1699–1 to 3)	184
Totalizer 1 to 3 (3806–1 to 3)	197

Batch Recipe Unit Procedure

Analog input 1 to 4 (1536–1 to 4)	151
Analog output 1 (1641–1)	172
Discrete input 1 to 2 (2186–1 to 2)	164
Discrete output 1 to 3 (1700–1 to 3)	185
Totalizer 1 to 3 (3807–1 to 3)	198

Calculated saturated steam pressure (1852) | 51 |
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration factor (7604)</td>
<td>112</td>
</tr>
<tr>
<td>Calorific value (7626)</td>
<td>84</td>
</tr>
<tr>
<td>Calorific value type (7698)</td>
<td>82</td>
</tr>
<tr>
<td>Calorific value unit (0552)</td>
<td>69</td>
</tr>
<tr>
<td>Calorific value unit (0606)</td>
<td>70</td>
</tr>
<tr>
<td>Channel</td>
<td></td>
</tr>
<tr>
<td>Analogue input 1 to 4 (15611 to 4)</td>
<td>145</td>
</tr>
<tr>
<td>Discrete input 1 to 2 (21871 to 2)</td>
<td>159</td>
</tr>
<tr>
<td>Clear logging data (0855)</td>
<td>219</td>
</tr>
<tr>
<td>Comparison result (0103)</td>
<td>29</td>
</tr>
<tr>
<td>Compressibility factor (7729)</td>
<td>56</td>
</tr>
<tr>
<td>Condensate mass flow (1857)</td>
<td>52</td>
</tr>
<tr>
<td>Condensed status diagnostic (1500)</td>
<td>144</td>
</tr>
<tr>
<td>Configuration management (0100)</td>
<td>27</td>
</tr>
<tr>
<td>Contrast display (0105)</td>
<td>25</td>
</tr>
<tr>
<td>Control Totalizer 1 to 3 (38301 to 3)</td>
<td>191</td>
</tr>
<tr>
<td>Corrected volume flow (1850)</td>
<td>49</td>
</tr>
<tr>
<td>Corrected volume flow unit (0558)</td>
<td>65</td>
</tr>
<tr>
<td>Corrected volume unit (0575)</td>
<td>66</td>
</tr>
<tr>
<td>Damping output (0477)</td>
<td>122</td>
</tr>
<tr>
<td>Date/time format (2812)</td>
<td>74</td>
</tr>
<tr>
<td>Decimal places 1 (0095)</td>
<td>18</td>
</tr>
<tr>
<td>Decimal places 2 (0117)</td>
<td>19</td>
</tr>
<tr>
<td>Decimal places 3 (0118)</td>
<td>21</td>
</tr>
<tr>
<td>Decimal places 4 (0119)</td>
<td>22</td>
</tr>
<tr>
<td>Define access code (0093)</td>
<td></td>
</tr>
<tr>
<td>Degrees of superheat (7738)</td>
<td>56</td>
</tr>
<tr>
<td>Degrees of superheating limit (7737)</td>
<td>41</td>
</tr>
<tr>
<td>Delta heat calculation (7736)</td>
<td>106</td>
</tr>
<tr>
<td>Density (7607)</td>
<td>54</td>
</tr>
<tr>
<td>Density calculation (7608)</td>
<td>80</td>
</tr>
<tr>
<td>Density unit (0555)</td>
<td>71</td>
</tr>
<tr>
<td>Descriptor (1489)</td>
<td>142</td>
</tr>
<tr>
<td>Device address (1462)</td>
<td>133</td>
</tr>
<tr>
<td>Device certification (1486)</td>
<td>142</td>
</tr>
<tr>
<td>Device ID (1480)</td>
<td>140</td>
</tr>
<tr>
<td>Device install date (1491)</td>
<td>143</td>
</tr>
<tr>
<td>Device message (1490)</td>
<td>142</td>
</tr>
<tr>
<td>Device name (0013)</td>
<td>213</td>
</tr>
<tr>
<td>Device reset (0000)</td>
<td>44</td>
</tr>
<tr>
<td>Device tag (0011)</td>
<td>212</td>
</tr>
<tr>
<td>Device tag (1496)</td>
<td>136</td>
</tr>
<tr>
<td>Diagnostic event category (0738)</td>
<td>233</td>
</tr>
<tr>
<td>Diagnostics (1482)</td>
<td>140</td>
</tr>
<tr>
<td>Diagnostics 1 (0692)</td>
<td>205</td>
</tr>
<tr>
<td>Diagnostics 2 (0693)</td>
<td>206</td>
</tr>
<tr>
<td>Diagnostics 3 (0694)</td>
<td>207</td>
</tr>
<tr>
<td>Diagnostics 4 (0695)</td>
<td>208</td>
</tr>
<tr>
<td>Diagnostics 5 (0696)</td>
<td>208</td>
</tr>
<tr>
<td>Diagnostics mask (1484)</td>
<td>141</td>
</tr>
<tr>
<td>Direct access (0106)</td>
<td>10</td>
</tr>
<tr>
<td>Display damping (0094)</td>
<td>23</td>
</tr>
<tr>
<td>Display interval (0096)</td>
<td>23</td>
</tr>
<tr>
<td>DSC sensor serial number (7728)</td>
<td>215</td>
</tr>
<tr>
<td>Dynamic viscosity (7732)</td>
<td>85</td>
</tr>
<tr>
<td>Dynamic viscosity (7733)</td>
<td>84</td>
</tr>
<tr>
<td>Dynamic viscosity unit (0577)</td>
<td>72</td>
</tr>
<tr>
<td>Energy flow (1872)</td>
<td>53</td>
</tr>
<tr>
<td>Energy flow unit (0565)</td>
<td>68</td>
</tr>
<tr>
<td>Energy unit (0559)</td>
<td>69</td>
</tr>
<tr>
<td>ENP version (0012)</td>
<td>214</td>
</tr>
<tr>
<td>Enter access code (0003)</td>
<td>13</td>
</tr>
<tr>
<td>Enter access code (0092)</td>
<td>13</td>
</tr>
<tr>
<td>Enthalpy calculation (7619)</td>
<td>80</td>
</tr>
<tr>
<td>Enthalpy type (7620)</td>
<td>82</td>
</tr>
<tr>
<td>Extended order code 1 (0023)</td>
<td>214</td>
</tr>
<tr>
<td>Extended order code 2 (0021)</td>
<td>214</td>
</tr>
<tr>
<td>Extended order code 3 (0022)</td>
<td>214</td>
</tr>
<tr>
<td>External value (7622)</td>
<td>105</td>
</tr>
<tr>
<td>Factory reset (1488)</td>
<td>142</td>
</tr>
<tr>
<td>Fail safe time</td>
<td></td>
</tr>
<tr>
<td>Analogue output 1 (16351)</td>
<td>167</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (16971 to 3)</td>
<td>179</td>
</tr>
<tr>
<td>Fail safe type</td>
<td></td>
</tr>
<tr>
<td>Analogue input 1 to 4 (15251 to 4)</td>
<td>146</td>
</tr>
<tr>
<td>Analogue output 1 (16361)</td>
<td>167</td>
</tr>
<tr>
<td>Discrete input 1 to 2 (21891 to 2)</td>
<td>159</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (16961 to 3)</td>
<td>180</td>
</tr>
<tr>
<td>Fail safe value</td>
<td></td>
</tr>
<tr>
<td>Analogue input 1 to 4 (15261 to 4)</td>
<td>146</td>
</tr>
<tr>
<td>Analogue output 1 (16371)</td>
<td>168</td>
</tr>
<tr>
<td>Discrete input 1 to 2 (21901 to 2)</td>
<td>160</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (16931 to 3)</td>
<td>180</td>
</tr>
<tr>
<td>Failure frequency (0474)</td>
<td>124</td>
</tr>
<tr>
<td>Failure mode</td>
<td></td>
</tr>
<tr>
<td>Totalizer 1 to 3 (38101 to 3)</td>
<td>193</td>
</tr>
<tr>
<td>Failure mode (0451)</td>
<td>123</td>
</tr>
<tr>
<td>Failure mode (0480)</td>
<td>117</td>
</tr>
<tr>
<td>Failure mode (0486)</td>
<td>130</td>
</tr>
<tr>
<td>Feature enabled (1476)</td>
<td>144</td>
</tr>
<tr>
<td>Feature supported (1477)</td>
<td>144</td>
</tr>
<tr>
<td>Filter options (0656)</td>
<td>210</td>
</tr>
<tr>
<td>Filter options (0705)</td>
<td>209</td>
</tr>
<tr>
<td>Firmware version (0010)</td>
<td>213</td>
</tr>
<tr>
<td>Fixed density (7627)</td>
<td>106</td>
</tr>
<tr>
<td>Fixed process pressure (7629)</td>
<td>108</td>
</tr>
<tr>
<td>Fixed temperature (7628)</td>
<td>107</td>
</tr>
<tr>
<td>Flow damping (1802)</td>
<td>75</td>
</tr>
<tr>
<td>Flow override (1839)</td>
<td>75</td>
</tr>
<tr>
<td>Flow velocity (1865)</td>
<td>50</td>
</tr>
<tr>
<td>Format display (0098)</td>
<td>15</td>
</tr>
<tr>
<td>Frequency simulation (0472)</td>
<td>230</td>
</tr>
<tr>
<td>Frequency simulation (0473)</td>
<td>230</td>
</tr>
<tr>
<td>Gas mixture (7640)</td>
<td>91</td>
</tr>
<tr>
<td>Gas type (7714)</td>
<td>91</td>
</tr>
<tr>
<td>Hardware lock (1499)</td>
<td>143</td>
</tr>
<tr>
<td>Hardware revision (1479)</td>
<td>139</td>
</tr>
<tr>
<td>Header (0097)</td>
<td>23</td>
</tr>
<tr>
<td>Header text (0112)</td>
<td>24</td>
</tr>
<tr>
<td>Header text (0112)</td>
<td>24</td>
</tr>
<tr>
<td>Heat flow difference (1863)</td>
<td>53</td>
</tr>
<tr>
<td>Hi alarm state</td>
<td></td>
</tr>
<tr>
<td>Analogue input 1 to 4 (15381 to 4)</td>
<td>156</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (38111 to 3)</td>
<td>201</td>
</tr>
<tr>
<td>Hi alarm value</td>
<td></td>
</tr>
<tr>
<td>Analogue input 1 to 4 (15391 to 4)</td>
<td>155</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (38121 to 3)</td>
<td>201</td>
</tr>
<tr>
<td>Hi Hi alarm state</td>
<td></td>
</tr>
<tr>
<td>Analogue input 1 to 4 (15401 to 4)</td>
<td>155</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (3813–1 to 3) ..</td>
