Description of Device Parameters

Proline t-mass A, B 150

HART

Thermal Mass Flowmeter
Table of contents

1 Document information 4
 1.1 Document function 4
 1.2 Target group 4
 1.3 Using this document 4
 1.3.1 Information on the document structure 4
 1.3.2 Structure of a parameter description 6
 1.4 Symbols used 6
 1.4.1 Symbols for certain types of information 6
 1.4.2 Symbols in graphics 7

2 Overview of the Expert operating menu 8

3 Description of device parameters ... 10
 3.1 "System" submenu 13
 3.1.1 "Display" submenu 14
 3.1.2 "Configuration backup display" submenu 27
 3.1.3 "Diagnostic handling" submenu 30
 3.1.4 "Management" submenu 35
 3.2 "Sensor" submenu 37
 3.2.1 "Measured values" submenu 37
 3.2.2 "System units" submenu 43
 3.2.3 "Process parameters" submenu 52
 3.2.4 "Measurement mode" submenu 55
 3.2.5 "Calculated values" submenu 56
 3.2.6 "Sensor adjustment" submenu 59
 3.2.7 "Calibration" submenu 76
 3.3 "Output" submenu 77
 3.3.1 "Current output 1" submenu 77
 3.3.2 "Pulse-Frequency-Switch output" submenu 85
 3.4 "Communication" submenu 102
 3.4.1 "HART output" submenu 102
 3.5 "Application" submenu 111
 3.5.1 "Totalizer" submenu 112
 3.6 "Diagnostics" submenu 115
 3.6.1 "Diagnostic list" submenu 118
 3.6.2 "Event logbook" submenu 122
 3.6.3 "Device information" submenu 125
 3.6.4 "Data logging" submenu 128
 3.6.5 "Min/max values" submenu 134
 3.6.6 "Simulation" submenu 136

4 Country-specific factory settings .. 142
 4.1 SI units 142
 4.1.1 System units 142
 4.1.2 Full scale values 142
 4.1.3 Output current span 142
 4.1.4 Pulse value 143
 4.1.5 On value low flow cut off 143
 4.2 US units 143
 4.2.1 System units 143
 4.2.2 Full scale values 144
 4.2.3 Output current span 144
 4.2.4 Pulse value 144
 4.2.5 On value low flow cut off 144

5 Explanation of abbreviated units .. 146
 5.1 SI units 146
 5.2 US units 146
 5.3 Imperial units 147

Index 148
1 Document information

1.1 Document function
The document is part of the Operating Instructions and serves as a reference for parameters, providing a detailed explanation of each individual parameter of the Expert operating menu.

1.2 Target group
The document is aimed at specialists who work with the device over the entire life cycle and perform specific configurations.

1.3 Using this document

1.3.1 Information on the document structure
This document lists the submenus and their parameters according to the structure of the Expert menu (→ 8) menu that are available once the "Operator" user role or the "Maintenance" user role is enabled.

For information on the arrangement of the parameters according to the structure of the Operation menu, Setup menu, Diagnostics menu (→ 115), along with a brief description, see the Operating Instructions for the device.
For information about the operating philosophy, see the "Operating philosophy" chapter in the device's Operating Instructions.
1.3.2 Structure of a parameter description

The individual parts of a parameter description are described in the following section:

<table>
<thead>
<tr>
<th>Complete parameter name</th>
<th>Write-protected parameter =</th>
</tr>
</thead>
</table>

Navigation
- Navigation path to the parameter via the local display (direct access code)
- Navigation path to the parameter via the operating tool

The names of the menus, submenus and parameters are abbreviated to the form in which they appear on the display and in the operating tool.

Prerequisite
The parameter is only available under these specific conditions

Description
Description of the parameter function

Selection
List of the individual options for the parameter
- Option 1
- Option 2

User entry
Input range for the parameter

User interface
Display value/data for the parameter

Factory setting
Default setting ex works

Additional information
Additional explanations (e.g. in examples):
- On individual options
- On display values/data
- On the input range
- On the factory setting
- On the parameter function

1.4 Symbols used

1.4.1 Symbols for certain types of information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indicates additional information.</td>
</tr>
<tr>
<td></td>
<td>Reference to documentation</td>
</tr>
<tr>
<td></td>
<td>Reference to page</td>
</tr>
<tr>
<td></td>
<td>Reference to graphic</td>
</tr>
<tr>
<td></td>
<td>Operation via local display</td>
</tr>
<tr>
<td></td>
<td>Operation via operating tool</td>
</tr>
<tr>
<td></td>
<td>Write-protected parameter</td>
</tr>
</tbody>
</table>
1.4.2 Symbols in graphics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3 ...</td>
<td>Item numbers</td>
<td>A, B, C, ...</td>
<td>Views</td>
</tr>
<tr>
<td>A-A, B-B, C-C, ...</td>
<td>Sections</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overview of the Expert operating menu

The following table provides an overview of the menu structure of the expert operating menu and its parameters. The page reference indicates where the associated description of the submenu or parameter can be found.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>🍀 Expert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Direct access (0106)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Locking status (0004)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Access status display (0091)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enter access code (0092)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Define access code (0093)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Configuration backup display</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diagnostic handling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measured values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System units</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Process parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measurement mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calculated values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensor adjustment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current output 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pulse-Frequency-Switch output 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overview of the Expert operating menu

- **Communication** → 102
 - **HART output** → 102
- **Application** → 111
 - **Totalizer** → 112
- **Diagnostics** → 115
 - **Actual diagnostics (0691)** → 116
 - **Previous diagnostics (0690)** → 117
 - **Operating time from restart (0653)** → 118
 - **Operating time (0652)** → 118
 - **Diagnostic list** → 118
 - **Event logbook** → 122
 - **Device information** → 125
 - **Data logging** → 128
 - **Min/max values** → 134
 - **Simulation** → 136
3 Description of device parameters

In the following section, the parameters are listed according to the menu structure of the local display. Specific parameters for the operating tools are included at the appropriate points in the menu structure.

<table>
<thead>
<tr>
<th>Expert</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access (0106)</td>
<td>→ 10</td>
</tr>
<tr>
<td>Locking status (0004)</td>
<td>→ 11</td>
</tr>
<tr>
<td>Access status display (0091)</td>
<td>→ 11</td>
</tr>
<tr>
<td>Enter access code (0092)</td>
<td>→ 12</td>
</tr>
</tbody>
</table>

- **System**
- **Sensor**
- **Output**
- **Communication**
- **Application**
- **Diagnostics**

Direct access

- **Navigation**
 - Expert → Direct access (0106)

- **Description**
 - Input of the access code to enable direct access to the desired parameter via the local display. For this reason, each parameter is assigned a parameter number that appears in the navigation view on the right in the header of the selected parameter.

- **User entry**
 - 0 to 65535

- **Additional information**
 - The direct access code consists of a 4-digit number and the channel number, which identifies the channel of a process variable: e.g. 0914-1
 - The leading zeros in the direct access code do not have to be entered. Example: Input of "914" instead of "0914"
 - If no channel number is entered, channel 1 is jumped to automatically. Example: Enter 0914 → Assign process variable parameter
 - If a different channel is jumped to: Enter the direct access code with the corresponding channel number. Example: Enter 0914-3 → Assign process variable parameter
Locking status

Navigation
Expert → Locking status (0004)

Description
Use this function to view the active write protection.

User interface
- Hardware locked
- Temporarily locked

Additional information

If two or more types of write protection are active, the write protection with the highest priority is shown on the local display.

In the operating tool all active types of write protection are selected.

If additional write protection is active, this restricts the current access authorization even further. The write protection status can be viewed via the Locking status parameter (→ 11).

"Hardware locked" option (priority 1)
The DIP switch for hardware locking is activated on the main electronics module. This locks write access to the parameters (e.g. via local display or operating tool).

Information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device.

"Temporarily locked" option (priority 2)
Write access to the parameters is temporarily locked on account of internal processes running in the device (e.g. data upload/download, reset etc.). Once the internal processing has been completed, the parameters can be changed once again.

Access status display

Navigation
Expert → Access stat.disp (0091)

Prerequisite
A local display is provided.

Description
Use this function to view the access authorization to the parameters via the local display.

User interface
- Operator
- Maintenance

Factory setting
Operator
Description of device parameters

Proline t-mass A, B 150 HART

Additional information

Description

If the ⚫-symbol appears in front of a parameter, it cannot be modified via the local display with the current access authorization.

The access authorization can be modified via the Enter access code parameter (→ 12).

For information on the Enter access code parameter (→ 12), see the ‘Disabling write protection via access code’ section of the Operating Instructions for the device.

If additional write protection is active, this restricts the current access authorization even further. The write protection status can be viewed via the Locking status parameter (→ 11).

User interface

Information on access authorization is provided in the ‘User roles and associated access authorization’ and ‘Operating concept’ sections of the Operations Instructions for the device.

Access status tooling

Navigation

Expert → Access stat.tool (0005)

Description

Use this function to view the access authorization to the parameters via the operating tool.

User interface

Operator

Maintenance

Factory setting

Maintenance

Additional information

Description

The access authorization can be modified via the Enter access code parameter (→ 12).

If additional write protection is active, this restricts the current access authorization even further. The write protection status can be viewed via the Locking status parameter (→ 11).

Display

Information on access authorization is provided in the ‘User roles and associated access authorization’ and ‘Operating concept’ sections of the Operations Instructions for the device.

Enter access code

Navigation

Expert → Ent. access code (0092)

Description

Use this function to enter the user-specific release code to remove parameter write protection on the local display.

User entry

0 to 9999

Endress+Hauser
Enter access code

Navigation

Expert → Ent. access code (0003)

Description

Use this function to enter the user-specific release code to remove parameter write protection in the operating tool.

User entry

0 to 9,999

3.1 "System" submenu

Navigation

Expert → System → Def. access code (0093)

Description

Use this function to enter a user-specific release code to restrict write-access to the parameters. This protects the configuration of the device against any inadvertent changes via the operating tool.

User entry

0 to 9,999

Factory setting

0
Additional information

Description

The write protection affects all parameters in the document marked with the symbol.

Once the access code has been defined, write-protected parameters can only be modified if the access code is entered in the Enter access code parameter (→ 12).

If you lose the access code, please contact your Endress+Hauser Sales Center.

User entry

A message is displayed if the access code is not in the input range.

Factory setting

If the factory setting is not changed or 0 is defined as the access code, the parameters are not write-protected and the device configuration data can be modified. The user is logged on in the "Maintenance" role.

3.1.1 "Display" submenu

Navigation

Expert → System → Display

<table>
<thead>
<tr>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language (0104) → 15</td>
</tr>
<tr>
<td>Format display (0098) → 16</td>
</tr>
<tr>
<td>Value 1 display (0107) → 18</td>
</tr>
<tr>
<td>0% bargraph value 1 (0123) → 18</td>
</tr>
<tr>
<td>100% bargraph value 1 (0125) → 19</td>
</tr>
<tr>
<td>Decimal places 1 (0095) → 19</td>
</tr>
<tr>
<td>Value 2 display (0108) → 19</td>
</tr>
<tr>
<td>Decimal places 2 (0117) → 20</td>
</tr>
<tr>
<td>Value 3 display (0110) → 20</td>
</tr>
<tr>
<td>0% bargraph value 3 (0124) → 21</td>
</tr>
<tr>
<td>100% bargraph value 3 (0126) → 21</td>
</tr>
<tr>
<td>Decimal places 3 (0118) → 22</td>
</tr>
<tr>
<td>Value 4 display (0109) → 22</td>
</tr>
</tbody>
</table>
Language

Navigation

Expert → System → Display → Language (0104)

Prerequisite

A local display is provided.

Description

Use this function to select the configured language on the local display.

Selection

- English
- Deutsch *
- Français *
- Español *
- Italiano *
- Nederlands *
- Portuguesa *
- Polski *
- русский язык (Russian) *
- Türkçe *
- 中文 (Chinese) *
- 日本語 (Japanese) *
- 한국어 (Korean) *
- العربية (Arabic) *
- Bahasa Indonesia *
- ภาษาไทย (Thai) *
- tiếng Việt (Vietnamese) *
- čeština (Czech) *

Factory setting

English (alternatively, the ordered language is preset in the device)

* Visibility depends on order options or device settings
Format display

Navigation

Expert → System → Display → Format display (0098)

Prerequisite

A local display is provided.

Description

Use this function to select how the measured value is shown on the local display.

Selection

- 1 value, max. size
- 1 bargraph + 1 value
- 2 values
- 1 value large + 2 values
- 4 values

Factory setting

1 value, max. size

Additional information

The display format (size, bar graph etc.) and number of measured values displayed simultaneously (1 to 4) can be configured. This setting only applies to normal operation.

- The Value 1 display parameter (→ 18) to Value 4 display parameter (→ 22) are used to specify which measured values are shown on the local display and in what order.
- If more measured values are specified than the display mode selected permits, then the values alternate on the device display. The display time until the next change is configured via the Display interval parameter (→ 23).
Possible measured values shown on the local display:

“1 value, max. size” option

```
+-----------------+-----------------+-----------------+
|                 |                 |                 |
| 900.00          | 900.00          |                 |
| l/h             | l/h             |                 |
```

“1 bargraph + 1 value” option

```
+-----------------+-----------------+-----------------+
|                 |                 |                 |
|                 |                 |                 |
|                 | 900.00 l/h      |                 |
|                 |                 |                 |
|                 |                 | 60.00 %         |
+-----------------+-----------------+-----------------+
```

“2 values” option

```
+-----------------+-----------------+-----------------+
|                 |                 |                 |
|                 | 900.00          |                 |
|                 |                 |                 |
|                 |                 | 60.00 %         |
```

“1 value large + 2 values” option

```
+-----------------+-----------------+-----------------+
|                 |                 |                 |
|                 | 900.00          |                 |
|                 |                 |                 |
|                 |                 | 60.00%          |
|                 |                 | 5.98 kWh/Nm^3   |
```

“4 values” option

```
+-----------------+-----------------+-----------------+-----------------+
|                 |                 |                 |                 |
|                 | 900.00          | 60.00 %         | 5.98 kWh/Nm^3   |
|                 | l/h             |                 |                 |
|                 |                 |                 |                 |
|                 |                 |                 | 213.94 l        |
```

Endress+Hauser
Value 1 display

Navigation
Expert → System → Display → Value 1 display (0107)

Prerequisite
A local display is provided.

Description
Use this function to select one of the measured values to be shown on the local display.

Selection
- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature
- Totalizer
- Current output

Factory setting
Mass flow

Additional information
Description
If several measured values are displayed at once, the measured value selected here will be the first value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 16) is used to specify how many measured values are displayed simultaneously and how.

Selection
The unit of the displayed measured value is taken from the System units submenu (→ 43).

0% bargraph value 1

Navigation
Expert → System → Display → 0% bargraph 1 (0123)

Prerequisite
A local display is provided.

Description
Use this function to enter the 0% bar graph value to be shown on the display for the measured value 1.

User entry
Signed floating-point number

Factory setting
Country-specific:
- 0 kg/h
- 0 lb/min

Additional information
Description
The Format display parameter (→ 16) is used to specify that the measured value is to be displayed as a bar graph.

User entry
The unit of the displayed measured value is taken from the System units submenu (→ 43).
100% bargraph value 1

Navigation

Expert → System → Display → 100% bargraph 1 (0125)

Prerequisite

A local display is provided.

Description

Use this function to enter the 100% bar graph value to be shown on the display for the measured value 1.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter → 142

Additional information

Description

The **Format display** parameter (→ 16) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the **System units** submenu (→ 43).

Decimal places 1

Navigation

Expert → System → Display → Decimal places 1 (0095)

Prerequisite

A measured value is specified in the **Value 1 display** parameter (→ 18).

Description

Use this function to select the number of decimal places for measured value 1.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting

x.xx

Additional information

Description

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 2 display

Navigation

Expert → System → Display → Value 2 display (0108)

Prerequisite

A local display is provided.
Description: Use this function to select one of the measured values to be shown on the local display.

Selection: For the picklist, see the **Value 1 display** parameter (→ 18)

Factory setting: None

Additional information: If several measured values are displayed at once, the measured value selected here will be the second value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 16) is used to specify how many measured values are displayed simultaneously and how.

Selection

- The unit of the displayed measured value is taken from the **System units** submenu (→ 43).

Decimal places 2

Description: Use this function to select the number of decimal places for measured value 2.

Selection:

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting: x.xx

Additional information: This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 3 display

Description: Use this function to select one of the measured values to be shown on the local display.

Selection: Picklist, see **Value display** parameter (→ 18)

Factory setting: None
Additional information

Description

If several measured values are displayed at once, the measured value selected here will be the third value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 16) is used to specify how many measured values are displayed simultaneously and how.

Selection

The unit of the displayed measured value is taken from the System units submenu (→ 43).

0% bargraph value 3

Navigation

Expert → System → Display → 0% bargraph 3 (0124)

Prerequisite

A selection has been made in the Value 3 display parameter (→ 20).

Description

Use this function to enter the 0% bar graph value to be shown on the display for the measured value 3.

User entry

Signed floating-point number

Factory setting

Country-specific:
- 0 kg/h
- 0 lb/min

Additional information

Description

The Format display parameter (→ 16) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the System units submenu (→ 43).

100% bargraph value 3

Navigation

Expert → System → Display → 100% bargraph 3 (0126)

Prerequisite

A selection was made in the Value 3 display parameter (→ 20).

Description

Use this function to enter the 100% bar graph value to be shown on the display for the measured value 3.

User entry

Signed floating-point number

Factory setting

0
Description of device parameters

Additional information

Description

The **Format display** parameter (→ 16) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the **System units** submenu (→ 43).

Decimal places 3

Navigation

Expert → System → Display → Decimal places 3 (0118)

Prerequisite

A measured value is specified in the **Value 3 display** parameter (→ 20).

Description

Use this function to select the number of decimal places for measured value 3.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting

x.xx

Additional information

Description

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 4 display

Navigation

Expert → System → Display → Value 4 display (0109)

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values to be shown on the local display.

Selection

Picklist, see **Value 1 display** parameter (→ 18)

Factory setting

None
Additional information

Description

If several measured values are displayed at once, the measured value selected here will be the fourth value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 16) is used to specify how many measured values are displayed simultaneously and how.

Selection

The unit of the displayed measured value is taken from the System units submenu (→ 43).

Decimal places 4

Navigation
Expert → System → Display → Decimal places 4 (0119)

Prerequisite
A measured value is specified in the Value 4 display parameter (→ 22).

Description
Use this function to select the number of decimal places for measured value 4.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting
x.xx

Additional information
This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Display interval

Navigation
Expert → System → Display → Display interval (0096)

Prerequisite
A local display is provided.

Description
Use this function to enter the length of time the measured values are displayed if the values alternate on the display.

User entry
1 to 10 s

Factory setting
5 s
Additional information

Description
This type of alternating display only occurs automatically if the number of measured values defined exceeds the number of values the selected display format can display simultaneously.

- The Value 1 display parameter (→ 18) to Value 4 display parameter (→ 22) are used to specify which measured values are shown on the local display.
- The display format of the displayed measured values is specified using the Format display parameter (→ 16).

Display damping

Navigation
Expert → System → Display → Display damping (0094)

Prerequisite
A local display is provided.

Description
Use this function to enter the reaction time of the local display to fluctuations in the measured value caused by process conditions.

User entry
0.0 to 999.9 s

Factory setting
0.0 s

Additional information
User entry
A time constant is entered:
- If a low time constant is entered, the display reacts particularly quickly to fluctuating measured variables.
- On the other hand, the display reacts more slowly if a high time constant is entered.

Header

Navigation
Expert → System → Display → Header (0097)

Prerequisite
A local display is provided.

Description
Use this function to select the contents of the header of the local display.

Selection
- Device tag
- Free text

Factory setting
Device tag

Additional information
Description
The header text only appears during normal operation.
1 Position of the header text on the display

Selection
- Device tag
 Is defined in the **Device tag** parameter (→ 125).
- Free text
 Is defined in the **Header text** parameter (→ 25).