<td>200</td>
</tr>
<tr>
<td>Hi Hi alarm value</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1541–1 to 4)</td>
<td>155</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (3814–1 to 3) ..</td>
<td>200</td>
</tr>
<tr>
<td>Hi Hi Lim</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1528–1 to 4)</td>
<td>153</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (3815–1 to 3) ..</td>
<td>198</td>
</tr>
<tr>
<td>Hi Lim</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1529–1 to 4)</td>
<td>154</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (3816–1 to 3) ..</td>
<td>199</td>
</tr>
<tr>
<td>Ident number selector (1461) ...</td>
<td>133, 143</td>
</tr>
<tr>
<td>Increase close</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 (1638–1) ...</td>
<td>177</td>
</tr>
<tr>
<td>Inlet configuration (7641) ..</td>
<td>109</td>
</tr>
<tr>
<td>Inlet run (7642) ..</td>
<td>110</td>
</tr>
<tr>
<td>Input channel</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 (1670–1) ...</td>
<td>174</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1724–1 to 3)</td>
<td>186</td>
</tr>
<tr>
<td>Installation factor (7616) ..</td>
<td>111</td>
</tr>
<tr>
<td>Invert</td>
<td></td>
</tr>
<tr>
<td>Discrete input 1 to 2 (2188–1 to 2)</td>
<td>159</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1692–1 to 3)</td>
<td>179</td>
</tr>
<tr>
<td>Invert output signal (0470) ...</td>
<td>131</td>
</tr>
<tr>
<td>Language (0104) ...</td>
<td>14</td>
</tr>
<tr>
<td>Last backup (0102) ...</td>
<td>27</td>
</tr>
<tr>
<td>Length unit (0551) ...</td>
<td>73</td>
</tr>
<tr>
<td>Lin type</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1523–1 to 4)</td>
<td>152</td>
</tr>
<tr>
<td>Linear expansion coefficient (7621)</td>
<td>82</td>
</tr>
<tr>
<td>Lo alarm state</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1542–1 to 4)</td>
<td>156</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (3817–1 to 3) ..</td>
<td>201</td>
</tr>
<tr>
<td>Lo alarm value</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1543–1 to 4)</td>
<td>156</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (3818–1 to 3) ..</td>
<td>201</td>
</tr>
<tr>
<td>Lo Lim</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1530–1 to 4)</td>
<td>154</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (3819–1 to 3) ..</td>
<td>199</td>
</tr>
<tr>
<td>Lo Lo alarm state</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1544–1 to 4)</td>
<td>157</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (3820–1 to 3) ..</td>
<td>202</td>
</tr>
<tr>
<td>Lo Lo alarm value</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1545–1 to 4)</td>
<td>156</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (3821–1 to 3) ..</td>
<td>202</td>
</tr>
<tr>
<td>Lo Lo Lim</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1531–1 to 4)</td>
<td>154</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (3822–1 to 3) ..</td>
<td>200</td>
</tr>
<tr>
<td>Locking status (0004) ..</td>
<td>11</td>
</tr>
<tr>
<td>Logging interval (0856) ..</td>
<td>218</td>
</tr>
<tr>
<td>Manufacturer ID (1502) ..</td>
<td>140</td>
</tr>
<tr>
<td>Mass flow (1847) ...</td>
<td>50</td>
</tr>
<tr>
<td>Mass flow unit (0554) ..</td>
<td>64</td>
</tr>
<tr>
<td>Mass unit (0574) ..</td>
<td>65</td>
</tr>
<tr>
<td>Mating pipe diameter (7648) ...</td>
<td>110</td>
</tr>
<tr>
<td>Maximum frequency value (0454) ...</td>
<td>120</td>
</tr>
<tr>
<td>Maximum value (0663) ..</td>
<td>223</td>
</tr>
<tr>
<td>Maximum value (0665) ..</td>
<td>224</td>
</tr>
<tr>
<td>Maximum value (7623) ...</td>
<td>227</td>
</tr>
<tr>
<td>Maximum value (7633) ...</td>
<td>227</td>
</tr>
<tr>
<td>Maximum value (7654) ...</td>
<td>226</td>
</tr>
<tr>
<td>Maximum value (7723) ...</td>
<td>225</td>
</tr>
<tr>
<td>Measuring value at maximum frequency (0475)</td>
<td>121</td>
</tr>
<tr>
<td>Measuring value at minimum frequency (0476)</td>
<td>121</td>
</tr>
<tr>
<td>Meter body properties (7658) ..</td>
<td>112</td>
</tr>
<tr>
<td>Minimum frequency value (0453) ..</td>
<td>120</td>
</tr>
<tr>
<td>Minimum value (0688) ..</td>
<td>224</td>
</tr>
<tr>
<td>Minimum value (0689) ..</td>
<td>223</td>
</tr>
<tr>
<td>Minimum value (7655) ..</td>
<td>226</td>
</tr>
<tr>
<td>Minimum value (7724) ..</td>
<td>225</td>
</tr>
<tr>
<td>Mode block actual</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1521–1 to 4)</td>
<td>149</td>
</tr>
<tr>
<td>Analog output 1 (1631–1) ...</td>
<td>170</td>
</tr>
<tr>
<td>Discrete input 1 to 2 (2181–1 to 2)</td>
<td>162</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1691–1 to 3)</td>
<td>182</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (3801–1 to 3) ..</td>
<td>196</td>
</tr>
<tr>
<td>Mode block actual (1472) ...</td>
<td>138</td>
</tr>
<tr>
<td>Mode block normal</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1546–1 to 4)</td>
<td>149</td>
</tr>
<tr>
<td>Analog output 1 (1643–1) ...</td>
<td>171</td>
</tr>
<tr>
<td>Discrete input 1 to 2 (2192–1 to 2)</td>
<td>163</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1702–1 to 3)</td>
<td>183</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (3824–1 to 3) ..</td>
<td>196</td>
</tr>
<tr>
<td>Mode block normal (1492) ...</td>
<td>138</td>
</tr>
<tr>
<td>Mode block permitted</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1553–1 to 4)</td>
<td>149</td>
</tr>
<tr>
<td>Analog output 1 (1648–1) ...</td>
<td>171</td>
</tr>
<tr>
<td>Discrete input 1 to 2 (2195–1 to 2)</td>
<td>163</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1705–1 to 3)</td>
<td>183</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (3828–1 to 3) ..</td>
<td>196</td>
</tr>
<tr>
<td>Mode block permitted (1493) ...</td>
<td>138</td>
</tr>
<tr>
<td>Mol% Ar (7663) ...</td>
<td>92</td>
</tr>
<tr>
<td>Mol% C2H3Cl (7664) ...</td>
<td>92</td>
</tr>
<tr>
<td>Mol% C2H4 (7665) ...</td>
<td>93</td>
</tr>
<tr>
<td>Mol% C2H6 (7666) ...</td>
<td>93</td>
</tr>
<tr>
<td>Mol% C3H8 (7667) ...</td>
<td>94</td>
</tr>
<tr>
<td>Mol% CH4 (7668) ..</td>
<td>94</td>
</tr>
<tr>
<td>Mol% C12 (7707) ..</td>
<td>94</td>
</tr>
<tr>
<td>Mol% CO (7669) ...</td>
<td>95</td>
</tr>
<tr>
<td>Mol% CO2 (7670) ...</td>
<td>95</td>
</tr>
<tr>
<td>Mol% H2 (7671) ...</td>
<td>96</td>
</tr>
<tr>
<td>Mol% H2O (7672) ...</td>
<td>96</td>
</tr>
<tr>
<td>Mol% HS (7673) ...</td>
<td>96</td>
</tr>
<tr>
<td>Mol% He (7675) ...</td>
<td>97</td>
</tr>
<tr>
<td>Mol% i-C4H10 (7676) ...</td>
<td>98</td>
</tr>
<tr>
<td>Mol% i-C5H12 (7677) ...</td>
<td>98</td>
</tr>
<tr>
<td>Mol% Kr (7678) ...</td>
<td>98</td>
</tr>
<tr>
<td>Mol% n-C4H10 (7679) ...</td>
<td>100</td>
</tr>
<tr>
<td>Mol% n-C5H12 (7680) ...</td>
<td>100</td>
</tr>
<tr>
<td>Mol% n-C6H14 (7683) ...</td>
<td>100</td>
</tr>
<tr>
<td>Mol% n-C7H16 (7684) ...</td>
<td>101</td>
</tr>
<tr>
<td>Mol% n-C8H18 (7685) ...</td>
<td>101</td>
</tr>
<tr>
<td>Mol% n-C9H20 (7686) ...</td>
<td>101</td>
</tr>
<tr>
<td>Mol% n-C10H22 (7687) ...</td>
<td>101</td>
</tr>
<tr>
<td>Mol% n-C12H22 (7688) ...</td>
<td>102</td>
</tr>
<tr>
<td>Mol% O2 (7689) ...</td>
<td>103</td>
</tr>
<tr>
<td>Mol% n-C5H12 (7690) ...</td>
<td>103</td>
</tr>
<tr>
<td>Mol% n-C6H14 (7691) ...</td>
<td>103</td>
</tr>
<tr>
<td>Mol% n-C7H16 (7692) ...</td>
<td>103</td>
</tr>
<tr>
<td>Mol% n-C8H18 (7693) ...</td>
<td>103</td>
</tr>
<tr>
<td>Mol% n-C9H20 (7694) ...</td>
<td>103</td>
</tr>
<tr>
<td>Mol% n-C10H22 (7695) ...</td>
<td>103</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Mol% other gas (7690)</td>
<td>104</td>
</tr>
<tr>
<td>Mol% SO2 (7691)</td>
<td>103</td>
</tr>
<tr>
<td>Mol% Xe (7692)</td>
<td>103</td>
</tr>
<tr>
<td>Off value low flow cutoff (1804)</td>
<td>77</td>
</tr>
<tr>
<td>On value low flow cutoff (1805)</td>
<td>76</td>
</tr>
<tr>
<td>Operating mode (0469)</td>
<td>114</td>
</tr>
<tr>
<td>Operating time (0652)</td>
<td>27, 205</td>
</tr>
<tr>
<td>Operating time from restart (0653)</td>
<td>205</td>
</tr>
<tr>
<td>Order code (0008)</td>
<td>213</td>
</tr>
<tr>
<td>Out decimal point</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1547–1 to 4)</td>
<td>153</td>
</tr>
<tr>
<td>Out scale lower range</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1548–1 to 4)</td>
<td>152</td>
</tr>
<tr>
<td>Analog output 1 (1644–1)</td>
<td>177</td>
</tr>
<tr>
<td>Out scale upper range</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1551–1 to 4)</td>
<td>152</td>
</tr>
<tr>
<td>Analog output 1 (1646–1)</td>
<td>177</td>
</tr>
<tr>
<td>Out status</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1549–1 to 4)</td>
<td>147</td>
</tr>
<tr>
<td>Analog input 1 to 4 (1564–1 to 4)</td>
<td>147</td>
</tr>
<tr>
<td>Analog output 1 (1645–1)</td>
<td>169</td>
</tr>
<tr>
<td>Analog output 1 (1669–1)</td>
<td>168</td>
</tr>
<tr>
<td>Discrete input 1 to 2 (2193–1 to 2)</td>
<td>161</td>
</tr>
<tr>
<td>Discrete input 1 to 2 (2203–1 to 2)</td>
<td>160</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1703–1 to 3)</td>
<td>181</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1723–1 to 3)</td>
<td>181</td>
</tr>
<tr>
<td>Out unit</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1550–1 to 4)</td>
<td>152</td>
</tr>
<tr>
<td>Out unit text</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1552–1 to 4)</td>
<td>158</td>
</tr>
<tr>
<td>Out value</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1552–1 to 4)</td>
<td>147</td>
</tr>
<tr>
<td>Analog output 1 (1647–1)</td>
<td>168</td>
</tr>
<tr>
<td>Discrete input 1 to 2 (2194–1 to 2)</td>
<td>160</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1704–1 to 3)</td>
<td>180</td>
</tr>
<tr>
<td>Output channel</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 (1671–1)</td>
<td>175</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1725–1 to 3)</td>
<td>186</td>
</tr>
<tr>
<td>Output frequency (0471)</td>
<td>61, 125</td>
</tr>
<tr>
<td>Position status</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 (1649–1)</td>
<td>175</td>
</tr>
<tr>
<td>Position value</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 (1650–1)</td>
<td>175</td>
</tr>
<tr>
<td>Preset value 1 to 3 (3829–1 to 3)</td>
<td>191</td>
</tr>
<tr>
<td>Pressure (7696)</td>
<td>55</td>
</tr>
<tr>
<td>Pressure unit (0564)</td>
<td>66</td>
</tr>
<tr>
<td>Previous diagnostics (0690)</td>
<td>204</td>
</tr>
<tr>
<td>PROFIBUS ident number (1464)</td>
<td>134</td>
</tr>
<tr>
<td>Profile version (1463)</td>
<td>134</td>
</tr>
<tr>
<td>Pulse output (0456)</td>
<td>60, 118</td>
</tr>
<tr>
<td>Pulse simulation (0458)</td>
<td>230</td>
</tr>
<tr>
<td>Pulse value (0459)</td>
<td>231</td>
</tr>
<tr>
<td>Pulse width (0452)</td>
<td>116</td>
</tr>
<tr>
<td>PV filter time</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1524–1 to 4)</td>
<td>146</td>
</tr>
<tr>
<td>PV scale lower range</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1554–1 to 4)</td>
<td>151</td>
</tr>
<tr>
<td>Analog output 1 (1651–1)</td>
<td>173</td>
</tr>
<tr>
<td>PV scale upper range</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1555–1 to 4)</td>
<td>151</td>
</tr>
<tr>
<td>Analog output 1 (1652–1)</td>
<td>173</td>
</tr>
<tr>
<td>RCAS in status</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 (1654–1)</td>
<td>174</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1706–1 to 3)</td>
<td>186</td>
</tr>
<tr>
<td>RCAS in value</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 (1655–1)</td>
<td>174</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1707–1 to 3)</td>
<td>185</td>
</tr>
<tr>
<td>RCAS out status</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 (1656–1)</td>
<td>175</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1708–1 to 3)</td>
<td>187</td>
</tr>
<tr>
<td>RCAS out value</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 (1657–1)</td>
<td>175</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1711–1 to 3)</td>
<td>186</td>
</tr>
<tr>
<td>Readback status</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 (1658–1)</td>
<td>174</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1712–1 to 3)</td>
<td>185</td>
</tr>
<tr>
<td>Readback value</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 (1659–1)</td>
<td>173</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1713–1 to 3)</td>
<td>185</td>
</tr>
<tr>
<td>Reference combustion temperature (7699)</td>
<td>86</td>
</tr>
<tr>
<td>Reference density (7700)</td>
<td>86</td>
</tr>
<tr>
<td>Reference gross calorific value (7701)</td>
<td>87</td>
</tr>
<tr>
<td>Reference pressure (7702)</td>
<td>87</td>
</tr>
<tr>
<td>Reference temperature (7703)</td>
<td>88</td>
</tr>
<tr>
<td>Reference Z-factor (7704)</td>
<td>88</td>
</tr>
<tr>
<td>Relative density (7705)</td>
<td>88</td>
</tr>
<tr>
<td>Relative humidity (7731)</td>
<td>104</td>
</tr>
<tr>
<td>Reset min/max values (7706)</td>
<td>222</td>
</tr>
<tr>
<td>Response time (0491)</td>
<td>123</td>
</tr>
<tr>
<td>Reynolds number (1864)</td>
<td>53</td>
</tr>
<tr>
<td>Reynolds number limit (7646)</td>
<td>41</td>
</tr>
<tr>
<td>Saturation temperature (7709)</td>
<td>55</td>
</tr>
<tr>
<td>Select gas type (7635)</td>
<td>78</td>
</tr>
<tr>
<td>Select liquid type (7636)</td>
<td>79</td>
</tr>
<tr>
<td>Select medium (7653)</td>
<td>78</td>
</tr>
<tr>
<td>Separator (0101)</td>
<td>25</td>
</tr>
<tr>
<td>Serial number (0009)</td>
<td>212</td>
</tr>
<tr>
<td>Serial number (1481)</td>
<td>140</td>
</tr>
<tr>
<td>Set point status</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 (1660–1)</td>
<td>167</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1714–1 to 3)</td>
<td>179</td>
</tr>
<tr>
<td>Set point value</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 (1661–1)</td>
<td>166</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1715–1 to 3)</td>
<td>178</td>
</tr>
<tr>
<td>Setpoint deviation</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 (1653–1)</td>
<td>176</td>
</tr>
<tr>
<td>Simulate enabled</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1556–1 to 4)</td>
<td>157</td>
</tr>
<tr>
<td>Analog output 1 (1662–1)</td>
<td>176</td>
</tr>
<tr>
<td>Discrete input 1 to 2 (2196–1 to 2)</td>
<td>165</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1716–1 to 3)</td>
<td>187</td>
</tr>
<tr>
<td>Simulate status</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to 4 (1557–1 to 4)</td>
<td>158</td>
</tr>
<tr>
<td>Analog output 1 (1663–1)</td>
<td>177</td>
</tr>
<tr>
<td>Discrete input 1 to 2 (2197–1 to 2)</td>
<td>165</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1717–1 to 3)</td>
<td>188</td>
</tr>
</tbody>
</table>
Proline Prowirl 200 PROFIBUS PA