Header text

Navigation
- Expert → System → Display → Header text (0112)

Prerequisite
The **Free text** option is selected in the **Header** parameter (→ 24).

Description
Use this function to enter a customer-specific text for the header of the local display.

User entry
Max. 12 characters such as letters, numbers or special characters (e.g. @, %, /)

Factory setting

Additional information
Description
The header text only appears during normal operation.

1 Position of the header text on the display

User entry
The number of characters displayed depends on the characters used.

Separator

Navigation
- Expert → System → Display → Separator (0101)

Prerequisite
A local display is provided.
Description of device parameters

Proline t-mass A, B 150 HART

<table>
<thead>
<tr>
<th>Description</th>
<th>Use this function to select the decimal separator.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>• . (point)
• , (comma)</td>
</tr>
<tr>
<td>Factory setting</td>
<td>. (point)</td>
</tr>
</tbody>
</table>

Contrast display

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Display → Contrast display (0105)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>A local display is provided.</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to enter a value to adapt the display contrast to the ambient conditions (e.g. the lighting or viewing angle).</td>
</tr>
<tr>
<td>User entry</td>
<td>20 to 50 %</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Depends on the display</td>
</tr>
<tr>
<td>Additional information</td>
<td>Set the contrast via the push-buttons:
• Brighter: Press and hold down the   keys simultaneously.
• Darker: Press and hold down the   keys simultaneously.*</td>
</tr>
</tbody>
</table>

Backlight

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Display → Backlight (0111)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>Order code for "Display; operation", option E "SD03 4-line, illum.; touch control + data backup function"</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to switch the backlight of the local display on and off.</td>
</tr>
<tr>
<td>Selection</td>
<td>• Disabled
• Enabled</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Access status display

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Display → Access stat.disp (0091)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>A local display is provided.</td>
</tr>
<tr>
<td>Description</td>
<td>Displays the access authorization to the parameters via the local display.</td>
</tr>
</tbody>
</table>
User interface
- Operator
- Maintenance

Factory setting
Description

Additional information
Description
If the symbol appears in front of a parameter, it cannot be modified via the local display with the current access authorization.

The access authorization can be modified via the Enter access code parameter (→ 12).

For information on the Enter access code parameter (→ 12), see the "Disabling write protection via access code" section of the Operating Instructions for the device.

If additional write protection is active, this restricts the current access authorization even further. The write protection status can be viewed via the Locking status parameter (→ 11).

Display
Information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device.

3.1.2 "Configuration backup display" submenu

Navigation
Expert → System → Conf.backup disp

<table>
<thead>
<tr>
<th>Configuration backup display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating time (0652)</td>
</tr>
<tr>
<td>Last backup (0102)</td>
</tr>
<tr>
<td>Configuration management (0100)</td>
</tr>
<tr>
<td>Comparison result (0103)</td>
</tr>
</tbody>
</table>

Operating time

Navigation
Expert → System → Conf.backup disp → Operating time (0652)

Description
Use this function to display the length of time the device has been in operation.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
User interface
The maximum number of days is 9999, which is equivalent to 27 years.
Last backup

Navigation

Expert → System → Conf.backup disp → Last backup (0102)

Prerequisite

A local display is provided.

Description

Use this function to display the time since a backup copy of the data was last saved to the display module.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Configuration management

Navigation

Expert → System → Conf.backup disp → Config. managem. (0100)

Prerequisite

A local display is provided.

Description

Use this function to select an action to save the data to the display module.

Selection

- Cancel
- Execute backup
- Restore
- Duplicate
- Compare
- Clear backup data

Factory setting

Cancel

Additional information

Description

Configuration via the local display is disabled while the action is performed.

For information on the status message in the operating tool, see: **Backup state**

Parameter (→ 29)

Selection

- Cancel

No action is executed and the user exits the parameter.

- Execute backup

 - A backup copy of the current device configuration in the HistoROM is saved to the display module of the device. The backup copy includes the transmitter data of the device.

 - The following message appears on local display: Backup active, please wait!

- Restore

 - The last backup copy of the device configuration is copied from the display module to the HistoROM of the device. The backup copy comprises the transmitter data of the device.

 - The following message appears on local display: Restore active! Do not interrupt power supply!
• Duplicate
 - The transmitter configuration from another device is duplicated to the device using the display module.
 - The following message appears on local display: Copy active! Do not interrupt power supply!
• Compare
 - The device configuration saved in the display module is compared to the current device configuration of the HistOROM.
 - The following message appears on local display: Comparing files
 - The result can be viewed in Comparison result parameter (→ 29).
• Clear backup data
 - The backup copy of the device configuration is deleted from the display module of the device.
 - The following message appears on local display: Deleting file

HistOROM
A HistOROM is a "non-volatile" device memory in the form of an EEPROM.

Backup state

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Conf.backup disp → Backup state (0121)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>A local display is provided.</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to view the status of the data backup process.</td>
</tr>
<tr>
<td>User interface</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Store in progress</td>
</tr>
<tr>
<td></td>
<td>Restore in progress</td>
</tr>
<tr>
<td></td>
<td>Import in progress</td>
</tr>
<tr>
<td></td>
<td>Delete in progress</td>
</tr>
<tr>
<td></td>
<td>Compare in progress</td>
</tr>
<tr>
<td>Factory setting</td>
<td>None</td>
</tr>
</tbody>
</table>

Comparison result

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Conf.backup disp → Compar. result (0103)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>A local display is provided.</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to view the last result of comparing the current device configuration to the backup copy in the display module.</td>
</tr>
<tr>
<td>User interface</td>
<td>Settings identical</td>
</tr>
<tr>
<td></td>
<td>Settings not identical</td>
</tr>
<tr>
<td></td>
<td>No backup available</td>
</tr>
<tr>
<td></td>
<td>Backup settings corrupt</td>
</tr>
<tr>
<td></td>
<td>Check not done</td>
</tr>
<tr>
<td></td>
<td>Dataset incompatible</td>
</tr>
</tbody>
</table>
Factory setting

Check not done

Additional information

Description

The comparison is started via the **Compare** option in the **Configuration management** parameter (→ 28).

Selection

- **Settings identical**
 - The current device configuration of the HistoROM is identical to the backup copy in the display module.
 - If the transmitter configuration of another device has been copied to the device via the display module and the **Duplicate** option in the **Configuration management** parameter (→ 28), the current device configuration of the HistoROM only partly matches the backup copy in the display module: The settings for the transmitter are not identical.

- **Settings not identical**
 The current device configuration of the HistoROM is not identical to the backup copy in the display module.

- **No backup available**
 There is no backup copy of the device configuration of the HistoROM in the display module.

- **Backup settings corrupt**
 The current device configuration of the HistoROM is corrupt or not compatible with the backup copy in the display module.

- **Check not done**
 The device configuration of the HistoROM has not yet been compared to the backup copy in the display module.

- **Dataset incompatible**
 The backup copy in the display module is not compatible with the device.

HistoROM

A HistoROM is a 'non-volatile' device memory in the form of an EEPROM.

3.1.3 "Diagnostic handling" submenu

Navigation

Expert → System → Diagn. handling

<table>
<thead>
<tr>
<th>Diagnostic handling</th>
<th>→ 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm delay (0651)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagnostic behavior</th>
<th>→ 31</th>
</tr>
</thead>
</table>
Alarm delay

Navigation

Expert → System → Diagn. handling → Alarm delay (0651)

Description

Use this function to enter the time interval until the device generates a diagnostic message.

The diagnostic message is reset without a time delay.

User entry

0 to 60 s

Factory setting

0 s

Additional information

"Diagnostic behavior" submenu

Each item of diagnostic information is assigned a specific diagnostic behavior at the factory. The user can change this assignment for specific diagnostic information in the Diagnostic behavior submenu (→ 31).

The following options are available in the Assign behavior of diagnostic no. xxx parameters:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>The device stops measurement. The signal outputs and totalizers assume the defined alarm condition. A diagnostic message is generated.</td>
</tr>
<tr>
<td>Warning</td>
<td>The device continues to measure. The signal outputs and totalizers are not affected. A diagnostic message is generated.</td>
</tr>
<tr>
<td>Logbook entry only</td>
<td>The device continues to measure. The diagnostic message is displayed only in the Event logbook submenu (→ 122) (Event list submenu (→ 124)) and is not displayed in alternation with the operational display.</td>
</tr>
<tr>
<td>Off</td>
<td>The diagnostic event is ignored, and no diagnostic message is generated or entered.</td>
</tr>
</tbody>
</table>

For a list of all the diagnostic events, see the Operating Instructions for the device.

Navigation

Expert → System → Diagn. handling → Diagn. behavior
Assign behavior of diagnostic no. 441 (Current output 1)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 441 (0657)

Description

Option for changing the diagnostic behavior of the diagnostic message 441 Current output 1.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning

Additional information

For a detailed description of the options available, see → 31

Assign behavior of diagnostic no. 442 (Frequency output)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 442 (0658)

Prerequisite

The measuring device has a pulse/frequency/switch output.

Description

Option for changing the diagnostic behavior of the diagnostic message 442 Frequency output.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning
Assign behavior of diagnostic no. 443 (Pulse output)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 443 (0659)

Prerequisite

The measuring device has a pulse/frequency/switch output.

Description

Option for changing the diagnostic behavior of the diagnostic message 443 Pulse output.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning

Assign behavior of diagnostic no. 801 (Supply voltage too low)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 801 (0660)

Description

Option for changing the diagnostic behavior of the diagnostic message 801 Supply voltage too low.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning

Assign behavior of diagnostic no. 832 (Electronic temperature too high)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 832 (0675)

Description

Option for changing the diagnostic behavior of the diagnostic message 832 Electronic temperature too high.
Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 31

Assign behavior of diagnostic no. 833 (Electronic temperature too low)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 833 (0676)

Description
Option for changing the diagnostic behavior of the diagnostic message **833 Electronic temperature too low**.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 31

Assign behavior of diagnostic no. 834 (Process temperature too high)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 834 (0677)

Description
Option for changing the diagnostic behavior of the diagnostic message **834 Process temperature too high**.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 31
Assign behavior of diagnostic no. 835 (Process temperature too low)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 835 (0678)

Description
Option for changing the diagnostic behavior of the diagnostic message **835 Process temperature too low**.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see → 31

3.1.4 "Management" submenu

Navigation

Expert → System → Management

Device reset

Navigation

Expert → System → Management → Device reset (0000)

Description
Use this function to choose whether to reset the device configuration - either entirely or in part - to a defined state.

Selection
- Cancel
- To factory defaults
- To delivery settings
- Restart device

Factory setting
Cancel
Additional information

"Cancel" option
No action is executed and the user exits the parameter.

"To factory defaults" option
Every parameter is reset to its factory setting.

"To delivery settings" option
Every parameter for which a customer-specific default setting was ordered is reset to this customer-specific value. All other parameters are reset to the factory setting.

This option is not visible if no customer-specific settings have been ordered.

"Restart device" option
The restart resets every parameter whose data are in the volatile memory (RAM) to the factory setting (e.g. measured value data). The device configuration remains unchanged.

Activate SW option

Navigation

[Expert → System → Management → Activate SW opt. (0029)]

Description

Use this function to enter an activation code to enable an additional, ordered software option.

User entry

Max. 10-digit string consisting of numbers.

Factory setting

Depends on the software option ordered

Additional information

Description

If a measuring device was ordered with an additional software option, the activation code is programmed in the device at the factory.

User entry

To activate a software option subsequently, please contact your Endress+Hauser sales organization.

NOTE!

The activation code is linked to the serial number of the measuring device and varies according to the device and software option.

If an incorrect or invalid code is entered, this results in the loss of software options that have already been activated.

▸ Before you enter a new activation code, make a note of the current activation code.
▸ Enter the new activation code provided by Endress+Hauser when the new software option was ordered.
▸ If the code entered is incorrect or invalid, enter the old activation code.
▸ Have your Endress+Hauser sales organization check the new activation code remembering to specify the serial number or ask for the code again.

Example for a software option

Order code for "Application package", option EA "Extended HistoROM"
Reset write protection

Navigation

Expert → System → Management → Res. write prot. (0019)

Description
The functionality of this parameter is not available for the t-mass 150 measuring device.

3.2 "Sensor" submenu

Navigation
Expert → Sensor

3.2.1 "Measured values" submenu

Navigation
Expert → Sensor → Measured val.
"Process variables" submenu

Navigation

Mass flow

Navigation

Prerequisite

The following conditions are met:
- The **Enabled** option is selected in the **Operating mode** parameter (→ 64).
- The **Mass flow** option is selected in the **Flow reference in use** parameter (→ 65).

Description

Displays the mass flow that is currently measured.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Mass flow unit** parameter (→ 44)

Corrected volume flow

Navigation

Prerequisite

The following conditions are met:
- The **Enabled** option is selected in the **Operating mode** parameter (→ 64).
- The **Corrected volume flow** option is selected in the **Flow reference in use** parameter (→ 65).

Description

Displays the corrected volume flow currently calculated.

User interface

Signed floating-point number
Additional information

Description
The corrected volume flow is derived from the measured volume flow corrected to the selected reference conditions.

Dependency
The unit is taken from the Corrected volume flow unit parameter (→ 45).

FAD volume flow

Navigation

Prerequisite
The following conditions are met:
- The Enabled option is selected in the Operating mode parameter (→ 64).
- The FAD volume flow option is selected in the Flow reference in use parameter (→ 65).

Description
Displays the FAD volume flow that is currently measured.

User interface
Signed floating-point number

Additional information
Dependency
The unit is taken from the FAD volume flow unit parameter (→ 47).

Temperature

Navigation

Description
Displays the temperature currently measured.

User interface
Signed floating-point number

Additional information
Dependency
The unit is taken from the Temperature unit parameter (→ 48).

1) Free Air Delivery
"Totalizer" submenu

Navigation

Expert → Sensor → Measured val. → Totalizer

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 112) of the Totalizer submenu:
- Mass flow
- Corrected volume flow
- FAD volume flow

Description

Displays the current totalizer reading.

User interface

Signed floating-point number

Additional information

Description

As it is only possible to display a maximum of 7 digits in the operating tool, the current counter value is the sum of the totalizer value and the overflow value from the Totalizer overflow parameter (→ 41) if the display range is exceeded.

In the event of an error, the totalizer adopts the mode defined in the Failure mode parameter (→ 115).

User interface

The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 113).

Example

Calculation of the current totalizer reading when the value exceeds the 7-digit display range of the operating tool:
- Value in the Totalizer value 1 parameter: 1968457 m³
- Value in the Totalizer overflow 1 parameter: 1 ⋅ 10⁷ (1 overflow) = 10000000 [m³]
- Current totalizer reading: 11968457 m³
Totalizer overflow

Navigation

Expert → Sensor → Measured val. → Totalizer → Tot. overflow (0910)

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 112) of the Totalizer submenu:

- Mass flow
- Corrected volume flow
- FAD volume flow

Description

Displays the current totalizer overflow.

User interface

Integer with sign

Additional information

Description

If the current totalizer reading has more than 7 digits, which is the maximum value range of the operating tool that can be displayed, the value above this range is output as an overflow. The current totalizer value is therefore the sum of the overflow value and the totalizer value from the Totalizer value parameter (→ 40)

Display

The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 113).

Example

Calculation of the current totalizer reading when the value exceeds the 7-digit display range of the operating tool:

- Value in the Totalizer value 1 parameter: 1968457 m³
- Value in the Totalizer overflow 1 parameter: 2 \cdot 10^7 (2 overflows) = 20000000 [m³]
- Current totalizer reading: 21968457 m³

"Output values" submenu

Navigation

Expert → Sensor → Measured val. → Output values

<table>
<thead>
<tr>
<th>Output values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Output current (0361)</td>
<td>→ 42</td>
</tr>
<tr>
<td>Pulse output (0456)</td>
<td>→ 42</td>
</tr>
<tr>
<td>Output frequency (0471)</td>
<td>→ 43</td>
</tr>
<tr>
<td>Switch status (0461)</td>
<td>→ 43</td>
</tr>
</tbody>
</table>
Output current

Navigation

[Expert → Sensor → Measured val. → Output values → Output curr. (0361)]

Description

Displays the actual calculated value of the output current.

User interface

3.59 to 22.5 mA

Pulse output

Navigation

[Expert → Sensor → Measured val. → Output values → Pulse output (0456)]

Prerequisite

In the **Operating mode** parameter (→ 86), the **Pulse** option is selected.

Description

Displays the pulse frequency currently output.

User interface

Positive floating-point number

Additional information

- The pulse output is an open collector output.
- This is configured at the factory in such a way that the transistor is conductive for the duration of the pulse (NO contact) and is safety-oriented.
- The **Value per pulse** parameter (→ 88) and **Pulse width** parameter (→ 88) can be used to define the value (i.e. the measured value amount that corresponds to a pulse) and the duration of the pulse.

![Pulse output diagram](image)

0 **Non-conductive**
1 **Conductive**
NC **Normally closed**
NO **Normally opened**

The output behavior can be reversed via the **Invert output signal** parameter (→ 101) i.e. the transistor does not conduct for the duration of the pulse.

In addition, the behavior of the output in the event of a device alarm (**Failure mode** parameter (→ 89)) can be configured.
Output frequency

Navigation

Expert → Sensor → Measured val. → Output values → Out frequency (0471)

Prerequisite

In the **Operating mode** parameter (→ 86), the **Frequency** option is selected.

Description

Displays the actual value of the output frequency which is currently measured.

User interface

0.0 to 1.250.0 Hz

Switch status

Navigation

Expert → Sensor → Measured val. → Output values → Switch status (0461)

Prerequisite

In the **Operating mode** parameter (→ 86), the **Switch** option is selected.

Description

Displays the current switch status of the status output.

User interface

- Open
- Closed

Additional information

Selection

- **Open**
 The switch output is not conductive.
- **Closed**
 The switch output is conductive.

3.2.2 "System units" submenu

Navigation

Expert → Sensor → System units

<table>
<thead>
<tr>
<th>System units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow unit (0554)</td>
</tr>
<tr>
<td>Mass unit (0574)</td>
</tr>
<tr>
<td>Corrected volume flow unit (0558)</td>
</tr>
<tr>
<td>Corrected volume unit (0575)</td>
</tr>
<tr>
<td>FAD volume flow unit (0601)</td>
</tr>
<tr>
<td>FAD volume unit (0591)</td>
</tr>
</tbody>
</table>
Description of device parameters

Proline t-mass A, B 150 HART

<table>
<thead>
<tr>
<th>Density unit (0555)</th>
<th>→ 48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature unit (0557)</td>
<td>→ 48</td>
</tr>
<tr>
<td>Length unit (0551)</td>
<td>→ 49</td>
</tr>
<tr>
<td>Pressure unit (0564)</td>
<td>→ 49</td>
</tr>
<tr>
<td>Date/time format (2812)</td>
<td>→ 50</td>
</tr>
<tr>
<td>▶ User specific units</td>
<td>→ 50</td>
</tr>
</tbody>
</table>

Mass flow unit

Navigation
Expert → Sensor → System units → Mass flow unit (0554)

Description
Use this function to select the unit for the mass flow.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/s</td>
<td>oz/s</td>
<td>lTon/s</td>
</tr>
<tr>
<td>g/min</td>
<td>oz/min</td>
<td>lTon/min</td>
</tr>
<tr>
<td>g/h</td>
<td>oz/h</td>
<td>lTon/h</td>
</tr>
<tr>
<td>g/d</td>
<td>oz/d</td>
<td>lTon/d</td>
</tr>
<tr>
<td>kg/s</td>
<td>lb/s</td>
<td></td>
</tr>
<tr>
<td>kg/min</td>
<td>lb/min</td>
<td></td>
</tr>
<tr>
<td>kg/h</td>
<td>lb/h</td>
<td></td>
</tr>
<tr>
<td>kg/d</td>
<td>lb/d</td>
<td></td>
</tr>
<tr>
<td>t/s</td>
<td>STon/s</td>
<td></td>
</tr>
<tr>
<td>t/min</td>
<td>STon/min</td>
<td></td>
</tr>
<tr>
<td>t/h</td>
<td>STon/h</td>
<td></td>
</tr>
<tr>
<td>t/d</td>
<td>STon/d</td>
<td></td>
</tr>
</tbody>
</table>

Custom-specific units

- User mass/s
- User mass/min
- User mass/h
- User mass/d

Factory setting

Country-specific:

- kg/h
- lb/h
Additional information

Result

The selected unit applies for:

Mass flow parameter (→ 38)

Selection

For an explanation of the abbreviated units: → 146

Customer-specific units

The unit for the customer-specific mass is specified in the **User mass text** parameter (→ 51).