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog input 1 to 4 (1558–1 to 4)</td>
<td>157</td>
</tr>
<tr>
<td>Analog output 1 (1664–1)</td>
<td>176</td>
</tr>
<tr>
<td>Discrete input 1 to 2 (2198–1 to 2)</td>
<td>165</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1718–1 to 3)</td>
<td>187</td>
</tr>
<tr>
<td>Simulation device alarm (0654)</td>
<td>232</td>
</tr>
<tr>
<td>Simulation diagnostic event (0737)</td>
<td>233</td>
</tr>
<tr>
<td>Software option overview (0005)</td>
<td>45</td>
</tr>
<tr>
<td>Software revision (1478)</td>
<td>139</td>
</tr>
<tr>
<td>Specific heat capacity (7716)</td>
<td>89</td>
</tr>
<tr>
<td>Specific heat capacity unit (0604)</td>
<td>73</td>
</tr>
<tr>
<td>Specific volume (7739)</td>
<td>54</td>
</tr>
<tr>
<td>Specific volume unit (0610)</td>
<td>72</td>
</tr>
<tr>
<td>Steam quality (7605)</td>
<td>108</td>
</tr>
<tr>
<td>Temperature (1851)</td>
<td>51</td>
</tr>
<tr>
<td>Terminal voltage 1 (0662)</td>
<td>60, 135</td>
</tr>
<tr>
<td>Timestamp (0672)</td>
<td>203</td>
</tr>
<tr>
<td>Timestamp (0676)</td>
<td>204</td>
</tr>
<tr>
<td>Timestamp (0683)</td>
<td>206</td>
</tr>
<tr>
<td>Target mode (1497)</td>
<td>137</td>
</tr>
<tr>
<td>Temperature (1851)</td>
<td>51</td>
</tr>
<tr>
<td>Temperature unit (0557)</td>
<td>67</td>
</tr>
<tr>
<td>Terminal voltage 1 (0662)</td>
<td>60, 135</td>
</tr>
<tr>
<td>Timestamp (0667)</td>
<td>203</td>
</tr>
<tr>
<td>Timestamp (0672)</td>
<td>204</td>
</tr>
<tr>
<td>Timestamp (0683)</td>
<td>206</td>
</tr>
<tr>
<td>Total mass flow (1854)</td>
<td>52</td>
</tr>
<tr>
<td>Totalizer operation mode</td>
<td></td>
</tr>
<tr>
<td>Totalizer status (Hex) 1 to 3 (3825–1 to 3)</td>
<td>59, 194</td>
</tr>
<tr>
<td>Totalizer status 1 to 3 (3826–1 to 3)</td>
<td>59, 194</td>
</tr>
<tr>
<td>Totalizer value 1 to 3 (3827–1 to 3)</td>
<td>58, 193</td>
</tr>
</tbody>
</table>