Mass unit

Navigation

Expert → Sensor → System units → Mass unit (0574)

Description

Use this function to select the unit for the mass.

Selection

SI units

- g
- kg
- t

US units

- oz
- lb
- STon

Imperial units

- LTon

Custom-specific units

User mass

Factory setting

Country-specific:

- kg
- lb

Additional information

Selection

For an explanation of the abbreviated units: → 146

Customer-specific units

The unit for the customer-specific mass is specified in the **User mass text** parameter (→ 51).

Corrected volume flow unit

Navigation

Expert → Sensor → System units → Cor.volflow unit (0558)

Description

Use this function to select the unit for the corrected volume flow.
Description of device parameters

Proline t-mass A, B 150 HART

Selection

SI units
- Nl/s
- Nl/min
- Nl/h
- Nl/d
- Nm³/s
- Nm³/min
- Nm³/h
- Nm³/d
- Sl/s
- Sl/min
- Sl/h
- Sl/d
- Sm³/s
- Sm³/min
- Sm³/h
- Sm³/d

US units
- St³/s
- St³/min
- St³/h
- St³/d

Factory setting

Country-specific:
- Nm³/h
- St³/min

Additional information

Result

The selected unit applies for:

Corrected volume flow parameter (→ 38)

Selection

For an explanation of the abbreviated units: → 146

Corrected volume unit

Navigation

Expert → Sensor → System units → Corr. vol. unit (0575)

Description

Use this function to select the unit for the corrected volume.

Selection

SI units
- Nl
- Nm³
- Sl
- Sm³

US units
- St³

Factory setting

Country-specific:
- Nm³
- St³

Additional information

Selection

For an explanation of the abbreviated units: → 146
FAD volume flow unit

Navigation

Expert → Sensor → System units → FAD vol.fl. unit (0601)

Description

Use this function to select the unit for the FAD volume flow.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>l FAD/s</td>
<td>cf FAD/s</td>
</tr>
<tr>
<td>l FAD/min</td>
<td>cf FAD/min</td>
</tr>
<tr>
<td>l FAD/h</td>
<td>cf FAD/h</td>
</tr>
<tr>
<td>l FAD/d</td>
<td>cf FAD/d</td>
</tr>
<tr>
<td>m³ FAD/s</td>
<td></td>
</tr>
<tr>
<td>m³ FAD/min</td>
<td></td>
</tr>
<tr>
<td>m³ FAD/h</td>
<td></td>
</tr>
<tr>
<td>m³ FAD/d</td>
<td></td>
</tr>
</tbody>
</table>

Factory setting

Country-specific:
- m³ FAD/h
- cf FAD/min

Additional information

Effect

The selected unit applies to:
FAD volume flow parameter (→ 39)

Selection

For an explanation of the abbreviated units: → 146

FAD volume unit

Navigation

Expert → Sensor → System units → FAD volume unit (0591)

Description

Use this function to select the unit for the FAD volume.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>l FAD</td>
<td>cf FAD</td>
</tr>
<tr>
<td>m³ FAD</td>
<td></td>
</tr>
</tbody>
</table>

Factory setting

Country-specific:
- m³ FAD
- cf FAD

Additional information

Selection

For an explanation of the abbreviated units: → 146

2) Free air delivery
3) Free air delivery
Density unit

Navigation
Expert → Sensor → System units → Density unit (0555)

Description
Use this function to select the unit for the density.

Selection
- **SI units**
 - g/cm³
 - kg/dm³
 - kg/l
 - kg/m³
- **US units**
 - lb/ft³

Factory setting
Country-specific:
- kg/m³
- lb/ft³

Additional information
The selected unit applies for:
- FAD density parameter (→ 59)

Result
For an explanation of the abbreviated units: → 146

Temperature unit

Navigation
Expert → Sensor → System units → Temperature unit (0557)

Description
Use this function to select the unit for the temperature.

Selection
- **SI units**
 - °C
 - K
- **US units**
 - °F
 - °R

Factory setting
Country-specific:
- °C
- °F

Additional information
The selected unit applies for:
- Temperature parameter (→ 39)
- FAD temperature parameter (→ 59)
- Reference combustion temperature parameter
- Reference temperature parameter (→ 57)
- Maximum value parameter (→ 134)
- **Minimum value** parameter (→ 134)
- **Maximum value** parameter (→ 135)
- **Minimum value** parameter (→ 135)

Selection

For an explanation of the abbreviated units: → 146

Length unit

Navigation

[Expert] → Sensor → System units → Length unit (0551)

Description

Use this function to select the unit of length.

Selection

SI units
- mm
- m

US units
- in
- ft

Factory setting

Country-specific:
- mm
- in

Additional information

Effect

The selected unit applies for:
- **Duct internal height** parameter (→ 61)
- **Insertion depth** parameter (→ 63)
- **Pipe inner diameter** parameter (→ 61)
- **Mounting set height** parameter (→ 62)
- **Pipe wall thickness** parameter (→ 62)
- **Duct internal width** parameter (→ 61)

Selection

For an explanation of the abbreviated units: → 146

Pressure unit

Navigation

[Expert] → Sensor → System units → Pressure unit (0564)

Description

Use this function to select the unit for the pipe pressure.

Selection

SI units
- kPa a
- MPa a
- bar
- mbar a

US units
- psi a
Description of device parameters

Factory setting

Country-specific:
- bar
- psi

Additional information

Result

The unit is taken from:
- FAD pressure parameter (→ 58)
- Reference pressure parameter (→ 57)

Selection

For an explanation of the abbreviated units: → 146

Date/time format

Navigation

Expert → Sensor → System units → Date/time format (2812)

Description

Use this function to select the desired time format for calibration history.

Selection

- dd.mm.yy hh:mm
- dd.mm.yy hh:mm am/pm
- mm/dd/yy hh:mm
- mm/dd/yy hh:mm am/pm

Factory setting

dd.mm.yy hh:mm

Additional information

Selection

For an explanation of the abbreviated units: → 146

"User specific units" submenu

Navigation

Expert → Sensor → System units → User spec. units

<table>
<thead>
<tr>
<th>User specific units</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>User mass text (0560)</td>
<td>→ 51</td>
</tr>
<tr>
<td>User mass offset (0562)</td>
<td>→ 51</td>
</tr>
<tr>
<td>User mass factor (0561)</td>
<td>→ 51</td>
</tr>
</tbody>
</table>
User mass text

Navigation

Expert → Sensor → System units → User spec. units → User mass text (0560)

Description

Use this function to enter a text for the user-specific unit of mass and mass flow. The corresponding time units (s, min, h, d) for mass flow are generated automatically.

User entry

Max. 10 characters such as letters, numbers or special characters (@, %, /)

Factory setting

User mass

Additional information

Result

The defined unit is shown as an option in the choose list of the following parameters:
- Mass flow unit parameter (→ 44)
- Mass unit parameter (→ 45)

Example

If the text GLAS is entered, the following options are displayed in the picklist for the Mass flow unit parameter (→ 44):
- GLAS/s
- GLAS/min
- GLAS/h
- GLAS/d

User mass offset

Navigation

Expert → Sensor → System units → User spec. units → User mass offset (0562)

Description

Use this function to enter the offset for adapting the user-specific mass unit and mass flow unit (without time).

User entry

Signed floating-point number

Factory setting

0

Additional information

Description

Value in user-specific unit = (factor × value in base unit) + offset

User mass factor

Navigation

Expert → Sensor → System units → User spec. units → User mass factor (0561)

Description

Use this function to enter a quantity factor (without time) for the user-specific mass and mass flow unit.

User entry

Signed floating-point number
Factory setting

1.0

3.2.3 "Process parameters" submenu

Navigation

Flow override

Description

Use this function to select whether to interrupt the evaluation of measured values. This is useful for the cleaning processes of a pipeline, for example.

Selection

- Off
- On

Factory setting

Off

Additional information

This setting affects all the functions and outputs of the measuring device.

Description

Flow override is active

- The diagnostic message diagnostic message **C453 Flow override** is displayed.
- Output values
 - Output: Value at zero flow
 - Temperature: proceeding output
 - Totalizers 1-3: Stop being totalized

Flow damping

Navigation

Expert → Sensor → Process param. → Flow damping (1802)

Description

Use this function to enter a time constant for flow damping. Reduction of the variability of the flow measured value (in relation to interference). For this purpose, the depth of the
flow filter is adjusted: when the filter setting increases, the reaction time of the device also increases.

User entry

0 to 999.9 s

Factory setting

0 s

Additional information

User entry

- Value = 0: no damping
- Value > 0: damping is increased

Result

The damping affects the following variables of the device:

- Outputs → 77
- Low flow cut off → 53
- Totalizers → 112

"Low flow cut off" submenu

Navigation

Expert → Sensor → Process param. → Low flow cut off

Assign process variable

Navigation

Expert → Sensor → Process param. → Low flow cut off → Assign variable (1837)

Description

Use this function to select the process variable for low flow cutoff detection.

Selection

- Off
- Mass flow
- Corrected volume flow
- FAD volume flow

Factory setting

Mass flow
Description of device parameters

On value low flow cutoff

Navigation
Expert → Sensor → Process param. → Low flow cut off → On value (1805)

Prerequisite
One of the following options is selected in the Assign process variable parameter (→ 53):
- Mass flow
- Corrected volume flow
- FAD volume flow

Description
Use this function to enter a switch-on value for low flow cut off. Low flow cut off is activated if the value entered is not equal to 0 → 54.

User entry
Positive floating-point number

Factory setting
Depends on country and nominal diameter → 143

Additional information
Dependency
The unit depends on the process variable selected in the Assign process variable parameter (→ 53).

Off value low flow cutoff

Navigation
Expert → Sensor → Process param. → Low flow cut off → Off value (1804)

Prerequisite
One of the following options is selected in the Assign process variable parameter (→ 53):
- Mass flow
- Corrected volume flow
- FAD volume flow

Description
Use this function to enter a switch-off value for low flow cut off. The off value is entered as a positive hysteresis from the on value → 54.

User entry
0 to 100.0 %

Factory setting
50 %
Endress+Hauser

3.2.4 "Measurement mode" submenu

Navigation

Expert → Sensor → Measurement mode

Prerequisite

The Disabled option is selected in the Operating mode parameter (→ 64) parameter.

Description

Use this function to select the type of gas for the measuring application.

Selection

- Air
- Argon Ar
- Carbon dioxide CO2
- Nitrogen N2

Factory setting

Air
3.2.5 "Calculated values" submenu

Navigation

Expert → Sensor → Calculated value

"Reference values" submenu

Navigation

Expert → Sensor → Calculated value → Reference values

Reference conditions

Navigation

Expert → Sensor → Calculated value → Reference values → Ref. conditions (3439)

Description

Use this function to select the reference conditions for calculating the reference density.

Selection

- 1013.25mbara, 0°C
- 1013.25mbara, 15°C
- 1013.25mbara, 20°C
- 1013.25mbara, 25°C
- 1000mbara, 0°C
- 1000mbara, 15°C
- 1000mbara, 20°C
- 1000mbara, 25°C
- 14.696Psia, 59°F
- 14.696Psia, 60°F
- 14.730Psia, 60°F
- User defined
Reference pressure

Navigation

Expert → Sensor → Calculated value → Reference values → Ref. pressure (3378)

Prerequisite

The User defined option is selected in the Reference conditions parameter (→ 56) parameter.

Description

Use this function to enter the reference pressure for calculating the reference density.

User entry

0.1 to 99 bar

Factory setting

1.01325 bar

Additional information

Dependency

The unit is taken from the Pressure unit parameter (→ 49)

Reference temperature

Navigation

Expert → Sensor → Calculated value → Reference values → Ref. temperature (3379)

Prerequisite

The User defined option is selected in the Reference conditions parameter (→ 56) parameter.

Description

Use this function to enter the reference temperature for calculating the reference density.

User entry

–50 to 150 °C

Factory setting

0 °C

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 48)

Reference density

Navigation

Expert → Sensor → Calculated value → Reference values → Ref.density (3377)

Description

Displays the calculated reference density.

User interface

0 to 9.9 · 10^5 kg/m³
Additional information

Dependency

The unit is taken from the **Density unit** parameter (→ 48)

FAD conditions

Navigation

Expert → Sensor → Calculated value → Reference values → FAD conditions (3438)

Prerequisite

The **Air** option is selected in the **Select gas type** parameter (→ 55) parameter.

Description

Use this function to select the reference conditions for calculating the FAD density.

Selection

- 1000mbara, 20°C
- 14.504Psia, 68°F
- User defined

Factory setting

1000mbara, 20°C

FAD pressure

Navigation

Expert → Sensor → Calculated value → Reference values → FAD pressure (3373)

Prerequisite

The following conditions are met:

- The **Air** option is selected in the **Select gas type** parameter (→ 55) parameter.
- The **User defined** option is selected in the **FAD conditions** parameter (→ 58) parameter.

Description

Use this function to enter the reference pressure for calculating the FAD density.

User entry

0.1 to 99 bar

Factory setting

1 bar

Additional information

Dependency

The unit is taken from the **Pressure unit** parameter (→ 49)

4) Free air delivery
5) Free air delivery
FAD temperature

Navigation
Expert → Sensor → Calculated value → Reference values → FAD temperature (3374)

Prerequisite
The following conditions are met:
- The **Air** option is selected in the **Select gas type** parameter (→ 55) parameter.
- The **User defined** option is selected in the **FAD conditions** parameter (→ 58) parameter.

Description
Use this function to enter the reference temperature for calculating the FAD density.

User entry
-50 to 150 °C

Factory setting
20 °C

Additional information
Dependency
- The unit is taken from the **Temperature unit** parameter (→ 48)

FAD density

Navigation
Expert → Sensor → Calculated value → Reference values → FAD density (3372)

Prerequisite
The **Air** option is selected in the **Select gas type** parameter (→ 55) parameter.

Description
Displays the calculated FAD density.

User interface
0 to $9.9 \cdot 10^5$ kg/m³

Additional information
Dependency
- The unit is taken from the **Density unit** parameter (→ 48)

3.2.6 "Sensor adjustment“ submenu

Navigation

- **Sensor adjustment** → 60
- **Installation settings** → 60
- **In-situ adjustment** → 64

6) Free air delivery
7) Free air delivery
"Installation settings" submenu

Navigation
Expert → Sensor → Sensor adjustm. → Install.settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation factor (3470)</td>
<td>→ 60</td>
</tr>
<tr>
<td>Pipe shape (3441)</td>
<td>→ 60</td>
</tr>
<tr>
<td>Pipe inner diameter (3476)</td>
<td>→ 61</td>
</tr>
<tr>
<td>Duct internal height (3405)</td>
<td>→ 61</td>
</tr>
<tr>
<td>Duct internal width (3411)</td>
<td>→ 61</td>
</tr>
<tr>
<td>Orientation (3437)</td>
<td>→ 62</td>
</tr>
<tr>
<td>Pipe wall thickness (3409)</td>
<td>→ 62</td>
</tr>
<tr>
<td>Mounting set height (3435)</td>
<td>→ 62</td>
</tr>
<tr>
<td>Insertion depth (3406)</td>
<td>→ 63</td>
</tr>
</tbody>
</table>

Installation factor

Navigation
Expert → Sensor → Sensor adjustm. → Install.settings → Install. factor (3470)

Prerequisite
The Disabled option is selected in the Operating mode parameter (→ 64) parameter.

Description
Use this function to enter the installation factor.

User entry
0 to 9999

Factory setting
1

Pipe shape

Navigation
Expert → Sensor → Sensor adjustm. → Install.settings → Pipe shape (3441)

Prerequisite
The sensor is an insert version.

Description
Use this function to select the shape of the pipe.

Selection
- Circular
- Rectangular
Pipe inner diameter

Navigation

Prerequisite

The following conditions are met:
- The sensor is an insert version.
- The Circular option is selected in the Pipe shape parameter (→ 60) parameter.

Description

Enter the inner diameter of the pipe.

User entry

45 to 99999 mm

Factory setting

50 mm

Additional information

Dependency

The unit is taken from the Length unit parameter (→ 49)

Duct internal height

Navigation

Expert → Sensor → Sensor adjustm. → Install.settings → Duct int. height (3405)

Prerequisite

The following conditions are met:
- The sensor is an insert version.
- The Rectangular option is selected in the Pipe shape parameter (→ 60) parameter.

Description

Use this function to enter the height of the rectangular pipe.

User entry

45 to 99999 mm

Factory setting

50 mm

Additional information

Dependency

The unit is taken from the Length unit parameter (→ 49)

Duct internal width

Navigation

Expert → Sensor → Sensor adjustm. → Install.settings → Duct int. width (3411)

Prerequisite

The following conditions are met:
- The sensor is an insert version.
- The Rectangular option is selected in the Pipe shape parameter (→ 60) parameter.
Description of device parameters

Proline t-mass A, B 150 HART

<table>
<thead>
<tr>
<th>Description</th>
<th>Use this function to enter the width of the rectangular pipe.</th>
</tr>
</thead>
<tbody>
<tr>
<td>User entry</td>
<td>45 to 99999 mm</td>
</tr>
<tr>
<td>Factory setting</td>
<td>50 mm</td>
</tr>
</tbody>
</table>
| **Additional information** | *Dependency*
 The unit is taken from the **Length unit** parameter (→ 49) |

Orientation

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Sensor → Sensor adjustm. → Install.settings → Orientation (3437)</th>
</tr>
</thead>
</table>
| **Prerequisite** | The following conditions are met:
 - The sensor is an insert version.
 - The **Rectangular** option is selected in the **Pipe shape** parameter (→ 60) parameter. |
| **Description** | Use this function to select the orientation of the sensor. |
| **Selection** |
 - Vertical
 - Horizontal |
| **Factory setting** | Vertical |

Pipe wall thickness

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Sensor → Sensor adjustm. → Install.settings → Wall thickness (3409)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>The sensor is an insert version.</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to enter the pipe wall thickness.</td>
</tr>
<tr>
<td>User entry</td>
<td>2 to 999.9 mm</td>
</tr>
<tr>
<td>Factory setting</td>
<td>4.5 mm</td>
</tr>
</tbody>
</table>
| **Additional information** | *Dependency*
 The unit is taken from the **Length unit** parameter (→ 49) |

Mounting set height

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>The sensor is an insert version.</td>
</tr>
</tbody>
</table>
Description
Use this function to enter the mounting set height.

User entry
0 to 999 mm

Factory setting
106 mm

Additional information
Description

For more detailed information on determining the mounting set height, please see the Operating Instructions for the device, section "Insertion depth"

Dependency
The unit is taken from the Length unit parameter (→ 49)

Insertion depth

Navigation
Expert → Sensor → Sensor adjustm. → Install.settings → Insertion depth (3406)

Prerequisite
The sensor is an insert version.

Description
Displays the calculated insertion depth of the sensor.

User interface
0 to 999 000 mm

Factory setting
50 mm

Additional information
Description

The insertion depth depends on the internal diameter of the pipe.

\[(0.3 \cdot A) + B + (C1 + C2)\]
Description of device parameters

Proline t-mass A, B 150 HART

A: **Internal pipe diameter DN (circular pipe) or internal dimension (rectangular duct)**
B: **Thickness of pipe wall or of duct wall**
C1: **Length of mounting set**
C2: **Length of sensor compression fitting**

For more detailed information on determining the insertion depth, please see the Operating Instructions for the device, section "Insertion depth"

Dependency

The unit is taken from the **Length unit** parameter (→ 49)

"In-situ adjustment" submenu

Navigation

Operating mode

Use this function to activate/deactivate in-situ adjustment.