Static revision

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog input 1 to 4 (1560–1 to 4)</td>
<td>148</td>
</tr>
<tr>
<td>Analog output 1 (1666–1)</td>
<td>169</td>
</tr>
<tr>
<td>Discrete input 1 to 2 (2200–1 to 2)</td>
<td>161</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1720–1 to 3)</td>
<td>181</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (3832–1 to 3)</td>
<td>195</td>
</tr>
<tr>
<td>Static revision (1495)</td>
<td>137</td>
</tr>
<tr>
<td>Status PROFIBUS Master Config (1465)</td>
<td>134</td>
</tr>
<tr>
<td>Steam quality (1853)</td>
<td>52</td>
</tr>
<tr>
<td>Steam quality (7605)</td>
<td>108</td>
</tr>
<tr>
<td>Steam quality limit (7717)</td>
<td>41</td>
</tr>
<tr>
<td>Steam quality value (7630)</td>
<td>109</td>
</tr>
</tbody>
</table>

Strategy

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog input 1 to 4 (1559–1 to 4)</td>
<td>148</td>
</tr>
<tr>
<td>Analog output 1 (1665–1)</td>
<td>169</td>
</tr>
<tr>
<td>Discrete input 1 to 2 (2199–1 to 2)</td>
<td>161</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1719–1 to 3)</td>
<td>182</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (3831–1 to 3)</td>
<td>195</td>
</tr>
</tbody>
</table>

Tag description

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog input 1 to 4 (1562–1 to 4)</td>
<td>147</td>
</tr>
<tr>
<td>Analog output 1 (1667–1)</td>
<td>169</td>
</tr>
<tr>
<td>Discrete input 1 to 2 (2201–1 to 2)</td>
<td>161</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1721–1 to 3)</td>
<td>181</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (3833–1 to 3)</td>
<td>194</td>
</tr>
</tbody>
</table>

Target mode

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog input 1 to 4 (1563–1 to 4)</td>
<td>148</td>
</tr>
<tr>
<td>Analog output 1 (1668–1)</td>
<td>170</td>
</tr>
<tr>
<td>Discrete input 1 to 2 (2202–1 to 2)</td>
<td>162</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (1722–1 to 3)</td>
<td>182</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (3834–1 to 3)</td>
<td>195</td>
</tr>
</tbody>
</table>

Target mode (1497)

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (1851)</td>
<td>51</td>
</tr>
<tr>
<td>Temperature unit (0557)</td>
<td>67</td>
</tr>
<tr>
<td>Terminal voltage 1 (0662)</td>
<td>60, 135</td>
</tr>
<tr>
<td>Timestamp (0667)</td>
<td>203</td>
</tr>
<tr>
<td>Timestamp (0672)</td>
<td>204</td>
</tr>
<tr>
<td>Timestamp (0683)</td>
<td>206</td>
</tr>
<tr>
<td>Totalizer operation mode</td>
<td></td>
</tr>
<tr>
<td>Totalizer status (Hex) 1 to 3 (3825–1 to 3)</td>
<td>59, 194</td>
</tr>
<tr>
<td>Totalizer status 1 to 3 (3826–1 to 3)</td>
<td>59, 194</td>
</tr>
<tr>
<td>Totalizer value 1 to 3 (3827–1 to 3)</td>
<td>58, 193</td>
</tr>
</tbody>
</table>

Symbol used

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume flow unit (0553)</td>
<td>62</td>
</tr>
<tr>
<td>Volume unit (0563)</td>
<td>64</td>
</tr>
<tr>
<td>Volume unit (0563)</td>
<td>64</td>
</tr>
<tr>
<td>Vortex frequency (7722)</td>
<td>56</td>
</tr>
<tr>
<td>Z-factor (7631)</td>
<td>86</td>
</tr>
</tbody>
</table>

Using the document

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access (Parameter)</td>
<td>10</td>
</tr>
<tr>
<td>Discrete input 1 to 2 (Submenu)</td>
<td>158</td>
</tr>
<tr>
<td>Discrete inputs (Submenu)</td>
<td>158</td>
</tr>
<tr>
<td>Discrete output 1 to 3 (Submenu)</td>
<td>178</td>
</tr>
<tr>
<td>Discrete outputs (Submenu)</td>
<td>178</td>
</tr>
<tr>
<td>Display (Submenu)</td>
<td>13</td>
</tr>
<tr>
<td>Display channel 1 (Submenu)</td>
<td>219</td>
</tr>
<tr>
<td>Display channel 2 (Submenu)</td>
<td>220</td>
</tr>
<tr>
<td>Display channel 3 (Submenu)</td>
<td>221</td>
</tr>
<tr>
<td>Display channel 4 (Submenu)</td>
<td>221</td>
</tr>
<tr>
<td>Display damping (Parameter)</td>
<td>23</td>
</tr>
<tr>
<td>Display interval (Parameter)</td>
<td>23</td>
</tr>
</tbody>
</table>

Document

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation of the structure of a parameter</td>
<td>6</td>
</tr>
<tr>
<td>Function</td>
<td>4</td>
</tr>
<tr>
<td>Structure</td>
<td>4</td>
</tr>
<tr>
<td>Symbols used</td>
<td>6</td>
</tr>
<tr>
<td>Target group</td>
<td>4</td>
</tr>
<tr>
<td>Using the document</td>
<td>4</td>
</tr>
<tr>
<td>Document function</td>
<td>4</td>
</tr>
<tr>
<td>DSC sensor serial number (Parameter)</td>
<td>215</td>
</tr>
<tr>
<td>Dynamic viscosity (Parameter)</td>
<td>84, 85</td>
</tr>
<tr>
<td>Dynamic viscosity unit (Parameter)</td>
<td>72</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy flow (Parameter)</td>
<td>53</td>
</tr>
<tr>
<td>Energy flow unit (Parameter)</td>
<td>68</td>
</tr>
<tr>
<td>Energy unit (Parameter)</td>
<td>69</td>
</tr>
<tr>
<td>ENP version (Parameter)</td>
<td>214</td>
</tr>
<tr>
<td>Enter access code (Parameter)</td>
<td>13</td>
</tr>
<tr>
<td>Enthalpy calculation (Parameter)</td>
<td>80</td>
</tr>
<tr>
<td>Enthalpy type (Parameter)</td>
<td>82</td>
</tr>
<tr>
<td>Event list (Submenu)</td>
<td>210</td>
</tr>
<tr>
<td>Event logbook (Submenu)</td>
<td>209</td>
</tr>
<tr>
<td>Parameter</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Extended order code 1</td>
<td>214</td>
</tr>
<tr>
<td>Extended order code 2</td>
<td>214</td>
</tr>
<tr>
<td>Extended order code 3</td>
<td>214</td>
</tr>
<tr>
<td>External compensation</td>
<td>104</td>
</tr>
<tr>
<td>External pressure</td>
<td>227</td>
</tr>
<tr>
<td>External value</td>
<td>105</td>
</tr>
<tr>
<td>Factory reset</td>
<td>142</td>
</tr>
<tr>
<td>Factory settings</td>
<td>234</td>
</tr>
<tr>
<td>SI units</td>
<td>234</td>
</tr>
<tr>
<td>US units</td>
<td>236</td>
</tr>
<tr>
<td>Fail safe time</td>
<td>167, 179</td>
</tr>
<tr>
<td>Fail safe type</td>
<td>146, 159, 167, 180</td>
</tr>
<tr>
<td>Fail safe value</td>
<td>146, 160, 168, 180</td>
</tr>
<tr>
<td>Failure frequency</td>
<td>124</td>
</tr>
<tr>
<td>Failure mode</td>
<td>117, 123, 130, 193</td>
</tr>
<tr>
<td>Feature enabled</td>
<td>144</td>
</tr>
<tr>
<td>Feature supported</td>
<td>144</td>
</tr>
<tr>
<td>Filter options</td>
<td>209, 210</td>
</tr>
<tr>
<td>Firmware version</td>
<td>213</td>
</tr>
<tr>
<td>Fixed density</td>
<td>106</td>
</tr>
<tr>
<td>Fixed process pressure</td>
<td>108</td>
</tr>
<tr>
<td>Fixed temperature</td>
<td>107</td>
</tr>
<tr>
<td>Flow damping</td>
<td>75</td>
</tr>
<tr>
<td>Flow override</td>
<td>75</td>
</tr>
<tr>
<td>Flow velocity</td>
<td>50</td>
</tr>
<tr>
<td>Flow velocity (Submenu)</td>
<td>226</td>
</tr>
<tr>
<td>Format display</td>
<td>15</td>
</tr>
<tr>
<td>Frequency simulation</td>
<td>230</td>
</tr>
<tr>
<td>Frequency value</td>
<td>230</td>
</tr>
<tr>
<td>Header</td>
<td>23</td>
</tr>
<tr>
<td>Hardware lock</td>
<td>143</td>
</tr>
<tr>
<td>Hardware revision</td>
<td>139</td>
</tr>
<tr>
<td>Header text</td>
<td>23</td>
</tr>
<tr>
<td>Heartbeat (Submenu)</td>
<td>227</td>
</tr>
<tr>
<td>Heat flow difference</td>
<td>53</td>
</tr>
<tr>
<td>Hi alarm state (Parameter)</td>
<td>156, 201</td>
</tr>
<tr>
<td>Hi alarm value (Parameter)</td>
<td>155, 201</td>
</tr>
<tr>
<td>Hi Hi alarm state (Parameter)</td>
<td>155, 200</td>
</tr>
<tr>
<td>Hi Hi alarm value (Parameter)</td>
<td>155, 200</td>
</tr>
<tr>
<td>Hi Hi Lim (Parameter)</td>
<td>153, 198</td>
</tr>
<tr>
<td>Hi Lim (Parameter)</td>
<td>154, 199</td>
</tr>
<tr>
<td>Ident number selector</td>
<td>133, 143</td>
</tr>
<tr>
<td>Increase close</td>
<td>177</td>
</tr>
<tr>
<td>Inlet configuration</td>
<td>109</td>
</tr>
<tr>
<td>Inlet run</td>
<td>110</td>
</tr>
<tr>
<td>Input channel</td>
<td>174, 186</td>
</tr>
<tr>
<td>Installation factor</td>
<td>111</td>
</tr>
<tr>
<td>Invert</td>
<td>159, 179</td>
</tr>
<tr>
<td>Invert output signal</td>
<td>159, 179</td>
</tr>
<tr>
<td>IO module temperature (Submenu)</td>
<td>223</td>
</tr>
<tr>
<td>Language</td>
<td>14</td>
</tr>
<tr>
<td>Last backup</td>
<td>27</td>
</tr>
<tr>
<td>Length unit</td>
<td>73</td>
</tr>
<tr>
<td>Lin type (Parameter)</td>
<td>152</td>
</tr>
<tr>
<td>Linear expansion coefficient</td>
<td>82</td>
</tr>
<tr>
<td>Lo alarm state (Parameter)</td>
<td>156, 201</td>
</tr>
<tr>
<td>Lo alarm value (Parameter)</td>
<td>156, 201</td>
</tr>
<tr>
<td>Lo Lim (Parameter)</td>
<td>154, 199</td>
</tr>
<tr>
<td>Lo Lo alarm state (Parameter)</td>
<td>157, 202</td>
</tr>
<tr>
<td>Lo Lo alarm value (Parameter)</td>
<td>156, 202</td>
</tr>
<tr>
<td>Lo Lo Lim (Parameter)</td>
<td>154, 200</td>
</tr>
<tr>
<td>Locking status</td>
<td>11</td>
</tr>
<tr>
<td>Logging interval</td>
<td>218</td>
</tr>
<tr>
<td>Low flow cut off (Submenu)</td>
<td>76</td>
</tr>
<tr>
<td>Manufacturer ID</td>
<td>140</td>
</tr>
<tr>
<td>Mass flow</td>
<td>50</td>
</tr>
<tr>
<td>Mass flow unit</td>
<td>64</td>
</tr>
<tr>
<td>Mass unit</td>
<td>65</td>
</tr>
<tr>
<td>Mating pipe diameter</td>
<td>110</td>
</tr>
<tr>
<td>Maximum frequency value</td>
<td>120</td>
</tr>
<tr>
<td>Maximum value (Parameter)</td>
<td>223, 224, 225, 226, 227</td>
</tr>
<tr>
<td>Measured values (Submenu)</td>
<td>47</td>
</tr>
<tr>
<td>Measurement mode (Submenu)</td>
<td>78</td>
</tr>
<tr>
<td>Measuring value at maximum frequency</td>
<td>121</td>
</tr>
<tr>
<td>Measuring value at minimum frequency</td>
<td>121</td>
</tr>
<tr>
<td>Medium properties (Submenu)</td>
<td>81</td>
</tr>
<tr>
<td>Medium temperature (Submenu)</td>
<td>226</td>
</tr>
<tr>
<td>Meter body properties</td>
<td>112</td>
</tr>
<tr>
<td>Min/max values (Submenu)</td>
<td>221</td>
</tr>
<tr>
<td>Minimum frequency value (Parameter)</td>