Selection

- Disabled
- Enabled

Factory setting

Disabled
"Adjustment values in use" submenu

Navigation

<table>
<thead>
<tr>
<th>Adjustment values in use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow reference in use → 65</td>
</tr>
<tr>
<td>Flow reference value 1 → 66</td>
</tr>
<tr>
<td>Power coefficient 1 → 66</td>
</tr>
<tr>
<td>Flow reference value 2 → 66</td>
</tr>
<tr>
<td>Power coefficient 2 → 66</td>
</tr>
<tr>
<td>Flow reference value 3 → 67</td>
</tr>
<tr>
<td>Power coefficient 3 → 67</td>
</tr>
<tr>
<td>Flow reference value 4 → 67</td>
</tr>
<tr>
<td>Power coefficient 4 → 67</td>
</tr>
<tr>
<td>Flow reference value 5 → 67</td>
</tr>
<tr>
<td>Power coefficient 5 → 68</td>
</tr>
<tr>
<td>Flow reference value 6 → 68</td>
</tr>
<tr>
<td>Power coefficient 6 → 68</td>
</tr>
<tr>
<td>Flow reference value 7 → 68</td>
</tr>
<tr>
<td>Power coefficient 7 → 69</td>
</tr>
<tr>
<td>Flow reference value 8 → 69</td>
</tr>
<tr>
<td>Power coefficient 8 → 69</td>
</tr>
</tbody>
</table>

Flow reference in use

Navigation

Description

Use this function to select the flow reference value used.
User interface
- Mass flow
- Corrected volume flow
- FAD volume flow

Factory setting
Mass flow

Flow reference value 1

Navigation

Description
Displays the Flow reference value 1 (→ 66) defined for the adjustment.

User interface
Signed floating-point number

Power coefficient 1

Navigation

Description
Displays the Power coefficient 1 defined for the adjustment.

User interface
Positive floating-point number

Flow reference value 2

Navigation

Description
Displays the Flow reference value 2 defined for the adjustment.

User interface
Signed floating-point number

Power coefficient 2

Navigation

Description
Displays the Power coefficient 2 defined for the adjustment.

User interface
Positive floating-point number
Flow reference value 3

Navigation

Expert → Sensor → Sensor adjustm. → In-situ adjust. → Values in use → Flow ref. val. 3 (3419)

Description
Displays the Flow reference value 3 defined for the adjustment.

User interface
Signed floating-point number

Power coefficient 3

Navigation

Expert → Sensor → Sensor adjustm. → In-situ adjust. → Values in use → Power coeff. 3 (3427)

Description
Displays the Power coefficient 3 defined for the adjustment.

User interface
Positive floating-point number

Flow reference value 4

Navigation

Description
Displays the Flow reference value 4 defined for the adjustment.

User interface
Signed floating-point number

Power coefficient 4

Navigation

Description
Displays the Power coefficient 4 defined for the adjustment.

User interface
Positive floating-point number

Flow reference value 5

Navigation

Expert → Sensor → Sensor adjustm. → In-situ adjust. → Values in use → Flow ref. val. 5 (3421)

Description
Displays the Flow reference value 5 defined for the adjustment.
Description of device parameters

Proline t-mass A, B 150 HART

<table>
<thead>
<tr>
<th>User interface</th>
<th>Signed floating-point number</th>
</tr>
</thead>
</table>

Power coefficient 5

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the Power coefficient 5 defined for the adjustment.</td>
</tr>
<tr>
<td>User interface</td>
<td>Positive floating-point number</td>
</tr>
</tbody>
</table>

Flow reference value 6

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Sensor → Sensor adjustm. → In-situ adjust. → Values in use → Flow ref. val. 6 (3422)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the Flow reference value 6 defined for the adjustment.</td>
</tr>
<tr>
<td>User interface</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>

Power coefficient 6

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the Power coefficient 6 defined for the adjustment.</td>
</tr>
<tr>
<td>User interface</td>
<td>Positive floating-point number</td>
</tr>
</tbody>
</table>

Flow reference value 7

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the Flow reference value 7 defined for the adjustment.</td>
</tr>
<tr>
<td>User interface</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>
Proline t-mass A, B 150 HART

Description of device parameters

Power coefficient 7

Navigation

Expert → Sensor → Sensor adjustm. → In-situ adjust. → Values in use → Power coeff. 7 (3431)

Description
Displays the Power coefficient 7 defined for the adjustment.

User interface
Positive floating-point number

Flow reference value 8

Navigation

Expert → Sensor → Sensor adjustm. → In-situ adjust. → Values in use → Flow ref. val. 8 (3424)

Description
Displays the Flow reference value 8 defined for the adjustment.

User interface
Signed floating-point number

Power coefficient 8

Navigation

Description
Displays the Power coefficient 8 defined for the adjustment.

User interface
Positive floating-point number

"New adjustment" submenu

Navigation

- Select flow reference (3382) → 70
- Perform adjustment → 70
- Use adjustment → 75
Select flow reference

Navigation
Expert → Sensor → Sensor adjustm. → In-situ adjust. → New adjustment → Select flow ref. (3382)

Description
Use this function to select the process variable used as flow reference value for the adjustment.

Selection
- Mass flow
- Corrected volume flow
- FAD volume flow

Factory setting
Mass flow

"Perform adjustment" submenu

Navigation

<table>
<thead>
<tr>
<th>Perform adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear values (3529) 71</td>
</tr>
<tr>
<td>Flow reference value 1 (3384) 71</td>
</tr>
<tr>
<td>Power coefficient 1 (3392) 71</td>
</tr>
<tr>
<td>Flow reference value 2 (3385) 72</td>
</tr>
<tr>
<td>Power coefficient 2 (3393) 72</td>
</tr>
<tr>
<td>Flow reference value 3 (3386) 72</td>
</tr>
<tr>
<td>Power coefficient 3 (3394) 72</td>
</tr>
<tr>
<td>Flow reference value 4 (3387) 73</td>
</tr>
<tr>
<td>Power coefficient 4 (3395) 73</td>
</tr>
<tr>
<td>Flow reference value 5 (3388) 73</td>
</tr>
<tr>
<td>Power coefficient 5 (3396) 73</td>
</tr>
<tr>
<td>Flow reference value 6 (3389) 74</td>
</tr>
<tr>
<td>Power coefficient 6 (3397) 74</td>
</tr>
</tbody>
</table>
Description of device parameters

Flow reference value 7 (3390) → 74
Power coefficient 7 (3398) → 74
Flow reference value 8 (3391) → 75
Power coefficient 8 (3399) → 75

Clear values

Navigation

Description
Use this function to delete the existing adjustment values.

Selection
- Cancel
- Clear values

Factory setting
Cancel

Flow reference value 1

Navigation

Description
Use this function to enter a flow rate used as reference for flow point 1.

User entry
Signed floating-point number

Factory setting
0 kg/h

Power coefficient 1

Navigation

Description
Displays the automatically assigned power coefficient 1 which is directly proportional to the flow: heater power/measured temperature difference.

User interface
Positive floating-point number
Flow reference value 2

Navigation

Description

Use this function to enter a flow rate used as reference for flow point 2.

User entry

Signed floating-point number

Factory setting

0 kg/h

Power coefficient 2

Navigation

Description

Displays the automatically assigned power coefficient 2 which is directly proportional to the flow: heater power/measured temperature difference.

User interface

Positive floating-point number

Flow reference value 3

Navigation

Description

Use this function to enter a flow rate used as reference for flow point 3.

User entry

Signed floating-point number

Factory setting

0 kg/h

Power coefficient 3

Navigation

Description

Displays the automatically assigned power coefficient 3 which is directly proportional to the flow: heater power/measured temperature difference.

User interface

Positive floating-point number
Flow reference value 4

Navigation

Description
Use this function to enter a flow rate used as reference for flow point 4.

User entry
Signed floating-point number

Factory setting
0 kg/h

Power coefficient 4

Navigation

Description
Displays the automatically assigned power coefficient 4 which is directly proportional to the flow: heater power/measured temperature difference.

User interface
Positive floating-point number

Flow reference value 5

Navigation

Description
Use this function to enter a flow rate used as reference for flow point 5.

User entry
Signed floating-point number

Factory setting
0 kg/h

Power coefficient 5

Navigation

Description
Displays the automatically assigned power coefficient 5 which is directly proportional to the flow: heater power/measured temperature difference.

User interface
Positive floating-point number
Flow reference value 6

Navigation

Description

Use this function to enter a flow rate used as reference for flow point 6.

User entry

Signed floating-point number

Factory setting

0 kg/h

Power coefficient 6

Navigation

Description

Displays the automatically assigned power coefficient 6 which is directly proportional to the flow: heater power/measured temperature difference.

User interface

Positive floating-point number

Flow reference value 7

Navigation

Description

Use this function to enter a flow rate used as reference for flow point 7.

User entry

Signed floating-point number

Factory setting

0 kg/h

Power coefficient 7

Navigation

Description

Displays the automatically assigned power coefficient 7 which is directly proportional to the flow: heater power/measured temperature difference.

User interface

Positive floating-point number
Flow reference value 8

Navigation

Description
Use this function to enter a flow rate used as reference for flow point 8.

User entry
Signed floating-point number

Factory setting
0 kg/h

Power coefficient 8

Navigation

Description
Displays the automatically assigned power coefficient 8 which is directly proportional to the flow: heater power/measured temperature difference.

User interface
Positive floating-point number

"Use adjustment" submenu

Navigation
Expert → Sensor → Sensor adjustm. → In-situ adjust. → New adjustment → Use adjustment

<table>
<thead>
<tr>
<th>Use adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data validity (3434) → 75</td>
</tr>
<tr>
<td>Apply (3528) → 76</td>
</tr>
</tbody>
</table>

Data validity

Navigation

Description
Displays whether the performed adjustment is usable.

User interface
- Ok
- Too few points
- Invalid pair of values
- Values too close
- Out of range
Description of device parameters

Prerequisite
In the **Data validity** parameter (→ 75) the **Ok** option is displayed.

Description
Use this function to select whether the new adjustment values are to be used.

Selection
- **Cancel**
- **Ok**

Factory setting
Cancel

3.2.7 "Calibration" submenu

Navigation

Expert → Sensor → Calibration

Flow conditioner

Navigation

Expert → Sensor → Calibration → Flow conditioner (3404)

Description
Displays whether the measuring device was calibrated with or without a flow conditioner.

User interface
- **No**
- **Yes**

Calibration date/time

Navigation

Expert → Sensor → Calibration → Cal date/time (3436)

Description
Displays the date of the last factory calibration of the measuring device.

User interface
Format: dd.mm.yyyy
Additional information

Description

The date remains unchanged in the case of onsite calibration.

3.3 "Output" submenu

Navigation

Expert → Output

<table>
<thead>
<tr>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Current output 1 → 77</td>
</tr>
<tr>
<td>▶ Pulse-Frequency-Switch output 1 → 85</td>
</tr>
</tbody>
</table>

3.3.1 "Current output 1" submenu

Navigation

Expert → Output → Curr.output 1

<table>
<thead>
<tr>
<th>Current output 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign current output (0359–1) → 78</td>
</tr>
<tr>
<td>Current span (0353–1) → 78</td>
</tr>
<tr>
<td>Fixed current (0365–1) → 79</td>
</tr>
<tr>
<td>4 mA value (0367–1) → 79</td>
</tr>
<tr>
<td>20 mA value (0372–1) → 80</td>
</tr>
<tr>
<td>Damping (0363–1) → 81</td>
</tr>
<tr>
<td>Response time (0378–1) → 82</td>
</tr>
<tr>
<td>Failure mode (0364–1) → 82</td>
</tr>
<tr>
<td>Failure current (0352–1) → 83</td>
</tr>
<tr>
<td>Output current (0361–1) → 84</td>
</tr>
<tr>
<td>Start-up mode (0368–1) → 84</td>
</tr>
<tr>
<td>Start-up current (0369–1) → 84</td>
</tr>
</tbody>
</table>
Description of device parameters

Proline t-mass A, B 150 HART

Assign current output

Navigation

Expert → Output → Curr.output 1 → Assign curr. (0359–1)

Description

Use this function to select a process variable for the current output.

Selection

- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature

Factory setting

Mass flow

Current span

Navigation

Expert → Output → Curr.output 1 → Current span (0353–1)

Description

Use this function to select the current range for the process value output and the upper and lower level for signal on alarm.

Selection

- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
- Fixed current

Factory setting

Country-specific:
- 4...20 mA NAMUR
- 4...20 mA US

Additional information

Description

- In the event of a device alarm, the current output adopts the value specified in the Failure mode parameter (→ 82).
- If the measured value is outside the measuring range, the diagnostic message S441 Current output 1 is displayed.
- The measuring range is specified via the 4 mA value parameter (→ 79) and 20 mA value parameter (→ 80).

"Fixed current" option

The current value is set via the Fixed current parameter (→ 79).

Example

Shows the relationship between the current span for the output of the process variable and the lower and upper alarm levels:
Proline t-mass A, B 150 HART

Description of device parameters

![Flowchart]

1. **Current**
2. **Current span for process value**
3. **Lower level for signal on alarm**
4. **Upper level for signal on alarm**

Selection

<table>
<thead>
<tr>
<th>Selection</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4...20 mA NAMUR</td>
<td>3.8 to 20.5 mA</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
<tr>
<td>4...20 mA US</td>
<td>3.9 to 20.8 mA US</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
<tr>
<td>4...20 mA</td>
<td>4 to 20.5 mA</td>
<td>< 3.6 mA</td>
<td>> 21.95 mA</td>
</tr>
</tbody>
</table>

If the flow exceeds or falls below the upper or lower signal on alarm level, the diagnostic message **S441 Current output 1** is displayed.

Fixed current

Navigation

Expert → Output → Curr.output 1 → Fixed current (0365–1)

Prerequisite

In the **Current span** parameter (→ 78), the **Fixed current** option is selected.

Description

Use this function to enter a constant current value for the current output.

User entry

3.59 to 22.5 mA

Factory setting

4 mA

Additional information

Example

This setting can be used for HART multidrop, for example.

4 mA value

Navigation

Expert → Output → Curr.output 1 → 4 mA value (0367–1)

Prerequisite

One of the following options is selected in the **Current span** parameter (→ 78):
- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA

Description

Use this function to enter a value for the 4 mA current.

User entry

Signed floating-point number
Description of device parameters

Factory setting

0 kg/h

Additional information

Description

Positive and negative values are permitted depending on the process variable assigned in the Assign current output parameter (→ 78). In addition, the value can be greater than or smaller than the value assigned for the 20 mA current in the 20 mA value parameter (→ 80).

Dependency

The unit depends on the process variable selected in the Assign current output parameter (→ 78).

Current output behavior

The current output behaves differently depending on the settings configured in the following parameters:

- Current span (→ 78)
- Failure mode (→ 82)

Configuration examples

A configuration example and its effect on the current output is explained in the following section.

Configuration example

In Forward flow

- 4 mA value parameter (→ 79) = not equal to zero flow (e.g. -250 m³/h)
- 20 mA value parameter (→ 80) = not equal to zero flow (e.g. +750 m³/h)
- Calculated current value = 8 mA at zero flow

The operational range of the measuring device is defined by the values entered for the 4 mA value parameter (→ 79) and 20 mA value parameter (→ 80). If the effective flow exceeds or falls below this operational range, the diagnostic message ΔS441 Current output 1 is displayed.

20 mA value

Navigation

Expert → Output → Curr.output 1 → 20 mA value (0372–1)

Prerequisite

One of the following options is selected in the Current span parameter (→ 78):

- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
Description
Use this function to enter a value for the 20 mA current.

User entry
Signed floating-point number

Factory setting
Depends on country and nominal diameter → 142

Additional information
Description
Positive and negative values are permitted depending on the process variable assigned in the **Assign current output** parameter (→ 78). In addition, the value can be greater than or smaller than the value assigned for the 4 mA current in the **4 mA value** parameter (→ 79).

Dependency
The unit depends on the process variable selected in the **Assign current output** parameter (→ 78).

Example
- Value assigned to 4 mA = –250 m³/h
- Value assigned to 20 mA = +750 m³/h
- Calculated current value = 8 mA (at zero flow)

Configuration examples
Pay attention to the configuration examples for **4 mA value** parameter (→ 79).

Damping

Navigation
Expert → Output → Curr.output 1 → Damping (0363–1)

Prerequisite
One of the following options is selected in the **Assign current output** parameter (→ 78):
- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature

One of the following options is selected in the **Current span** parameter (→ 78):
- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA

Description
Use this function to enter the reaction time of the current output signal to fluctuations in the measured value caused by process conditions.

User entry
0.0 to 999.9 s

Factory setting
1.0 s
Additional information

User entry

Use this function to enter a time constant:
- If a low time constant is entered, the current output reacts particularly quickly to fluctuating measured variables.
- On the other hand, the current output reacts more slowly if a high time constant is entered.

Response time

Navigation

Expert → Output → Curr.output 1 → Response time (0378–1)

Prerequisite

One of the following options is selected in the **Assign current output** parameter (→ 78):
- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature

One of the following options is selected in the **Current span** parameter (→ 78):
- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA

Description

Displays the response time. This specifies how quickly the current output reaches the measured value change of 63 % of 100 % of the measured value change.

User interface

Positive floating-point number

Additional information

Description

The response time is made up of the time specified for the following dampings:
- Current output damping → 81
 and
- Depending on the measured variable assigned to the output.
 Flow damping

Failure mode

Navigation

Expert → Output → Curr.output 1 → Failure mode (0364–1)

Prerequisite

One of the following options is selected in the **Assign current output** parameter (→ 78):
- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature

One of the following options is selected in the **Current span** parameter (→ 78):
- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA
Description

Use this function to select the value of the current output in the event of a device alarm.

Selection

- Min.
- Max.
- Last valid value
- Actual value
- Defined value

Factory setting

Max.

Additional information

Description

This setting does not affect the failsafe mode of other outputs and totalizers. This is specified in separate parameters.

Min. option

The current output adopts the value of the lower level for signal on alarm.

Max. option

The current output adopts the value of the upper level for signal on alarm.

Last valid value option

The current output adopts the last measured value that was valid before the device alarm occurred.

Actual value option

The current output adopts the measured value on the basis of the current flow measurement; the device alarm is ignored.

Defined value option

The current output adopts a defined measured value.

Failure current

Navigation

Expert → Output → Curr.output 1 → Failure current (0352–1)

Prerequisite

In the Failure mode parameter (→ 82), the Defined value option is selected.

Description

Use this function to enter a fixed value that the current output adopts in the event of a device alarm.

User entry

3.59 to 22.5 mA

Factory setting

22.5 mA
Description of device parameters

Proline t-mass A, B 150 HART

Output current 1

Navigation

Expert → Output → Curr.output 1 → Output curr. 1 (0361–1)

Description

Displays the current value currently calculated for the current output.

User interface

3.59 to 22.5 mA

Start-up mode

Navigation

Expert → Output → Curr.output 1 → Start-up mode (0368–1)

Prerequisite

In the Current span parameter (→ 78), one of the following options is selected:

- 4...20 mA NAMUR
- 4...20 mA US
- 4...20 mA

Description

Use this function to select the current value that the current output adopts during the device start-up phase as long as no measured value is present.

Selection

- Min.
- Max.
- Defined value

Factory setting

Min.

Additional information

Min. option

The current output adopts the value of the lower level for signal on alarm.

The signal on alarm level is defined via the Current span parameter (→ 78).

Max. option

The current output adopts the value of the upper level for signal on alarm.

The signal on alarm level is defined via the Current span parameter (→ 78).

Defined value option

The current output outputs a defined current value.

The current value is defined via the Start-up current parameter (→ 84).

Start-up current

Navigation

Expert → Output → Curr.output 1 → Start-up current (0369–1)

Prerequisite

The Defined value option is selected in the Start-up mode parameter (→ 84).
Description
Use this function to enter a fixed current value that the current output adopts during the device start-up phase as long as no measured value is present.