<td>120</td>
</tr>
<tr>
<td>Minimum value (Parameter)</td>
<td>223, 224, 225, 226</td>
</tr>
<tr>
<td>Mode block actual</td>
<td>138, 149, 162, 170, 182</td>
</tr>
<tr>
<td>Mode block normal</td>
<td>138, 149, 163, 171, 183, 196</td>
</tr>
<tr>
<td>Mode block permitted</td>
<td>138, 149, 171, 183, 196</td>
</tr>
<tr>
<td>Mol% Ar (Parameter)</td>
<td>92</td>
</tr>
<tr>
<td>Mol% C2H3Cl (Parameter)</td>
<td>92</td>
</tr>
<tr>
<td>Mol% C2H4 (Parameter)</td>
<td>93</td>
</tr>
<tr>
<td>Mol% C2H6 (Parameter)</td>
<td>93</td>
</tr>
<tr>
<td>Mol% C3H8 (Parameter)</td>
<td>94</td>
</tr>
<tr>
<td>Mol% CH4 (Parameter)</td>
<td>94</td>
</tr>
<tr>
<td>Mol% CO (Parameter)</td>
<td>94</td>
</tr>
<tr>
<td>Mol% CO2 (Parameter)</td>
<td>95</td>
</tr>
<tr>
<td>Mol% H2 (Parameter)</td>
<td>96</td>
</tr>
<tr>
<td>Mol% H2O (Parameter)</td>
<td>96</td>
</tr>
<tr>
<td>Mol% H2S (Parameter)</td>
<td>96</td>
</tr>
<tr>
<td>Mol% HCl (Parameter)</td>
<td>97</td>
</tr>
<tr>
<td>Mol% H2 (Parameter)</td>
<td>96</td>
</tr>
<tr>
<td>Mol% H2O (Parameter)</td>
<td>96</td>
</tr>
<tr>
<td>Mol% H2S (Parameter)</td>
<td>96</td>
</tr>
<tr>
<td>Mol% HCl (Parameter)</td>
<td>97</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>Mol% He</td>
<td>97</td>
</tr>
<tr>
<td>Mol% i-C4H10</td>
<td>98</td>
</tr>
<tr>
<td>Mol% i-C5H12</td>
<td>98</td>
</tr>
<tr>
<td>Mol% Kr</td>
<td>98</td>
</tr>
<tr>
<td>Mol% n-C4H10</td>
<td>100</td>
</tr>
<tr>
<td>Mol% n-C5H12</td>
<td>100</td>
</tr>
<tr>
<td>Mol% n-C6H14</td>
<td>100</td>
</tr>
<tr>
<td>Mol% n-C7H16</td>
<td>101</td>
</tr>
<tr>
<td>Mol% n-C8H18</td>
<td>101</td>
</tr>
<tr>
<td>Mol% n-C9H20</td>
<td>101</td>
</tr>
<tr>
<td>Mol% n-C10H22</td>
<td>99</td>
</tr>
<tr>
<td>Mol% N2</td>
<td>99</td>
</tr>
<tr>
<td>Mol% Ne</td>
<td>102</td>
</tr>
<tr>
<td>Mol% NH3</td>
<td>102</td>
</tr>
<tr>
<td>Mol% O2</td>
<td>103</td>
</tr>
<tr>
<td>Mol% other gas</td>
<td>104</td>
</tr>
<tr>
<td>Mol% SO2</td>
<td>103</td>
</tr>
<tr>
<td>Mol% Xe</td>
<td>103</td>
</tr>
<tr>
<td>Off value low flow cutoff</td>
<td>77</td>
</tr>
<tr>
<td>On value low flow cutoff</td>
<td>76</td>
</tr>
<tr>
<td>Operating mode</td>
<td>114</td>
</tr>
<tr>
<td>Operating time</td>
<td>27, 205</td>
</tr>
<tr>
<td>Operating time from restart</td>
<td>205</td>
</tr>
<tr>
<td>Order code</td>
<td>213</td>
</tr>
<tr>
<td>Out decimal point</td>
<td>153</td>
</tr>
<tr>
<td>Out scale lower range</td>
<td>152, 177</td>
</tr>
<tr>
<td>Out scale upper range</td>
<td>152, 177</td>
</tr>
<tr>
<td>Out status</td>
<td>147, 160, 161, 168, 169, 181</td>
</tr>
<tr>
<td>Out unit</td>
<td>152</td>
</tr>
<tr>
<td>Out unit text</td>
<td>158</td>
</tr>
<tr>
<td>Out value</td>
<td>147, 160, 168, 180</td>
</tr>
<tr>
<td>Output</td>
<td>Submenu</td>
</tr>
<tr>
<td>Output channel</td>
<td>175, 186</td>
</tr>
<tr>
<td>Output frequency</td>
<td>61, 125</td>
</tr>
<tr>
<td>Output values</td>
<td>Submenu</td>
</tr>
<tr>
<td>Pulse/frequency switch output</td>
<td>Submenu</td>
</tr>
<tr>
<td>PV filter time</td>
<td>Parameter</td>
</tr>
<tr>
<td>PV scale lower range</td>
<td>Parameter</td>
</tr>
<tr>
<td>PV scale upper range</td>
<td>Parameter</td>
</tr>
<tr>
<td>R</td>
<td>Parameter</td>
</tr>
<tr>
<td>RCAS in status</td>
<td>174, 186</td>
</tr>
<tr>
<td>RCAS in value</td>
<td>174, 185</td>
</tr>
<tr>
<td>RCAS out status</td>
<td>175, 187</td>
</tr>
<tr>
<td>RCAS out value</td>
<td>175, 186</td>
</tr>
<tr>
<td>Readback status</td>
<td>174, 185</td>
</tr>
<tr>
<td>Readback value</td>
<td>173, 185</td>
</tr>
<tr>
<td>Reference combustion temperature</td>
<td>86</td>
</tr>
<tr>
<td>Reference density</td>
<td>86</td>
</tr>
<tr>
<td>Reference gross calorific value</td>
<td>87</td>
</tr>
<tr>
<td>Reference pressure</td>
<td>87</td>
</tr>
<tr>
<td>Reference temperature</td>
<td>88</td>
</tr>
<tr>
<td>Reference Z-factor</td>
<td>88</td>
</tr>
<tr>
<td>Relative density</td>
<td>88</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>104</td>
</tr>
<tr>
<td>Reset min/max values</td>
<td>222</td>
</tr>
<tr>
<td>Response time</td>
<td>123</td>
</tr>
<tr>
<td>Reynolds number</td>
<td>53</td>
</tr>
<tr>
<td>Reynolds number limit</td>
<td>41</td>
</tr>
<tr>
<td>S</td>
<td>Parameter</td>
</tr>
<tr>
<td>Saturation temperature</td>
<td>55</td>
</tr>
<tr>
<td>Select gas type</td>
<td>78</td>
</tr>
<tr>
<td>Select liquid type</td>
<td>79</td>
</tr>
<tr>
<td>Select medium</td>
<td>78</td>
</tr>
<tr>
<td>Sensor</td>
<td>Submenu</td>
</tr>
<tr>
<td>Sensor adjustment</td>
<td>Submenu</td>
</tr>
<tr>
<td>Sensor information</td>
<td>Submenu</td>
</tr>
<tr>
<td>Separator</td>
<td>Parameter</td>
</tr>
<tr>
<td>Serial number</td>
<td>140, 212</td>
</tr>
<tr>
<td>Set point status</td>
<td>Parameter</td>
</tr>
<tr>
<td>Set point value</td>
<td>166, 178</td>
</tr>
<tr>
<td>Set point deviation</td>
<td>Parameter</td>
</tr>
<tr>
<td>Simulate enabled</td>
<td>157, 165, 176, 187</td>
</tr>
<tr>
<td>Simulate status</td>
<td>158, 165, 177, 188</td>
</tr>
<tr>
<td>Simulate value</td>
<td>157, 165, 176, 187</td>
</tr>
<tr>
<td>Simulation</td>
<td>Submenu</td>
</tr>
<tr>
<td>Simulation device alarm</td>
<td>228</td>
</tr>
<tr>
<td>Simulation diagnostic event</td>
<td>Parameter</td>
</tr>
<tr>
<td>Software option overview</td>
<td>45</td>
</tr>
<tr>
<td>Software revision</td>
<td>Parameter</td>
</tr>
<tr>
<td>Specific heat capacity</td>
<td>89</td>
</tr>
<tr>
<td>Specific heat capacity unit</td>
<td>73</td>
</tr>
<tr>
<td>Specific volume</td>
<td>54</td>
</tr>
<tr>
<td>Specific volume unit</td>
<td>72</td>
</tr>
<tr>