User entry
3.59 to 22.5 mA

Factory setting
3.59 mA

3.3.2 "Pulse-Frequency-Switch output" submenu

Navigation ⚙️ Expert → Output → PFS-output

<table>
<thead>
<tr>
<th>Pulse-Frequency-Switch output 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating mode (0469–1)</td>
</tr>
<tr>
<td>Assign pulse output (0460–1)</td>
</tr>
<tr>
<td>Value per pulse (0455–1)</td>
</tr>
<tr>
<td>Pulse width (0452–1)</td>
</tr>
<tr>
<td>Failure mode (0480–1)</td>
</tr>
<tr>
<td>Pulse output (0456–1)</td>
</tr>
<tr>
<td>Assign frequency output (0478–1)</td>
</tr>
<tr>
<td>Minimum frequency value (0453–1)</td>
</tr>
<tr>
<td>Maximum frequency value (0454–1)</td>
</tr>
<tr>
<td>Measuring value at minimum frequency (0476–1)</td>
</tr>
<tr>
<td>Measuring value at maximum frequency (0475–1)</td>
</tr>
<tr>
<td>Damping output (0477–1)</td>
</tr>
<tr>
<td>Response time (0491–1)</td>
</tr>
<tr>
<td>Failure mode (0451–1)</td>
</tr>
<tr>
<td>Failure frequency (0474–1)</td>
</tr>
<tr>
<td>Output frequency (0471–1)</td>
</tr>
<tr>
<td>Switch output function (0481–1)</td>
</tr>
</tbody>
</table>
Description of device parameters

Operating mode

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign diagnostic behavior (0482–1)</td>
<td>96</td>
</tr>
<tr>
<td>Assign limit (0483–1)</td>
<td>97</td>
</tr>
<tr>
<td>Switch-on value (0466–1)</td>
<td>98</td>
</tr>
<tr>
<td>Switch-off value (0464–1)</td>
<td>99</td>
</tr>
<tr>
<td>Assign status (0485–1)</td>
<td>99</td>
</tr>
<tr>
<td>Switch-on delay (0467–1)</td>
<td>100</td>
</tr>
<tr>
<td>Switch-off delay (0465–1)</td>
<td>100</td>
</tr>
<tr>
<td>Failure mode (0486–1)</td>
<td>100</td>
</tr>
<tr>
<td>Switch status (0461–1)</td>
<td>101</td>
</tr>
<tr>
<td>Invert output signal (0470–1)</td>
<td>101</td>
</tr>
</tbody>
</table>

Navigation

Expert → Output → PFS-output 1 → Operating mode (0469–1)

Description

Use this function to select the operating mode of the output as a pulse, frequency or switch output.

Selection

- Pulse
- Frequency
- Switch

Factory setting

Pulse

Additional information

Pulse option

Quantity-dependent pulse with configurable pulse width

- Whenever a specific mass, corrected volume or FAD volume is reached (pulse value), a pulse is output, the duration of which was set previously (pulse width).
- The pulses are never shorter than the set duration.

Example

- Flow rate approx. 100 g/s
- Pulse value 0.1 g
- Pulse width 0.05 ms
- Pulse rate 1000 Impuls/s
5 Quantity-proportional pulse (pulse value) with pulse width to be configured

\[B \] Pulse width entered

\[P \] Pauses between the individual pulses

"Frequency" option

Example

- Flow rate approx. 100 g/s
- Max. frequency 10 kHz
- Flow rate at max. frequency 1000 g/s
- Output frequency approx. 1000 Hz

6 Flow-proportional frequency output

"Switch" option

Contact for displaying a condition (e.g. alarm or warning if a limit value is reached)

Example

Alarm response without alarm

7 No alarm, high level

Example

Alarm response in case of alarm

8 Alarm, low level
Assign pulse output

Navigation
Expert → Output → PFS-output 1 → Assign pulse (0460–1)

Prerequisite
The Pulse option is selected in the Operating mode parameter (→ 86) parameter.

Description
Use this function to select the process variable for the pulse output.

Selection
- Off
- Mass flow
- Corrected volume flow
- FAD volume flow

Factory setting
Off

Value per pulse

Navigation
Expert → Output → PFS-output 1 → Value per pulse (0455–1)

Prerequisite
The Pulse option is selected in the Operating mode parameter (→ 86) and one of the following options is selected in the Assign pulse output parameter (→ 88):
- Mass flow
- Corrected volume flow
- FAD volume flow

Description
Use this function to enter the value for the measured value that a pulse is equivalent to.

User entry
Signed floating-point number

Factory setting
Depends on country and nominal diameter → 143

Additional information
User entry
Weighting of the pulse output with a quantity.
The lower the pulse value, the
- better the resolution.
- the higher the frequency of the pulse response.

Pulse width

Navigation
Expert → Output → PFS-output 1 → Pulse width (0452–1)

Prerequisite
The Pulse option is selected in the Operating mode parameter (→ 86) and one of the following options is selected in the Assign pulse output parameter (→ 88):
- Mass flow
- Corrected volume flow
- FAD volume flow

Description
Use this function to enter the duration of the output pulse.
User entry
0.5 to 2000 ms

Factory setting
100 ms

Additional information

Description
- Define how long a pulse is (duration).
- The maximum pulse rate is defined by $f_{\text{max}} = 1 / (2 \times \text{pulse width})$.
- The interval between two pulses lasts at least as long as the set pulse width.
- The maximum flow is defined by $Q_{\text{max}} = f_{\text{max}} \times \text{pulse value}$.
- If the flow exceeds these limit values, the measuring device displays the diagnostic message \textbf{S443 Pulse output 1 to n}.

Example
- Pulse value: 0.1 g
- Pulse width: 0.1 ms
- f_{max}: $1 / (2 \times 0.1 \text{ ms}) = 5$ kHz
- Q_{max}: 5 kHz \times 0.1 g = 0.5 kg/s

Failure mode

Prerequisite
The Pulse option is selected in the Operating mode parameter (→ 86) and one of the following options is selected in the Assign pulse output parameter (→ 88):
- Mass flow
- Corrected volume flow
- FAD volume flow

Description
Use this function to select the failure mode of the pulse output in the event of a device alarm.

Selection
- Actual value
- No pulses

Factory setting
No pulses
Description of device parameters

Proline t-mass A, B 150 HART

Additional information Description

The dictates of safety render it advisable to ensure that the pulse output shows a predefined behavior in the event of a device alarm.

Selection

- Actual value
 In the event of a device alarm, the pulse output continues on the basis of the current flow measurement. The fault is ignored.
- No pulses
 In the event of a device alarm, the pulse output is "switched off".

NOTICE! A device alarm is a measuring device error that must be taken seriously. It can affect the measurement quality such that the quality can no longer be guaranteed. The Actual value option is only recommended if it can be guaranteed that all possible alarm conditions will not affect the measurement quality.

Pulse output

Navigation Expert → Output → PFS-output 1 → Pulse output (0456–1)

Prerequisite

In the Operating mode parameter (→ 86), the Pulse option is selected.

Description

Displays the pulse frequency currently output.

User interface

Positive floating-point number

Additional information Description

- The pulse output is an open collector output.
- This is configured at the factory in such a way that the transistor is conductive for the duration of the pulse (NO contact) and is safety-oriented.
- The Value per pulse parameter (→ 88) and Pulse width parameter (→ 88) can be used to define the value (i.e. the measured value amount that corresponds to a pulse) and the duration of the pulse.

![Diagram of pulse output](image)

0 Non-conductive
1 Conductive
NC NC contact (normally closed)
NO NO contact (normally open)
The output behavior can be reversed via the **Invert output signal** parameter (→ 101) i.e. the transistor does not conduct for the duration of the pulse.

In addition, the behavior of the output in the event of a device alarm (**Failure mode** parameter (→ 89)) can be configured.

Assign frequency output

Navigation

Expert → Output → PFS-output 1 → Assign freq. (0478–1)

Prerequisite

The **Frequency** option is selected in the **Operating mode** parameter (→ 86) parameter.

Description

Use this function to select the process variable for the frequency output.

Selection

- Off
- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature

Factory setting

Off

Minimum frequency value

Navigation

Expert → Output → PFS-output 1 → Min. freq. value (0453–1)

Prerequisite

The **Frequency** option is selected in the **Operating mode** parameter (→ 86) and one of the following options is selected in the **Assign frequency output** parameter (→ 91):

- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature

Description

Use this function to enter the start value frequency.

User entry

0.0 to 1 000.0 Hz

Factory setting

0.0 Hz
Maximum frequency value

Navigation

Expert → Output → PFS-output 1 → Max. freq. value (0454–1)

Prerequisite

The Frequency option is selected in the Operating mode parameter (→ 86) and one of the following options is selected in the Assign frequency output parameter (→ 91):
- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature

Description

Use this function to enter the end value frequency.

User entry

0.0 to 1000.0 Hz

Factory setting

1000.0 Hz

Measuring value at minimum frequency

Navigation

Expert → Output → PFS-output 1 → Val. at min.freq (0476–1)

Prerequisite

The Frequency option is selected in the Operating mode parameter (→ 86) and one of the following options is selected in the Assign frequency output parameter (→ 91):
- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature

Description

Use this function to enter the measured value for the start value frequency.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter

Additional information

Dependency

The entry depends on the process variable selected in the Assign frequency output parameter (→ 91).

Measuring value at maximum frequency

Navigation

Expert → Output → PFS-output 1 → Val. at max.freq (0475–1)

Prerequisite

The Frequency option is selected in the Operating mode parameter (→ 86) and one of the following options is selected in the Assign frequency output parameter (→ 91):
- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature
Description
Use this function to enter the measured value for the end value frequency.

User entry
Signed floating-point number

Factory setting
Depends on country and nominal diameter

Additional information
Description
Use this function to enter the maximum measured value at the maximum frequency. The selected process variable is output as a proportional frequency.

Dependency
The entry depends on the process variable selected in the Assign frequency output parameter (→ 91).

Damping output

Navigation
Expert → Output → PFS-output 1 → Damping out. (0477–1)

Prerequisite
The Frequency option is selected in the Operating mode parameter (→ 86) and one of the following options is selected in the Assign frequency output parameter (→ 91):
- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature

Description
Use this function to enter the reaction time of the output signal to fluctuations in the measured value.

User entry
0 to 999.9 s

Factory setting
0.0 s

Additional information
Description
Use this function to enter a time constant (PT1 element) for frequency output damping. The frequency output is subject to separate damping that is independent of all preceding time constants.

Response time

Navigation
Expert → Output → PFS-output 1 → Response time (0491–1)

Prerequisite
The Frequency option is selected in the Operating mode parameter (→ 86) and one of the following options is selected in the Assign frequency output parameter (→ 91):
- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature
Description of device parameters

Description
Displays the response time. This specifies how quickly the pulse/frequency/switch output reaches the measured value change of 63 % of 100 % of the measured value change.

User interface
Positive floating-point number

Additional information
Description

The response time is made up of the time specified for the following dampings:
- Damping of pulse/frequency/switch output → 81
- Depending on the measured variable assigned to the output.

Flow damping

Failure mode

Navigation

Expert → Output → PFS-output 1 → Failure mode (0451-1)

Prerequisite
The Frequency option is selected in the Operating mode parameter (→ 86) and one of the following options is selected in the Assign frequency output parameter (→ 91):
- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature

Description
Use this function to select the failure mode of the frequency output in the event of a device alarm.

Selection
- Actual value
- Defined value
- 0 Hz

Factory setting
0 Hz

Additional information
Selection

- Actual value
 In the event of a device alarm, the frequency output continues on the basis of the current flow measurement. The device alarm is ignored.
- Defined value
 In the event of a device alarm, the frequency output continues on the basis of a predefined value. The Failure frequency (→ 95) replaces the current measured value, making it possible to bypass the device alarm. The actual measurement is switched off for the duration of the device alarm.
- 0 Hz
 In the event of a device alarm, the frequency output is "switched off".

NOTICE! A device alarm is a measuring device error that must be taken seriously. It can affect the measurement quality such that the quality can no longer be guaranteed. The Actual value option is only recommended if it can be guaranteed that all possible alarm conditions will not affect the measurement quality.
Failure frequency

Navigation

Expert → Output → PFS-output 1 → Failure freq. (0474–1)

Prerequisite

The **Frequency** option is selected in the **Operating mode** parameter (→ 86) and one of the following options is selected in the **Assign frequency output** parameter (→ 91):

- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature

Description

Use this function to enter the value for the frequency output in the event of a device alarm in order to bypass the alarm.

User entry

0.0 to 1,250.0 Hz

Factory setting

0.0 Hz

Output frequency

Navigation

Expert → Output → PFS-output 1 → Out frequency (0471–1)

Prerequisite

In the **Operating mode** parameter (→ 86), the **Frequency** option is selected.

Description

Displays the actual value of the output frequency which is currently measured.

User interface

0.0 to 1,250.0 Hz

Switch output function

Navigation

Expert → Output → PFS-output 1 → Switch out funct (0481–1)

Prerequisite

In the **Operating mode** parameter (→ 86) the **Switch** option is selected.

Description

Use this function to select a function for the switch output.

Selection

- Off
- On
- Diagnostic behavior
- Limit
- Status

Factory setting

Off
Additional information

Selection
- **Off**
 The switch output is permanently switched off (open, non-conductive).
- **On**
 The switch output is permanently switched on (closed, conductive).
- **Diagnostic behavior**
 Indicates if the diagnostic event is present or not. Is used to output diagnostic information and to react to it appropriately at the system level.
- **Limit**
 Indicates if a specified limit value has been reached for the process variable. Is used to output diagnostic information relating to the process and to react to it appropriately at the system level.
- **Status**
 Indicates the device status depending on whether empty pipe detection or low flow cut off is selected.

Assign diagnostic behavior

Navigation

| ➕ ➕ Expert ➜ Output ➜ PFS-output 1 ➜ Assign diag. beh (0482–1) |

Prerequisite
- The **Switch** option is selected in the **Operating mode** parameter (→ 86).
- The **Diagnostic behavior** option is selected in the **Switch output function** parameter (→ 95).

Description

Use this function to select the diagnostic event category that is displayed for the switch output.

Selection
- **Alarm**
- **Alarm or warning**
- **Warning**

Factory setting

Alarm

Additional information

Description

If no diagnostic event is pending, the switch output is closed and conductive.

Options
- **Alarm**
 The switch output signals only diagnostic events in the alarm category.
- **Alarm or warning**
 The switch output signals diagnostic events in the alarm and warning category.
- **Warning**
 The switch output signals only diagnostic events in the warning category.
Assign limit

Navigation

[Expert → Output → PFS-output 1 → Assign limit (0483–1)]

Prerequisite

- The **Switch** option is selected in the **Operating mode** parameter (→ 86) parameter.
- The **Limit** option is selected in the **Switch output function** parameter (→ 95) parameter.

Description

Use this function to select a process variable for the limit function.

Selection

- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature
- Totalizer 1

Factory setting

Mass flow

Additional information

Description

Behavior of status output when Switch-on value > Switch-off value:
- Process variable > Switch-on value: transistor is conductive
- Process variable < Switch-off value: transistor is non-conductive

Behavior of status output when Switch-on value < Switch-off value:
- Process variable < Switch-on value: transistor is conductive
- Process variable > Switch-off value: transistor is non-conductive
Behavior of status output when Switch-on value = Switch-off value:
- Process variable > Switch-on value: transistor is conductive
- Process variable < Switch-off value: transistor is non-conductive
Additional information

Description
Use this function to enter the limit value for the switch-on value (process variable > switch-on value = closed, conductive).

![Tip icon]
When using a hysteresis: Switch-on value > Switch-off value.

Dependency

The unit depends on the process variable selected in the **Assign limit** parameter (→ 97).

Switch-off value

Navigation

Expert → Output → PFS-output 1 → Switch-off value (0464–1)

Prerequisite

- The **Switch** option is selected in the **Operating mode** parameter (→ 86).
- The **Limit** option is selected in the **Switch output function** parameter (→ 95).

Description

Use this function to enter the measured value for the switch-off point.

User entry

Signed floating-point number

Factory setting

0 kg/h

Additional information

Description

Use this function to enter the limit value for the switch-off value (process variable < switch-off value = open, non-conductive).

![Tip icon]
When using a hysteresis: Switch-on value > Switch-off value.

Dependency

The unit depends on the process variable selected in the **Assign limit** parameter (→ 97).

Assign status

Navigation

Expert → Output → PFS-output 1 → Assign status (0485–1)

Prerequisite

- The **Switch** option is selected in the **Operating mode** parameter (→ 86).
- The **Status** option is selected in the **Switch output function** parameter (→ 95).

Description

Use this function to select a device status for the switch output.

Selection

Low flow cut off

Factory setting

Low flow cut off
Additional information

Options
If empty pipe detection or low flow cut off are enabled, the output is conductive. Otherwise, the switch output is non-conductive.

Switch-on delay

Navigation
Expert → Output → PFS-output 1 → Switch-on delay (0467–1)

Prerequisite
- The Switch option is selected in the Operating mode parameter (→ 86).
- The Limit option is selected in the Switch output function parameter (→ 95).

Description
Use this function to enter a delay time for switching on the switch output.

User entry
0.0 to 100.0 s

Factory setting
0.0 s

Switch-off delay

Navigation
Expert → Output → PFS-output 1 → Switch-off delay (0465–1)

Prerequisite
- The Switch option is selected in the Operating mode parameter (→ 86).
- The Limit option is selected in the Switch output function parameter (→ 95).

Description
Use this function to enter a delay time for switching off the switch output.

User entry
0.0 to 100.0 s

Factory setting
0.0 s

Failure mode

Navigation
Expert → Output → PFS-output 1 → Failure mode (0486–1)

Description
Use this function to select a failsafe mode for the switch output in the event of a device alarm.

Selection
- Actual status
- Open
- Closed

Factory setting
Open
Additional information

Options

- Actual status
 In the event of a device alarm, faults are ignored and the current behavior of the input value is output by the switch output. The Actual status option behaves in the same way as the current input value.
- Open
 In the event of a device alarm, the switch output's transistor is set to non-conductive.
- Closed
 In the event of a device alarm, the switch output's transistor is set to conductive.

Switch status

Navigation

Expert → Output → PFS-output 1 → Switch status (0461–1)

Prerequisite

The Switch option is selected in the Operating mode parameter (→ 86).

Description

Displays the current switch status of the status output.

User interface

- Open
- Closed

Additional information

User interface

- Open
 The switch output is not conductive.
- Closed
 The switch output is conductive.

Invert output signal

Navigation

Expert → Output → PFS-output 1 → Invert outp.sig. (0470–1)

Description

Use this function to select whether to invert the output signal.

Selection

- No
- Yes

Factory setting

No

Additional information

Selection

No option (passive - negative)

Yes option (passive - positive)
3.4 "Communication" submenu

Navigation

Expert → Communication

3.4.1 "HART output" submenu

Navigation

Expert → Communication → HART output

"Configuration" submenu

Navigation

Expert → Communication → HART output → Configuration
Burst mode

Navigation

Expert → Communication → HART output → Configuration → Burst mode (0208)

Description

Use this function to select whether to activate or deactivate the HART burst mode for burst message X.

Selection

- Off
- On

Factory setting

Off

Additional information

- **Selection**
 - Off

 The measuring device transmits data only when requested by the HART master.
 - On

 The measuring device transmits data regularly without being requested.

Burst command

Navigation

Expert → Communication → HART output → Configuration → Burst command (0207)

Description

Use this function to select the HART command that is sent to the HART master.