<td>Static revision</td>
<td>Parameter</td>
</tr>
<tr>
<td>Status PROFIBUS Master Config</td>
<td>Parameter</td>
</tr>
<tr>
<td>Steam quality</td>
<td>Parameter</td>
</tr>
<tr>
<td>Steam quality limit</td>
<td>Parameter</td>
</tr>
<tr>
<td>Steam quality value</td>
<td>Parameter</td>
</tr>
<tr>
<td>Strategy</td>
<td>Parameter</td>
</tr>
<tr>
<td>Submenu</td>
<td></td>
</tr>
<tr>
<td>Administration</td>
<td>42</td>
</tr>
<tr>
<td>Index</td>
<td>Prowirl 200 PROFIBUS PA</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Analog inputs</td>
<td>145</td>
</tr>
<tr>
<td>Analog output 1</td>
<td>166</td>
</tr>
<tr>
<td>Analog output 2</td>
<td>166</td>
</tr>
<tr>
<td>Analog outputs</td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>188</td>
</tr>
<tr>
<td>Calibration</td>
<td>111</td>
</tr>
<tr>
<td>Communication</td>
<td>132</td>
</tr>
<tr>
<td>Configuration backup display</td>
<td>26</td>
</tr>
<tr>
<td>Data logging</td>
<td>215</td>
</tr>
<tr>
<td>Device information</td>
<td>211</td>
</tr>
<tr>
<td>Diagnostic behavior</td>
<td>31</td>
</tr>
<tr>
<td>Diagnostic handling</td>
<td>30</td>
</tr>
<tr>
<td>Diagnostic limits</td>
<td>40</td>
</tr>
<tr>
<td>Diagnostic list</td>
<td>205</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>202</td>
</tr>
<tr>
<td>Discrete input 1 to 2</td>
<td>158</td>
</tr>
<tr>
<td>Discrete inputs</td>
<td>158</td>
</tr>
<tr>
<td>Discrete output 1 to 3</td>
<td>178</td>
</tr>
<tr>
<td>Discrete output 2</td>
<td>178</td>
</tr>
<tr>
<td>Display</td>
<td>13</td>
</tr>
<tr>
<td>Display channel 1</td>
<td>219</td>
</tr>
<tr>
<td>Display channel 2</td>
<td>220</td>
</tr>
<tr>
<td>Display channel 3</td>
<td>221</td>
</tr>
<tr>
<td>Display channel 4</td>
<td>221</td>
</tr>
<tr>
<td>Event list</td>
<td>210</td>
</tr>
<tr>
<td>Event logbook</td>
<td>209</td>
</tr>
<tr>
<td>External compensation</td>
<td>104</td>
</tr>
<tr>
<td>External pressure</td>
<td>227</td>
</tr>
<tr>
<td>Flow velocity</td>
<td>226</td>
</tr>
<tr>
<td>Gas composition</td>
<td>89</td>
</tr>
<tr>
<td>Heartbeat</td>
<td>227</td>
</tr>
<tr>
<td>IO module temperature</td>
<td>223</td>
</tr>
<tr>
<td>Low flow cut-off</td>
<td>76</td>
</tr>
<tr>
<td>Measured values</td>
<td>47</td>
</tr>
<tr>
<td>Measurement mode</td>
<td>78</td>
</tr>
<tr>
<td>Medium properties</td>
<td>81</td>
</tr>
<tr>
<td>Medium temperature</td>
<td>226</td>
</tr>
<tr>
<td>Min/max values</td>
<td>221</td>
</tr>
<tr>
<td>Output</td>
<td>112</td>
</tr>
<tr>
<td>Output values</td>
<td>59</td>
</tr>
<tr>
<td>Physical block</td>
<td>135</td>
</tr>
<tr>
<td>Pre-amplifier temperature</td>
<td>225</td>
</tr>
<tr>
<td>Process parameters</td>
<td>74</td>
</tr>
<tr>
<td>Process variables</td>
<td>48</td>
</tr>
<tr>
<td>PROFIBUS PA configuration</td>
<td>132</td>
</tr>
<tr>
<td>PROFIBUS PA info</td>
<td>134</td>
</tr>
<tr>
<td>Pulse/frequency/switch output</td>
<td>113</td>
</tr>
<tr>
<td>Sensor</td>
<td>47</td>
</tr>
<tr>
<td>Sensor adjustment</td>
<td>109</td>
</tr>
<tr>
<td>Sensor information</td>
<td>215</td>
</tr>
<tr>
<td>Simulation</td>
<td>228</td>
</tr>
<tr>
<td>System</td>
<td>13</td>
</tr>
<tr>
<td>System units</td>
<td>61</td>
</tr>
<tr>
<td>Terminal voltage</td>
<td>222</td>
</tr>
<tr>
<td>Totalizer</td>
<td>58</td>
</tr>
<tr>
<td>Totalizer 1 to 3</td>
<td>188</td>
</tr>
<tr>
<td>Switch output function (Parameter)</td>
<td>125</td>
</tr>
<tr>
<td>Switch output simulation (Parameter)</td>
<td>231</td>
</tr>
<tr>
<td>Switch status (Parameter)</td>
<td>61, 131, 232</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Tag description (Parameter)</td>
<td>147, 161, 169, 181, 194</td>
</tr>
<tr>
<td>Target group</td>
<td>4</td>
</tr>
<tr>
<td>Target mode (Parameter)</td>
<td>137, 148, 162, 170, 182, 195</td>
</tr>
<tr>
<td>Temperature (Parameter)</td>
<td>51</td>
</tr>
<tr>
<td>Temperature unit (Parameter)</td>
<td>67</td>
</tr>
<tr>
<td>Terminal voltage (Submenu)</td>
<td>222</td>
</tr>
<tr>
<td>Terminal voltage 1 (Parameter)</td>
<td>60, 135</td>
</tr>
<tr>
<td>Timestamp (Parameter)</td>
<td>203, 204, 206, 207, 208, 209</td>
</tr>
<tr>
<td>Total mass flow (Parameter)</td>
<td>52</td>
</tr>
<tr>
<td>Totalizer (Submenu)</td>
<td>58</td>
</tr>
<tr>
<td>Totalizer 1 to 3 (Submenu)</td>
<td>188</td>
</tr>
<tr>
<td>Totalizer operation mode (Parameter)</td>
<td>192</td>
</tr>
<tr>
<td>Totalizer status (Hex) 1 to 3 (Parameter)</td>
<td>59, 194</td>
</tr>
<tr>
<td>Totalizer status 1 to 3 (Parameter)</td>
<td>59, 194</td>
</tr>
<tr>
<td>Totalizer value 1 to 3 (Parameter)</td>
<td>58, 193</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Unit totalizer (Parameter)</td>
<td>189</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Value 1 display (Parameter)</td>
<td>17</td>
</tr>
<tr>
<td>Value 2 display (Parameter)</td>
<td>19</td>
</tr>
<tr>
<td>Value 3 display (Parameter)</td>
<td>20</td>
</tr>
<tr>
<td>Value 4 display (Parameter)</td>
<td>22</td>
</tr>
<tr>
<td>Value per pulse (Parameter)</td>
<td>116</td>
</tr>
<tr>
<td>Value process variable (Parameter)</td>
<td>229</td>
</tr>
<tr>
<td>Velocity unit (Parameter)</td>
<td>71</td>
</tr>
<tr>
<td>Volume flow (Parameter)</td>
<td>49</td>
</tr>
<tr>
<td>Volume flow unit (Parameter)</td>
<td>62</td>
</tr>
<tr>
<td>Volume unit (Parameter)</td>
<td>64</td>
</tr>
<tr>
<td>Vortex frequency (Parameter)</td>
<td>56</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Wizard</td>
<td></td>
</tr>
<tr>
<td>Define access code</td>
<td>42</td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>Z-factor (Parameter)</td>
<td>86</td>
</tr>
</tbody>
</table>