Selection

- Command 1
- Command 2
- Command 3
- Command 9
- Command 33

Factory setting

Command 2

Additional information

- **Selection**
 - Command 1

 Read out the primary variable.
 - Command 2

 Read out the current and the main measured value as a percentage.
 - Command 3

 Read out the dynamic HART variables and the current.
 - Command 9

 Read out the dynamic HART variables including the related status.
 - Command 33

 Command 33: Read out the dynamic HART variables including the related unit.
Description of device parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>User entry</th>
<th>Factory setting</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>HART address</td>
<td>Use this function to enter the address via which the data exchange takes place via HART protocol.</td>
<td>0 to 63</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>No. of preambles</td>
<td>Use this function to enter the number of preambles in the HART protocol.</td>
<td>2 to 20</td>
<td>5</td>
<td>As every modem component can ‘swallow’ a byte, 2-byte preambles at least must be defined.</td>
</tr>
<tr>
<td>HART short tag</td>
<td>Use this function to enter a brief description for the measuring point. This can be edited and displayed via HART protocol or using the local display.</td>
<td>Max. 8 characters: A-Z, 0-9 and certain special characters (e.g. punctuation marks, @, %).</td>
<td>T-MASS</td>
<td></td>
</tr>
</tbody>
</table>
"Information" submenu

Navigation
Expert → Communication → HART output → Information

- **Device revision (0204)**
 - Device revision
 - Factory setting: 0x02
 - Additional information: The device revision is needed to assign the appropriate device description file (DD) to the device.

- **Device ID (0221)**
- **Device type (0222)**
- **Manufacturer ID (0223)**
- **HART revision (0205)**
- **HART descriptor (0212)**
- **HART message (0216)**
- **HART date code (0202)**
- **Hardware revision (0206)**
- **Software revision (0224)**
Device ID

Navigation
Expert → Communication → HART output → Information → Device ID (0221)

Description
Use this function to view the device ID for identifying the measuring device in a HART network.

User interface
6-digit hexadecimal number

Additional information
Description

In addition to the device type and manufacturer ID, the device ID is part of the unique ID. Each HART device is uniquely identified by the unique device ID.

Device type

Navigation
Expert → Communication → HART output → Information → Device type (0222)

Description
Displays the device type with which the measuring device is registered with the HART Communication Foundation.

User interface
2-digit hexadecimal number

Factory setting
0x66 (for t-mass A, B 150)

Additional information
Description

The device type is specified by the manufacturer. It is needed to assign the appropriate device description file (DD) to the device.

Manufacturer ID

Navigation
Expert → Communication → HART output → Information → Manufacturer ID (0223)

Description
Use this function to view the manufacturer ID with which the measuring device is registered with the HART Communication Foundation.

User interface
2-digit hexadecimal number

Factory setting
0x11 (for Endress+Hauser)

HART revision

Navigation
Expert → Communication → HART output → Information → HART revision (0205)

Description
Use this function to display the HART protocol revision of the measuring device.
User interface

5 to 7

Factory setting

6

HART descriptor

Navigation

Expert → Communication → HART output → Information → HART descriptor (0212)

Description

Use this function to enter a description for the measuring point. This can be edited and displayed via HART protocol or using the local display.

User entry

Max. 16 characters such as letters, numbers or special characters (e.g. @, %, /)

Factory setting

t-mass 150

HART message

Navigation

Expert → Communication → HART output → Information → HART message (0216)

Description

Use this function to enter a HART message which is sent via the HART protocol when requested by the master.

User entry

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /)

Factory setting

t-mass 150

HART date code

Navigation

Expert → Communication → HART output → Information → HART date code (0202)

Description

Use this function to enter the date information for individual use.

User entry

Date entry format: yyyy-mm-dd

Factory setting

2009-07-20

Additional information

Example

Device installation date
Description of device parameters

Proline t-mass A, B 150 HART

Hardware revision

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → HART output → Information → Hardware rev. (0206)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the hardware revision of the measuring device.</td>
</tr>
<tr>
<td>User interface</td>
<td>0 to 255</td>
</tr>
<tr>
<td>Factory setting</td>
<td>1</td>
</tr>
</tbody>
</table>

Software revision

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → HART output → Information → Software rev. (0224)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the software revision of the measuring device.</td>
</tr>
<tr>
<td>User interface</td>
<td>0 to 255</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

"Output" submenu

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → HART output → Output</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign PV (0234) → 109</td>
</tr>
<tr>
<td>Primary variable (PV) (0201) → 109</td>
</tr>
<tr>
<td>Assign SV (0235) → 109</td>
</tr>
<tr>
<td>Secondary variable (SV) (0226) → 110</td>
</tr>
<tr>
<td>Assign TV (0236) → 110</td>
</tr>
<tr>
<td>Tertiary variable (TV) (0228) → 110</td>
</tr>
<tr>
<td>Assign QV (0237) → 111</td>
</tr>
<tr>
<td>Quaternary variable (QV) (0203) → 111</td>
</tr>
</tbody>
</table>

108
Assign PV

Navigation

Expert → Communication → HART output → Output → Assign PV (0234)

Description

Use this function to select a measured variable (HART device variable) for the primary dynamic variable (PV).

Selection

- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature

Factory setting

Mass flow

Primary variable (PV)

Navigation

Expert → Communication → HART output → Output → Primary var (PV) (0201)

Description

Displays the current measured value of the primary dynamic variable (PV).

User interface

Signed floating-point number

Additional information

User interface

The measured value displayed depends on the process variable selected in the Assign PV parameter (→ 109).

Dependency

The unit of the displayed measured value is taken from the System units submenu (→ 43).

Assign SV

Navigation

Expert → Communication → HART output → Output → Assign SV (0235)

Description

Use this function to select a measured variable (HART device variable) for the secondary dynamic variable (SV).

Selection

- None
- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature
- Totalizer

Factory setting

Totalizer
Secondary variable (SV)

Navigation

Expert → Communication → HART output → Output → Second.var(SV) (0226)

Description

Displays the current measured value of the secondary dynamic variable (SV).

User interface

Signed floating-point number

Additional information

User interface

The measured value displayed depends on the process variable selected in the Assign SV parameter (→ 109).

Dependency

The unit of the displayed measured value is taken from the System units submenu (→ 43).

Assign TV

Navigation

Expert → Communication → HART output → Output → Assign TV (0236)

Description

Use this function to select a measured variable (HART device variable) for the tertiary (third) dynamic variable (TV).

Selection

- None
- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature
- Totalizer

Factory setting

None

Tertiary variable (TV)

Navigation

Expert → Communication → HART output → Output → Tertiary var(TV) (0228)

Description

Displays the current measured value of the tertiary dynamic variable (TV).

User interface

Signed floating-point number

Additional information

User interface

The measured value displayed depends on the process variable selected in the Assign TV parameter (→ 110).

Dependency

The unit of the displayed measured value is taken from the System units submenu (→ 43).
Assign QV

Navigation
Expert → Communication → HART output → Output → Assign QV (0237)

Description
Use this function to select a measured variable (HART device variable) for the quaternary (fourth) dynamic variable (QV).

Selection
- None
- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature
- Totalizer

Factory setting
None

Quaternary variable (QV)

Navigation
Expert → Communication → HART output → Output → Quaterna.var(QV) (0203)

Description
Displays the current measured value of the quaternary dynamic variable (QV).

User interface
Signed floating-point number

Additional information

User interface
The measured value displayed depends on the process variable selected in the Assign QV parameter (→ 111).

Dependency
The unit of the displayed measured value is taken from the System units submenu (→ 43).

3.5 "Application" submenu

Navigation
Expert → Application

- **Reset all totalizers** → 112
- **Totalizer** → 112
Reset all totalizers

Navigation
Expert → Application → Reset all tot. (2806)

Description
Use this function to reset all totalizers to the value 0 and restart the totaling process. This deletes all the flow values previously totalized.

Selection
- Cancel
- Reset + totalize

Factory setting
Cancel

Additional information
Selection
- Cancel
 No action is executed and the user exits the parameter.
- Reset + totalize
 All totalizers are reset to 0 and the totaling process is restarted.

3.5.1 "Totalizer" submenu

Navigation
Expert → Application → Totalizer

Assign process variable

Navigation
Expert → Application → Totalizer → Assign variable (0914)

Description
Use this function to select a process variable for the Totalizer.

Selection
- Off
- Mass flow
- Corrected volume flow
- FAD volume flow
Factory setting

Mass flow

Additional information

Description

If the option selected is changed, the device resets the totalizer to 0.

Selection

If the Off option is selected, only Assign process variable parameter (→ 112) is still displayed in the Totalizer submenu. All other parameters in the submenu are hidden.

Unit

Navigation

Expert → Application → Totalizer → Unit (0915)

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 112) Totalizer submenu:

- Mass flow
- Corrected volume flow
- FAD volume flow

Description

Use this function to select the unit for the process variable for Totalizer (→ 40).

Selection

- g
- kg
- t
- oz
- lb
- STon
- LTon
- User mass
- Nl
- Nm³
- Sl
- Sm³
- Sft³
- cf FAD
- m³ FAD
- l FAD

Factory setting

Country-specific:

- kg
- lb

Additional information

Selection

The selection is independent of the process variable selected in the Assign process variable parameter (→ 112).
Control Totalizer

Navigation

Expert → Application → Totalizer → Control Tot. (0912)

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 112) of the Totalizer submenu:
- Mass flow
- Corrected volume flow
- FAD volume flow

Description

Use this function to select the control of the totalizer value.

Selection

- Totalize
- Reset + hold
- Preset + hold
- Reset + totalize
- Preset + totalize

Factory setting

Totalize

Additional information

Selection

- Totalize
 The totalizer is started or continues totalizing with the current counter reading.
- Reset + hold
 The totaling process is stopped and the totalizer is reset to 0.
- Preset + hold
 The totaling process is stopped and the totalizer is set to its defined start value from the Preset value parameter (→ 114).
- Reset + totalize
 The totalizer is reset to 0 and the totaling process is restarted.
- Preset + totalize
 The totalizer is set to the defined start value from the Preset value parameter (→ 114) and the totaling process is restarted.

Preset value

Navigation

Expert → Application → Totalizer → Preset value (0913)

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 112) of the Totalizer submenu:
- Mass flow
- Corrected volume flow
- FAD volume flow

Description

Use this function to enter a start value for the Totalizer.

User entry

Signed floating-point number

Factory setting

0 kg
Additional information

The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 113).

Example

This configuration is suitable for applications such as iterative filling processes with a fixed batch quantity.

Failure mode

Navigation

Expert → Application → Totalizer → Failure mode (0901)

Prerequisite

One of the following options is selected in the **Assign process variable** parameter (→ 112) of the **Totalizer** submenu:

- Mass flow
- Corrected volume flow
- FAD volume flow

Description

Use this function to select how a totalizer behaves in the event of a device alarm.

Selection

- Stop
- Actual value
- Last valid value

Factory setting

Stop

Additional information

This setting does not affect the failsafe mode of the outputs. This is specified in separate parameters.

Selection

- Stop
 Totalizing is stopped when a device alarm occurs.
- Actual value
 The totalizer continues to count based on the actual measured value; the device alarm is ignored.
- Last valid value
 The totalizer continues to count based on the last valid measured value before the device alarm occurred.

3.6 "Diagnostics" submenu

Navigation

Expert → Diagnostics

Actual diagnostics (0691) → 116
Actual diagnostics

Navigation

Expert → Diagnostics → Actual diagnos. (0691)

Prerequisite

A diagnostic event has occurred.

Description

Displays the current diagnostic message. If two or more messages occur simultaneously, the message with the highest priority is shown on the display.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

Additional pending diagnostic messages can be viewed in the Diagnostic list submenu (→ 118).

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Example

For the display format:

F271 Main electronic failure

Timestamp

Navigation

Expert → Diagnostics → Timestamp

Description

Displays the operating time when the current diagnostic message occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)
Additional information

Display

The diagnostic message can be viewed via the **Actual diagnostics** parameter (→ 116).

Example

For the display format:
24d12h13m00s

Previous diagnostics

Navigation

Expert → Diagnostics → Prev.diagnostics (0690)

Prerequisite

Two diagnostic events have already occurred.

Description

Displays the diagnostic message that occurred before the current message.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Example

For the display format:
F271 Main electronic failure

Timestamp

Navigation

Expert → Diagnostics → Timestamp

Description

Displays the operating time when the last diagnostic message before the current message occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the **Previous diagnostics** parameter (→ 117).

Example

For the display format:
24d12h13m00s
Operating time from restart

Navigation

Expert → Diagnostics → Time fr. restart (0653)

Description
Use this function to display the time the device has been in operation since the last device restart.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Operating time

Navigation

Expert → Diagnostics → Operating time (0652)

Description
Use this function to display the length of time the device has been in operation.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
User interface
The maximum number of days is 9999, which is equivalent to 27 years.

3.6.1 "Diagnostic list" submenu

Navigation

Expert → Diagnostics → Diagnostic list

Diagnostic list

| Diagnostic list |
|----------------|---
| Diagnostics 1 (0692) |
| Diagnostics 2 (0693) |
| Diagnostics 3 (0694) |
| Diagnostics 4 (0695) |
| Diagnostics 5 (0696) |

Diagnostics 1

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 1 (0692)

Description
Displays the current diagnostics message with the highest priority.
User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Display

ℹ️ Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the ⌚ key.

Examples
For the display format:
- ⌙ S442 Frequency output
- ⌚ F276 I/O module failure

Timestamp

Navigation
Expert → Diagnostics → Diagnostic list → Timestamp

Description
Displays the operating time when the diagnostic message with the highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
Display

ℹ️ The diagnostic message can be viewed via the **Diagnostics 1** parameter (→ ⌚ 118).

Example
For the display format:
24d12h13m00s

Diagnostics 2

Navigation
Expert → Diagnostics → Diagnostic list → Diagnostics 2 (0693)

Description
Displays the current diagnostics message with the second-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Display

ℹ️ Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the ⌚ key.

Examples
For the display format:
- ⌙ S442 Frequency output
- ⌚ F276 I/O module failure
Description of device parameters

Timestamp

Navigation

Display

Description
Displays the operating time when the diagnostic message with the second-highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
Display

The diagnostic message can be viewed via the Diagnostics 2 parameter (→ 119).

Example
For the display format:
24d12h13m00s

Diagnostics 3

Navigation

Display

Description
Displays the current diagnostics message with the third-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the ✎ key.

Examples
For the display format:
• △S442 Frequency output
• ✖F276 I/O module failure

Timestamp

Navigation

Display

Description
Displays the operating time when the diagnostic message with the third-highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)
Additional information

Display

The diagnostic message can be viewed via the **Diagnostics 3** parameter (→ 120).

Example

For the display format:

24d12h13m00s

Diagnostics 4

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 4 (0695)

Description

Displays the current diagnostics message with the fourth-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples

For the display format:

- △S442 Frequency output
- ◊F276 I/O module failure

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the fourth-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the **Diagnostics 4** parameter (→ 121).

Example

For the display format:

24d12h13m00s
Description of device parameters

Proline t-mass A, B 150 HART

Diagnostics 5

Navigation
Expert → Diagnostics → Diagnostic list → Diagnostics 5 (0696)

Description
Displays the current diagnostics message with the fifth-highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples

For the display format:
- ΔS442 Frequency output
- ⚫F276 I/O module failure

Timestamp

Navigation
Expert → Diagnostics → Diagnostic list → Timestamp

Description
Displays the operating time when the diagnostic message with the fifth-highest priority occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
Display

The diagnostic message can be viewed via the Diagnostics 5 parameter (→ 122).

Example

For the display format:
24d12h13m00s

3.6.2 "Event logbook" submenu

Navigation
Expert → Diagnostics → Event logbook

Event logbook

Filter options (0705) → 123

Event list → 124

Endress+Hauser
Filter options

Navigation

Expert → Diagnostics → Event logbook → Filter options (0705)

Description

Use this function to select the category whose event messages are displayed in the event list of the local display.

Selection

- All
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- Information (I)

Factory setting

All

Additional information

Description

The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107:
- F = Failure
- C = Function Check
- S = Out of Specification
- M = Maintenance Required
"Event list" submenu

The Event list submenu is only displayed if operating via the local display.
If operating via the FieldCare operating tool, the event list can be read out with a separate FieldCare module.

Navigation
Expert → Diagnostics → Event logbook → Event list

Event list

Description
Displays the history of event messages of the category selected in the Filter options parameter (→ 123).

User interface
- For a 'Category I' event message
 Information event, short message, symbol for event recording and operating time when error occurred
- For a 'Category F, C, S, M' event message (status signal)
 Diagnostics code, short message, symbol for event recording and operating time when error occurred

Additional information

A maximum of 20 event messages are displayed in chronological order.
If the advanced HistoROM function is enabled in the device, the event list can contain up to 100 entries.
The following symbols indicate whether an event has occurred or has ended:
- • Occurrence of the event
- • End of the event

Examples
For the display format:
- I1091 Configuration modified
 24d12h13m00s
- A5442 Frequency output
 01d04h12min30s

Additional information, such as remedial measures, can be retrieved via the key.

HistoROM

A HistoROM is a "non-volatile" device memory in the form of an EEPROM.

To order the HistoROM advanced capabilities application package, see the 'Accessories' section of the 'Technical Information' document.
3.6.3 "Device information" submenu

Navigation
Expert → Diagnostics → Device info

<table>
<thead>
<tr>
<th>Device information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device tag (0011)</td>
</tr>
<tr>
<td>Serial number (0009)</td>
</tr>
<tr>
<td>Firmware version (0010)</td>
</tr>
<tr>
<td>Device name (0013)</td>
</tr>
<tr>
<td>Order code (0008)</td>
</tr>
<tr>
<td>Extended order code 1 (0023)</td>
</tr>
<tr>
<td>Extended order code 2 (0021)</td>
</tr>
<tr>
<td>Extended order code 3 (0022)</td>
</tr>
<tr>
<td>ENP version (0012)</td>
</tr>
<tr>
<td>Configuration counter (0233)</td>
</tr>
</tbody>
</table>

Device tag

Navigation
Expert → Diagnostics → Device info → Device tag (0011)

Description
Displays a unique name for the measuring point so it can be identified quickly within the plant. The name is displayed in the header.

User interface
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /)

Factory setting
t-mass

Additional information
User interface

The number of characters displayed depends on the characters used.
Serial number

Navigation

Expert → Diagnostics → Device info → Serial number (0009)

Description

Displays the serial number of the measuring device.

![Information icon] The number can be found on the nameplate of the sensor and transmitter.

User interface

A maximum of 11-digit character string comprising letters and numbers.

Additional information

Description

Uses of the serial number

- To identify the measuring device quickly, e.g. when contacting Endress+Hauser.
- To obtain specific information on the measuring device using the Device Viewer: www.endress.com/deviceviewer

Firmware version

Navigation

Expert → Diagnostics → Device info → Firmware version (0010)

Description

Displays the device firmware version installed.

User interface

Character string in the format xx.yy.zz

Additional information

Display

The Firmware version is also located:

- On the title page of the Operating instructions
- On the transmitter nameplate

Device name

Navigation

Expert → Diagnostics → Device info → Device name (0013)

Description

Displays the name of the transmitter. It can also be found on the nameplate of the transmitter.

User interface

t-mass 150

Order code

Navigation

Expert → Diagnostics → Device info → Order code (0008)

Description

Displays the device order code.

User interface

Character string composed of letters, numbers and certain punctuation marks (e.g. /).
Additional information
Description

The order code can be found on the nameplate of the sensor and transmitter in the 'Order code' field.

The order code is generated from the extended order code through a process of reversible transformation. The extended order code indicates the attributes for all the device features in the product structure. The device features are not directly readable from the order code.

Uses of the order code
- To order an identical spare device.
- To identify the device quickly and easily, e.g. when contacting Endress+Hauser.

Extended order code 1

Navigation

Expert → Diagnostics → Device info → Ext. order cd. 1 (0023)

Description

Displays the first part of the extended order code.

On account of length restrictions, the extended order code is split into a maximum of 3 parameters.

User interface

Character string

Additional information
Description

The extended order code indicates the version of all the features of the product structure for the measuring device and thus uniquely identifies the measuring device.

The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field.

Extended order code 2

Navigation

Expert → Diagnostics → Device info → Ext. order cd. 2 (0021)

Description

For displaying the second part of the extended order code.

User interface

Character string

Additional information

For additional information, see **Extended order code 1** parameter (→ 127)

Extended order code 3

Navigation

Expert → Diagnostics → Device info → Ext. order cd. 3 (0022)

Description

For displaying the third part of the extended order code.

User interface

Character string
Description of device parameters

Proline t-mass A, B 150 HART

Additional information
For additional information, see **Extended order code 1** parameter (→ 127)

ENP version

Navigation
Expert → Diagnostics → Device info → ENP version (0012)

Description
Displays the version of the electronic nameplate.

User interface
Character string

Factory setting
2.02.00

Additional information
Description
This electronic nameplate stores a data record for device identification that includes more data than the nameplates attached to the outside of the device.

Configuration counter

Navigation
Expert → Diagnostics → Device info → Config. counter (0233)

Description
Displays the number of parameter modifications for the device. When the user changes a parameter setting, this counter is incremented.

User interface
0 to 65535

3.6.4 "Data logging" submenu

Navigation
Expert → Diagnostics → Data logging

<table>
<thead>
<tr>
<th>Data logging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign channel 1 (0851)</td>
</tr>
<tr>
<td>Assign channel 2 (0852)</td>
</tr>
<tr>
<td>Assign channel 3 (0853)</td>
</tr>
<tr>
<td>Assign channel 4 (0854)</td>
</tr>
<tr>
<td>Logging interval (0856)</td>
</tr>
<tr>
<td>Clear logging data (0855)</td>
</tr>
</tbody>
</table>
Assign channel 1

Navigation
- Expert → Diagnostics → Data logging → Assign chan. 1 (0851)

Prerequisite
The Extended HistoROM application package is available.
- The software options currently enabled are displayed in the Software option overview parameter.

Description
Use this function to select a process variable for the data logging channel.

Selection
- Off
- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature
- Current output

Factory setting
Off

Additional information
Description
A total of 1000 measured values can be logged. This means:
- 1000 data points if 1 logging channel is used
- 500 data points if 2 logging channels are used
- 333 data points if 3 logging channels are used
- 250 data points if 4 logging channels are used

Once the maximum number of data points is reached, the oldest data points in the data log are cyclically overwritten in such a way that the last 1000, 500, 333 or 250 measured values are always in the log (ring memory principle).
- The log contents are cleared if the option selected is changed.

Assign channel 2

Navigation
- Expert → Diagnostics → Data logging → Assign chan. 2 (0852)

Prerequisite
The Extended HistoROM application package is available.
- The software options currently enabled are displayed in the Software option overview parameter.
Description of device parameters

Proline t-mass A, B 150 HART

Description
Options for the assignment of a process variable to the data logging channel.

Selection
Picklist, see Assign channel 1 parameter (→ 129)

Factory setting
Off

Assign channel 3

Navigation
Expert → Diagnostics → Data logging → Assign chan. 3 (0853)

Prerequisite
The Extended HistoROM application package is available.

The software options currently enabled are displayed in the **Software option overview** parameter.

Description
Options for the assignment of a process variable to the data logging channel.

Selection
Picklist, see Assign channel 1 parameter (→ 129)

Factory setting
Off

Assign channel 4

Navigation
Expert → Diagnostics → Data logging → Assign chan. 4 (0854)

Prerequisite
The Extended HistoROM application package is available.

The software options currently enabled are displayed in the **Software option overview** parameter.

Description
Options for the assignment of a process variable to the data logging channel.

Selection
Picklist, see Assign channel 1 parameter (→ 129)

Factory setting
Off

Logging interval

Navigation
Expert → Diagnostics → Data logging → Logging interval (0856)

Prerequisite
The Extended HistoROM application package is available.

The software options currently enabled are displayed in the **Software option overview** parameter.

Description
Use this function to enter the logging interval t_{log} for data logging.

User entry
1.0 to 3 600.0 s

Description of device parameters

Factory setting

10.0 s

Additional information

Description

This defines the interval between the individual data points in the data log, and thus the maximum loggable process time T_{log}:

- If 1 logging channel is used: $T_{\text{log}} = 1000 \times t_{\text{log}}$
- If 2 logging channels are used: $T_{\text{log}} = 500 \times t_{\text{log}}$
- If 3 logging channels are used: $T_{\text{log}} = 333 \times t_{\text{log}}$
- If 4 logging channels are used: $T_{\text{log}} = 250 \times t_{\text{log}}$

Once this time elapses, the oldest data points in the data log are cyclically overwritten such that a time of T_{log} always remains in the memory (ring memory principle).

Example

If 1 logging channel is used:

- $T_{\text{log}} = 1000 \times 1 \text{ s} = 1000 \text{ s} \approx 15 \text{ min}$
- $T_{\text{log}} = 1000 \times 10 \text{ s} = 10000 \text{ s} \approx 3 \text{ h}$
- $T_{\text{log}} = 1000 \times 80 \text{ s} = 80000 \text{ s} \approx 1 \text{ d}$
- $T_{\text{log}} = 1000 \times 3600 \text{ s} = 3600000 \text{ s} \approx 41 \text{ d}$

Clear logging data

Navigation

Expert → Diagnostics → Data logging → Clear logging (0855)

Prerequisite

The Extended HistoROM application package is available.

Example

The software options currently enabled are displayed in the **Software option overview** parameter.

Description

Option to clear the entire logging data.

Selection

- Cancel
- Clear data

Factory setting

Cancel

Additional information

Selection

- Cancel

 The data is not cleared. All the data is retained.
- Clear data

 The logging data is cleared. The logging process starts from the beginning.
"Display channel 1" submenu

Navigation ➤ Expert → Diagnostics → Data logging → Displ.channel 1

Display channel 1

Prerequisite

The Extended HistOROM application package is available.

The software options currently enabled are displayed in the Software option overview parameter.

One of the following options is selected in the Assign channel 1 parameter (➤ 129):

- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature
- Current output

Description

Displays the measured value trend for the logging channel in the form of a chart.

Additional information

Description

- x-axis: depending on the number of channels selected displays 250 to 1000 measured values of a process variable.
- y-axis: displays the approximate measured value span and constantly adapts this to the ongoing measurement.

"Display channel 2" submenu

Navigation ➤ Expert → Diagnostics → Data logging → Displ.channel 2

Display channel 2

Prerequisite

The Extended HistOROM application package is available.

The software options currently enabled are displayed in the Software option overview parameter.

One of the following options is selected in the Assign channel 2 parameter (➤ 129):

- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature
- Current output

Description

Displays the measured value trend for the logging channel in the form of a chart.

Additional information

Description

- x-axis: depending on the number of channels selected displays 250 to 1000 measured values of a process variable.
- y-axis: displays the approximate measured value span and constantly adapts this to the ongoing measurement.
Display channel 2

Navigation Expert → Diagnostics → Data logging → Displ.channel 2
Prerequisite A process variable is defined in the Assign channel 2 parameter.
Description See the Display channel 1 parameter → 132

"Display channel 3" submenu

Navigation Expert → Diagnostics → Data logging → Displ.channel 3

Display channel 3

Navigation Expert → Diagnostics → Data logging → Displ.channel 3
Prerequisite A process variable is defined in the Assign channel 3 parameter.
Description See the Display channel 1 parameter → 132

"Display channel 4" submenu

Navigation Expert → Diagnostics → Data logging → Displ.channel 4

Display channel 4

Navigation Expert → Diagnostics → Data logging → Displ.channel 4
Prerequisite A process variable is defined in the Assign channel 4 parameter.
Description

See the Display channel 1 parameter → 132

3.6.5 "Min/max values" submenu

Navigation

Expert → Diagnostics → Min/max val.

"Electronic temperature" submenu

Navigation

Expert → Diagnostics → Min/max val. → Electronic temp.

Minimum value

Description

Displays the lowest previously measured temperature value of the main electronics module.

User interface

-273.15 to 726.75 °C

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 48)

Maximum value

Description

Displays the highest previously measured temperature value of the main electronics module.
Proline t-mass A, B 150 HART

Description of device parameters

User interface

-273.15 to 726.75 °C

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 48)

"Process temperature" submenu

Navigation

Minimum value

-273.15 to 726.75 °C

User interface

-273.15 to 726.75 °C

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 48)

Maximum value

-273.15 to 726.75 °C

User interface

-273.15 to 726.75 °C

Additional information

Dependency

The unit is taken from the Temperature unit parameter (→ 48)
3.6.6 "Simulation" submenu

Navigation

Expert → Diagnostics → Simulation

Assign simulation process variable

Navigation

Expert → Diagnostics → Simulation → Assign proc.var. (1810)

Description

Use this function to select a process variable for the simulation process that is activated. The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.

Selection

- Off
- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature

Factory setting

Off

Additional information

The simulation value of the process variable selected is defined in the Value process variable parameter (→ 137).
Value process variable

Navigation
Expert → Diagnostics → Simulation → Value proc. var. (1811)

Prerequisite
One of the following options is selected in the **Assign simulation process variable** parameter (→ 136):
- Mass flow
- Corrected volume flow
- FAD volume flow
- Temperature

Description
Use this function to enter a simulation value for the selected process variable. Subsequent measured value processing and the signal output use this simulation value. In this way, users can verify whether the measuring device has been configured correctly.

User entry
Depends on the process variable selected

Factory setting
0

Additional information
User entry
The unit of the displayed measured value is taken from the **System units** submenu (→ 43).

Simulation current output 1

Navigation
Expert → Diagnostics → Simulation → Sim.curr.out. 1 (0354–1)

Description
Use this function to switch simulation of the current output on and off. The display alternates between the measured value and a diagnostic message of the "Function check" category (C) while simulation is in progress.

Selection
- Off
- On

Factory setting
Off

Additional information
Description
The desired simulation value is specified in the **Value current output 1** parameter (→ 138).

Selection
- Off
 Current simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- On
 Current simulation is active.
Description of device parameters

Value current output 1

Navigation

Expert → Diagnostics → Simulation → Value curr.out 1 (0355–1)

Prerequisite

In the **Simulation current output 1** parameter, the **On** option is selected.

Description

Use this function to enter a current value for the simulation. In this way, users can verify the correct adjustment of the current output and the correct function of downstream switching units.

User entry

3.59 to 22.5 mA

Frequency simulation

Navigation

Expert → Diagnostics → Simulation → Frequency sim. (0472)

Prerequisite

In the **Operating mode** parameter (→ 86), the **Frequency** option is selected.

Description

Use this function to switch simulation of the frequency output on and off. The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.

Selection

- Off
- On

Factory setting

Off

Additional information

Description

The desired simulation value is defined in the **Frequency value** parameter (→ 138).

Selection

- Off
 Frequency simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- On
 Frequency simulation is active.

Frequency value

Navigation

Expert → Diagnostics → Simulation → Freq. value (0473)

Prerequisite

In the **Frequency simulation** parameter (→ 138), the **On** option is selected.

Description

Use this function to enter a frequency value for the simulation. In this way, users can verify the correct adjustment of the frequency output and the correct function of downstream switching units.
User entry 0.0 to 1250 Hz
Factory setting 0.0 Hz

Pulse simulation

Navigation

Prerequisite
In the Operating mode parameter (→ 86), the Pulse option is selected.

Description
Use this function to switch simulation of the pulse output on and off. The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.

Selection
• Off
• Fixed value
• Down-counting value

Factory setting Off

Additional information

Selection

The desired simulation value is defined in the Pulse value parameter (→ 139).

Pulse value

Navigation

Prerequisite
In the Pulse simulation parameter (→ 139), the Down-counting value option is selected.

Description
Use this function to enter a pulse value for the simulation. In this way, users can verify the correct adjustment of the pulse output and the correct function of downstream switching units.

User entry 0 to 65535
Switch output simulation

Navigation

Expert → Diagnostics → Simulation → Switch sim. (0462)

Prerequisite

In the Operating mode parameter (→ 86), the Switch option is selected.

Description

Use this function to switch simulation of the switch output on and off. The display alternates between the measured value and a diagnostic message of the "Function check" category (C) while simulation is in progress.

Selection

- Off
- On

Factory setting

Off

Additional information

Description

The desired simulation value is defined in the Switch status parameter (→ 140).

Selection

- Off
 Switch simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- On
 Switch simulation is active.

Switch status

Navigation

Expert → Diagnostics → Simulation → Switch status (0463)

Prerequisite

In the Switch output simulation parameter (→ 140), the On option is selected.

Description

Use this function to select a switch value for the simulation. In this way, users can verify the correct adjustment of the switch output and the correct function of downstream switching units.

Selection

- Open
- Closed

Factory setting

Open

Additional information

Selection

- Open
 Switch simulation is switched off. The device is in normal measuring mode or another process variable is being simulated.
- Closed
 Switch simulation is active.
Simulation device alarm

Navigation

Expert → Diagnostics → Simulation → Sim. alarm (0654)

Description

Use this function to switch the device alarm on and off.

Selection

- Off
- On

Factory setting

Off

Additional information

Description

The display alternates between the measured value and a diagnostic message of the “Function check” category (C) while simulation is in progress.

Diagnostic event category

Navigation

Expert → Diagnostics → Simulation → Event category (0738)

Description

Use this function to select the category of the diagnostic events that are displayed for the simulation in the Simulation diagnostic event parameter (→ 141).

Selection

- Sensor
- Electronics
- Configuration
- Process

Factory setting

Sensor

Simulation diagnostic event

Navigation

Expert → Diagnostics → Simulation → Sim. diag. event (0737)

Description

Use this function to select a diagnostic event for the simulation process that is activated.

Selection

- Off
- Diagnostic event picklist (depends on the category selected)

Factory setting

Off

Additional information

Description

For the simulation, you can choose from the diagnostic events of the category selected in the Diagnostic event category parameter (→ 141).
4 Country-specific factory settings

4.1 SI units

Not valid for USA and Canada.

4.1.1 System units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow</td>
<td>kg/h</td>
</tr>
<tr>
<td>Mass</td>
<td>kg</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Nm³/h</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Nm³</td>
</tr>
<tr>
<td>FAD volume flow</td>
<td>m³ FAD/h</td>
</tr>
<tr>
<td>FAD volume</td>
<td>m³ FAD</td>
</tr>
<tr>
<td>Density</td>
<td>kg/m³</td>
</tr>
<tr>
<td>Reference density</td>
<td>kg/Nm³</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>Length</td>
<td>mm</td>
</tr>
<tr>
<td>Pressure</td>
<td>bar a</td>
</tr>
</tbody>
</table>

4.1.2 Full scale values

The factory settings apply to the following parameters:
- 20 mA value (full scale value of the current output)
- 100% bar graph value 1

t-mass A

<table>
<thead>
<tr>
<th>DN [mm]</th>
<th>[kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>53</td>
</tr>
<tr>
<td>25</td>
<td>200</td>
</tr>
<tr>
<td>40</td>
<td>555</td>
</tr>
<tr>
<td>50</td>
<td>910</td>
</tr>
</tbody>
</table>

t-mass B

<table>
<thead>
<tr>
<th>DN [mm]</th>
<th>[kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>7500</td>
</tr>
</tbody>
</table>

4.1.3 Output current span

Current output 1 4 to 20 mA NAMUR
4.1.4 Pulse value

\textit{t-mass A} \\

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.1</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
</tr>
</tbody>
</table>

\textit{t-mass B} \\

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>100</td>
</tr>
</tbody>
</table>

4.1.5 On value low flow cut off

The switch-on point depends on the type of medium and the nominal diameter.

\textit{t-mass A} \\

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>[kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.53</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>5.55</td>
</tr>
<tr>
<td>50</td>
<td>9.1</td>
</tr>
</tbody>
</table>

\textit{t-mass B} \\

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>[kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>75</td>
</tr>
</tbody>
</table>

4.2 US units

Only valid for USA and Canada.

4.2.1 System units

<table>
<thead>
<tr>
<th>Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow</td>
<td>lb/h</td>
</tr>
<tr>
<td>Mass flow</td>
<td>lb/min</td>
</tr>
<tr>
<td>Mass</td>
<td>lb</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>ft³/min</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>ft³</td>
</tr>
<tr>
<td>FAD volume flow</td>
<td>cf FAD/min</td>
</tr>
<tr>
<td>FAD volume</td>
<td>cf FAD</td>
</tr>
<tr>
<td>Density</td>
<td>lb/ft³</td>
</tr>
</tbody>
</table>
4.2.2 Full scale values

The factory settings apply to the following parameters:
- 20 mA value (full scale value of the current output)
- 100% bar graph value 1

t-mass A

<table>
<thead>
<tr>
<th>DN [in]</th>
<th>[lb/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>½</td>
<td>116</td>
</tr>
<tr>
<td>1</td>
<td>440</td>
</tr>
<tr>
<td>1½</td>
<td>1220</td>
</tr>
<tr>
<td>2</td>
<td>2002</td>
</tr>
</tbody>
</table>

t-mass B

<table>
<thead>
<tr>
<th>DN [in]</th>
<th>[lb/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>16500</td>
</tr>
</tbody>
</table>

4.2.3 Output current span

Current output 1 4 to 20 mA US

4.2.4 Pulse value

t-mass A

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>[lb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>½</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1½</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

t-mass B

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>[lb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>200</td>
</tr>
</tbody>
</table>

4.2.5 On value low flow cut off

The switch-on point depends on the type of medium and the nominal diameter.
t-mass A

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>[lb/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>½</td>
<td>1.16</td>
</tr>
<tr>
<td>1</td>
<td>4.4</td>
</tr>
<tr>
<td>1½</td>
<td>12.2</td>
</tr>
<tr>
<td>2</td>
<td>20.02</td>
</tr>
</tbody>
</table>

t-mass B

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>[lb/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>165</td>
</tr>
</tbody>
</table>
5 Explanation of abbreviated units

5.1 SI units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>g/cm³</td>
<td>Gram/volume unit</td>
</tr>
<tr>
<td></td>
<td>kg/l, kg/dm³, kg/m³</td>
<td>Kilogram/volume unit</td>
</tr>
<tr>
<td>Pressure</td>
<td>kPa a, MPa a</td>
<td>Kilopascal, megapascal (absolute)</td>
</tr>
<tr>
<td></td>
<td>bar</td>
<td>Bar</td>
</tr>
<tr>
<td></td>
<td>mbar a</td>
<td>Millibar (absolute)</td>
</tr>
<tr>
<td>FAD volume</td>
<td>1 FAD, m³ FAD</td>
<td>FAD liter, FAD cubic meter</td>
</tr>
<tr>
<td>FAD volume flow</td>
<td>1 FAD/s, 1 FAD/min, 1 FAD/h, 1 FAD/d</td>
<td>FAD liter/time unit</td>
</tr>
<tr>
<td></td>
<td>m³ FAD/s, m³ FAD/min, m³ FAD/h, m³ FAD/d</td>
<td>FAD cubic meter/time unit</td>
</tr>
<tr>
<td>Length</td>
<td>mm, m</td>
<td>Millimeter, meter</td>
</tr>
<tr>
<td>Mass</td>
<td>g, kg, t</td>
<td>Gram, kilogram, metric ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>g/s, g/min, g/h, g/d</td>
<td>Gram/time unit</td>
</tr>
<tr>
<td></td>
<td>kg/s, kg/min, kg/h, kg/d</td>
<td>Kilogram/time unit</td>
</tr>
<tr>
<td></td>
<td>t/s, t/min, t/h, t/d</td>
<td>Metric ton/time unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Nl, Nm³, Sl, Sm³</td>
<td>Normal liter, normal cubic meter, standard liter, standard cubic meter</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Nl/s, Nl/min, Nl/h, Nl/d</td>
<td>Normal liter/time unit</td>
</tr>
<tr>
<td></td>
<td>Nm³/s, Nm³/min, Nm³/h, Nm³/d</td>
<td>Normal cubic meter/time unit</td>
</tr>
<tr>
<td></td>
<td>Sl/s, Sl/min, Sl/h, Sl/d</td>
<td>Standard liter/time unit</td>
</tr>
<tr>
<td></td>
<td>Sm³/s, Sm³/min, Sm³/h, Sm³/d</td>
<td>Standard cubic meter/time unit</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C, K</td>
<td>Celsius, Kelvin</td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
</tbody>
</table>

5.2 US units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>lb/ft³</td>
<td>Pound/cubic foot</td>
</tr>
<tr>
<td>Pressure</td>
<td>psi a</td>
<td>Psi absolute</td>
</tr>
<tr>
<td>FAD volume</td>
<td>cf FAD</td>
<td>FAD cubic foot</td>
</tr>
<tr>
<td>FAD volume flow</td>
<td>cf FAD/s, cf FAD/min, cf FAD/h, cf FAD/d</td>
<td>FAD cubic foot/time unit</td>
</tr>
<tr>
<td>Length</td>
<td>in, ft</td>
<td>Inch, foot</td>
</tr>
<tr>
<td>Mass</td>
<td>oz, lb, STon</td>
<td>Ounce, pound, standard ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>oz/s, oz/min, oz/h, oz/d</td>
<td>Ounce/time unit</td>
</tr>
<tr>
<td></td>
<td>lb/s, lb/min, lb/h, lb/d</td>
<td>Pound/time unit</td>
</tr>
<tr>
<td></td>
<td>STon/s, STon/min, STon/h, STon/d</td>
<td>Standard ton/time unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Sft³</td>
<td>Standard cubic foot</td>
</tr>
<tr>
<td>Process variable</td>
<td>Units</td>
<td>Explanation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Sft³/s, Sft³/min, Sft³/h, Sft³/d</td>
<td>Standard cubic foot/time unit</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F, °R</td>
<td>Fahrenheit, Rankine</td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
<tr>
<td></td>
<td>am, pm</td>
<td>Ante meridiem (before midday), post meridiem (after midday)</td>
</tr>
</tbody>
</table>

5.3 Imperial units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>LTon</td>
<td>Long ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>LTon/s, LTon/min, LTon/h, LTon/d</td>
<td>Long ton/time unit</td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
<tr>
<td></td>
<td>am, pm</td>
<td>Ante meridiem (before midday), post meridiem (after midday)</td>
</tr>
</tbody>
</table>
Index

0 ... 9

- 0% bargraph value 1 (Parameter) .. 18
- 0% bargraph value 3 (Parameter) .. 21
- 4 mA value (Parameter) .. 79
- 20 mA value (Parameter) .. 80
- 100% bargraph value 1 (Parameter) ... 19
- 100% bargraph value 3 (Parameter) ... 21

A

- Access status display (Parameter) ... 11, 26
- Access status tooling (Parameter) .. 12
- Activate SW option (Parameter) ... 36
- Adjustment values in use (Submenu) .. 65
- Alarm delay (Parameter) ... 31
- Application (Submenu) ... 111
- Apply (Parameter) ... 76
- Assign behavior of diagnostic no. 441 (Parameter) 32
- Assign behavior of diagnostic no. 442 (Parameter) 32
- Assign behavior of diagnostic no. 443 (Parameter) 33
- Assign behavior of diagnostic no. 801 (Parameter) 33
- Assign behavior of diagnostic no. 832 (Parameter) 33
- Assign behavior of diagnostic no. 833 (Parameter) 34
- Assign behavior of diagnostic no. 834 (Parameter) 34
- Assign behavior of diagnostic no. 835 (Parameter) 35
- Assign channel 1 (Parameter) ... 129
- Assign channel 2 (Parameter) ... 129
- Assign channel 3 (Parameter) ... 130
- Assign channel 4 (Parameter) ... 130
- Assign current output (Parameter) .. 78
- Assign diagnostic behavior (Parameter) 96
- Assign frequency output (Parameter) 91
- Assign limit (Parameter) ... 97
- Assign process variable (Parameter) 53, 112
- Assign pulse output (Parameter) .. 88
- Assign PV (Parameter) .. 109
- Assign QV (Parameter) ... 111
- Assign simulation process variable (Parameter) 136
- Assign status (Parameter) ... 99
- Assign SV (Parameter) ... 109
- Assign TV (Parameter) ... 110

B

- Backlight (Parameter) ... 26
- Backup state (Parameter) ... 29
- Burst command (Parameter) .. 103
- Burst mode (Parameter) .. 103

C

- Calculated values (Submenu) .. 56
- Calibration (Submenu) ... 76
- Calibration date/time (Parameter) .. 76
- Clear logging data (Parameter) ... 131
- Clear values (Parameter) .. 71
- Communication (Submenu) ... 102
- Comparison result (Parameter) ... 29
- Configuration (Submenu) .. 102
- Configuration backup display (Submenu) 27
- Configuration counter (Parameter) ... 128
- Configuration management (Parameter) 28
- Contrast display (Parameter) .. 26
- Control Totalizer (Parameter) ... 114
- Corrected volume flow (Parameter) 38
- Corrected volume flow unit (Parameter) 45
- Corrected volume unit (Parameter) 46
- Current output 1 (Submenu) ... 77
- Current span (Parameter) .. 78
- Decimal places 2 (Parameter) ... 20
- Decimal places 3 (Parameter) ... 22
- Density unit (Parameter) .. 48
- Device ID (Parameter) .. 106
- Device information (Submenu) .. 125
- Device name (Parameter) .. 126
- Device reset (Parameter) .. 35
- Device revision (Parameter) ... 105
- Device tag (Parameter) ... 125
- Device type (Parameter) .. 106
- Diagnostic behavior (Submenu) ... 31
- Diagnostic event category (Parameter) 141
- Diagnostic handling (Submenu) .. 30
- Diagnostic list (Submenu) .. 118
- Diagnostics (Submenu) ... 115
- Diagnostics 1 (Parameter) ... 118
- Diagnostics 2 (Parameter) ... 119
- Diagnostics 3 (Parameter) ... 120
- Diagnostics 4 (Parameter) ... 121
- Diagnostics 5 (Parameter) ... 122
- Direct access
 - 0% bargraph value 1 (0123) .. 18
 - 0% bargraph value 3 (0124) .. 21
 - 4 mA value
 - Current output 1 (0367–1) ... 79
 - 20 mA value
 - Current output 1 (0372–1) ... 80
 - 100% bargraph value 1 (0125) .. 19
 - 100% bargraph value 3 (0126) .. 21
 - Access status display (0091) ... 11, 26
 - Access status tooling (0005) .. 12
 - Activate SW option (0029) .. 36
 - Actual diagnostics (0691) ... 116
 - Alarm delay (0651) ... 31
 - Apply (3528) .. 76
<table>
<thead>
<tr>
<th>Assign current output</th>
<th>Current output 1 (0359–1)</th>
<th>78</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign diagnostic behavior</td>
<td>Pulse-Frequency-Switch output 1 (0482–1)</td>
<td>96</td>
</tr>
<tr>
<td>Assign frequency output</td>
<td>Pulse-Frequency-Switch output 1 (0478–1)</td>
<td>91</td>
</tr>
<tr>
<td>Assign limit</td>
<td>Pulse-Frequency-Switch output 1 (0483–1)</td>
<td>97</td>
</tr>
<tr>
<td>Assign process variable (0914)</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>Assign process variable (1837)</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Assign pulse output</td>
<td>Pulse-Frequency-Switch output 1 (0460–1)</td>
<td>88</td>
</tr>
<tr>
<td>Assign PV (0234)</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>Assign QV (0237)</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Assign simulation process variable (1810)</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Assign status</td>
<td>Pulse-Frequency-Switch output 1 (0485–1)</td>
<td>99</td>
</tr>
<tr>
<td>Assign SV (0235)</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>Assign TV (0236)</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Backlight (0111)</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Backup state (0121)</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Burst command (0207)</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>Burst mode (0208)</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>Calibration date/time (3436)</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Clear logging data (0855)</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Clear values (3529)</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Comparison result (0103)</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Configuration counter (0233)</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Configuration management (0100)</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Contrast display (0105)</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Control Totalizer (0912)</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Corrected volume flow (1847)</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Corrected volume flow unit (0558)</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Corrected volume unit (0575)</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Current span</td>
<td>Current output 1 (0353–1)</td>
<td>78</td>
</tr>
<tr>
<td>Damping</td>
<td>Current output 1 (0363–1)</td>
<td>81</td>
</tr>
<tr>
<td>Damping output</td>
<td>Pulse-Frequency-Switch output 1 (0477–1)</td>
<td>93</td>
</tr>
<tr>
<td>Data validity (3434)</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Date/time format (2812)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Decimal places 1 (0095)</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Decimal places 2 (0117)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Decimal places 3 (0118)</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Decimal places 4 (0119)</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Define access code (0093)</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Density unit (0555)</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Device ID (0221)</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>Device name (0013)</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Device reset (0000)</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Device revision (0204)</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Device tag (0111)</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Device type (0222)</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>Diagnostic event category (0738)</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>Diagnostics 1 (0692)</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Diagnostics 2 (0693)</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>Diagnostics 3 (0694)</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Diagnostics 4 (0695)</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Diagnostics 5 (0696)</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>Direct access (0106)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Display damping (0094)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Display interval (0096)</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Duct internal height (3405)</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Duct internal width (3411)</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>ENP version (0012)</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Enter access code (0003)</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Enter access code (0092)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Extended order code 1 (0023)</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Extended order code 2 (0021)</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Extended order code 3 (0022)</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>FAD conditions (3438)</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>FAD density (3372)</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>FAD pressure (3373)</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>FAD temperature (3374)</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>FAD volume flow (1851)</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>FAD volume flow unit (0601)</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>FAD volume unit (0591)</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Failure current</td>
<td>Current output 1 (0352–1)</td>
<td>83</td>
</tr>
<tr>
<td>Failure frequency</td>
<td>Pulse-Frequency-Switch output 1 (0474–1)</td>
<td>95</td>
</tr>
<tr>
<td>Failure mode</td>
<td>Current output 1 (0364–1)</td>
<td>82</td>
</tr>
<tr>
<td>Pulse-Frequency-Switch output 1 (0451–1)</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Pulse-Frequency-Switch output 1 (0480–1)</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Pulse-Frequency-Switch output 1 (0486–1)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Failure mode (0901)</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Filter options</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>Filter options (0705)</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>Firmware version (0010)</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Fixed current</td>
<td>Current output 1 (0365–1)</td>
<td>79</td>
</tr>
<tr>
<td>Flow conditioner (3404)</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Flow damping (1802)</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Flow override (1839)</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Flow reference in use (3440)</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Flow reference value 1 (3384)</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Flow reference value 1 (3401)</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Flow reference value 2 (3385)</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Flow reference value 2 (3418)</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Flow reference value 3 (3386)</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Flow reference value 3 (3419)</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Flow reference value 4 (3387)</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Flow reference value 4 (3420)</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Flow reference value 5 (3388)</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow reference value 5 (3421) ... 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow reference value 6 (3389) ... 74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow reference value 6 (3422) ... 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow reference value 7 (3390) ... 74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow reference value 7 (3423) ... 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow reference value 8 (3391) ... 75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow reference value 8 (3424) ... 69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Format display (0098) ... 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency simulation (0472) .. 138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency value (0473) .. 138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware revision (0206) .. 108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HART address (0219) .. 104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HART date code (0202) ... 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HART descriptor (0212) .. 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HART message (0216) ... 107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HART revision (0205) ... 106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HART short tag (0220) ... 104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header (0097) .. 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header text (0112) .. 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insertion depth (3406) ... 63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation factor (3470) .. 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invert output signal Pulse–Frequency-Switch output 1 (0470–1) 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language (0104) .. 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last backup (0102) ... 28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length unit (0551) ... 49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locking status (0004) ... 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logging interval (0856) ... 130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer ID (0223) ... 106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass flow (1838) .. 38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass flow unit (0554) ... 44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass unit (0574) ... 45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum frequency value Pulse–Frequency-Switch output 1 (0454–1) 92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum value (3444) .. 134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum value (3446) .. 135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measuring value at maximum frequency Pulse–Frequency-Switch output 1 (0475–1) .. 92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measuring value at minimum frequency Pulse–Frequency-Switch output 1 (0476–1) .. 92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum frequency value Pulse–Frequency-Switch output 1 (0453–1) 91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum value (3445) ... 134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum value (3447) ... 135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mounting set height (3435) .. 62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of preambles (0217) .. 104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off value low flow cutoff (1804) .. 54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On value low flow cutoff (1805) ... 54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating mode Pulse–Frequency-Switch output 1 (0469–1) 86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating mode (3400) ... 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating time (0652) ... 27, 118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating time from restart (0653) 118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order code (0008) ... 126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orientation (3437) .. 62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output current (0361) .. 42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output current 1 (0361–1) .. 84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output current Pulse–Frequency-Switch output 1 (0471–1) 95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Output current (0361) .. 42 |
| Output current 1 (0361–1) .. 84 |
| Output frequency Pulse–Frequency-Switch output 1 (0471–1) 95 |

| Output frequency (0471) .. 43 |
| Pipe inner diameter (3476) ... 61 |
| Pipe shape (3441) .. 60 |
| Pipe wall thickness (3409) .. 62 |
| Power coefficient 1 (3392) ... 71 |
| Power coefficient 1 (3425) ... 66 |
| Power coefficient 2 (3393) ... 72 |
| Power coefficient 2 (3426) ... 66 |
| Power coefficient 3 (3394) ... 72 |
| Power coefficient 3 (3427) ... 67 |
| Power coefficient 4 (3395) ... 73 |
| Power coefficient 4 (3428) ... 67 |
| Power coefficient 5 (3396) ... 73 |
| Power coefficient 5 (3429) ... 68 |
| Power coefficient 6 (3397) ... 74 |
| Power coefficient 6 (3430) ... 68 |
| Power coefficient 7 (3398) ... 74 |
| Power coefficient 7 (3431) ... 69 |
| Power coefficient 8 (3399) ... 75 |
| Power coefficient 8 (3432) ... 69 |
| Preset value (0913) .. 114 |
| Pressure unit (0564) ... 49 |
| Previous diagnostics (0690) .. 117 |
| Primary variable (PV) (0201) ... 109 |
| Pulse output Pulse–Frequency-Switch output 1 (0456–1) 90 |
| Pulse output (0456) .. 42 |
| Pulse simulation (0458) .. 139 |
| Pulse value (0459) .. 139 |
| Pulse width Pulse–Frequency-Switch output 1 (0452–1) 88 |
| Reference conditions (3439) .. 56 |
| Reference density (3377) .. 57 |
| Reference flow (3378) .. 57 |
| Reference temperature (3379) .. 57 |
| Reset all totalizers (2806) .. 112 |
| Reset write protection (0019) .. 37 |
| Response time Current output 1 (0378–1) 82 |
| Current–Frequency-Switch output 1 (0491–1) 93 |
| Current variable (PV) (0203) .. 111 |
| Secondary variable (SV) (0226) .. 110 |
| Select flow reference (3382) ... 70 |
| Select gas type (3381) .. 55 |
| Separator (0101) .. 25 |
| Serial number (0009) ... 126 |
| Simulation current output 1 (0354–1) 137 |
| Simulation device alarm (0654) .. 141 |
| Simulation diagnostic event (0737) 141 |
| Software revision (0224) .. 108 |
| Start-up current Current output 1 (0369–1) 84 |
| Start-up mode Current output 1 (0368–1) 84 |
| Switch output function Pulse–Frequency-Switch output 1 (0481–1) 95 |
| Switch output simulation (0462) .. 140 |
| Switch status Pulse–Frequency-Switch output 1 (0461–1) 101 |
Switch status (0461)	43
Switch status (0463)	140
Switch-off delay	
Pulse-Frequency-Switch output 1 (0465-1)	100
Switch-off value	
Pulse-Frequency-Switch output 1 (0464-1)	99
Switch-on delay	
Pulse-Frequency-Switch output 1 (0467-1)	100
Switch-on value	
Pulse-Frequency-Switch output 1 (0466-1)	98
Temperature (1853)	39
Temperature unit (0557)	48
Tertiary variable (TV) (0228)	110
Timestamp	116, 117, 119, 120, 121, 122
Totalizer overflow (0910)	41
Totalizer value (0911)	40
Unit (0915)	113
User mass factor (0561)	51
User mass offset (0562)	51
User mass text (0560)	51
Value 1 display (0107)	18
Value 2 display (0108)	19
Value 3 display (0110)	20
Value 4 display (0109)	22
Value current output 1 (0355-1)	138
Value per pulse	
Pulse-Frequency-Switch output 1 (0455-1)	88
Value process variable (1811)	137
Direct access (Parameter)	10
Display (Submenu)	14
Display channel 1 (Submenu)	132
Display channel 2 (Submenu)	132
Display channel 3 (Submenu)	133
Display channel 4 (Submenu)	133
Display damping (Parameter)	24
Display interval (Parameter)	23
Document	
Explanation of the structure of a parameter description	6
Function	4
Structure	4
Symbols used	6
Target group	4
Using the document	4
Document function	4
Duct internal height (Parameter)	61
Duct internal width (Parameter)	61

E

Electronic temperature (Submenu)	134
ENP version (Parameter)	128
Enter access code (Parameter)	12, 13
Event list (Submenu)	124
Event logbook (Submenu)	122
Extended order code 1 (Parameter)	127
Extended order code 2 (Parameter)	127
Extended order code 3 (Parameter)	127

F

Factory settings	142
SI units	142
US units	143
FAD conditions (Parameter)	58
FAD density (Parameter)	59
FAD pressure (Parameter)	58
FAD temperature (Parameter)	59
FAD volume flow (Parameter)	39
FAD volume flow unit (Parameter)	47
FAD volume unit (Parameter)	47
Failure current (Parameter)	83
Failure frequency (Parameter)	95
Failure mode (Parameter)	82, 89, 94, 100, 115
Filter options (Parameter)	123
Firmware version (Parameter)	126
Fixed current (Parameter)	79
Flow conditioner (Parameter)	76
Flow damping (Parameter)	52
Flow override (Parameter)	52
Flow reference in use (Parameter)	65
Flow reference value 1 (Parameter)	66, 71
Flow reference value 2 (Parameter)	66, 72
Flow reference value 3 (Parameter)	67, 72
Flow reference value 4 (Parameter)	67, 73
Flow reference value 5 (Parameter)	67, 73
Flow reference value 6 (Parameter)	68, 74
Flow reference value 7 (Parameter)	68, 74
Flow reference value 8 (Parameter)	69, 75
Format display (Parameter)	16
Frequency simulation (Parameter)	138
Frequency value (Parameter)	138
Function see Parameter	

H

Hardware revision (Parameter)	108
HART address (Parameter)	104
HART date code (Parameter)	107
HART descriptor (Parameter)	107
HART message (Parameter)	107
HART output (Submenu)	102
HART revision (Parameter)	106
HART short tag (Parameter)	104
Header (Parameter)	24
Header text (Parameter)	25

I

In-situ adjustment (Submenu)	64
Information (Submenu)	105
Insertion depth (Parameter)	63
Installation factor (Parameter)	60
Installation settings (Submenu)	60
Invert output signal (Parameter)	101

L

<p>| Language (Parameter) | 15 |
| Last backup (Parameter) | 28 |
| Length unit (Parameter) | 49 |</p>
<table>
<thead>
<tr>
<th>Key</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locking status (Parameter)</td>
<td>11</td>
</tr>
<tr>
<td>Logging interval (Parameter)</td>
<td>130</td>
</tr>
<tr>
<td>Low flow cut off (Submenu)</td>
<td>53</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Management (Submenu)</td>
<td>35</td>
</tr>
<tr>
<td>Manufacturer ID (Parameter)</td>
<td>106</td>
</tr>
<tr>
<td>Mass flow (Parameter)</td>
<td>38</td>
</tr>
<tr>
<td>Mass flow unit (Parameter)</td>
<td>44</td>
</tr>
<tr>
<td>Mass unit (Parameter)</td>
<td>45</td>
</tr>
<tr>
<td>Maximum frequency value (Parameter)</td>
<td>92</td>
</tr>
<tr>
<td>Maximum value (Parameter)</td>
<td>134,135</td>
</tr>
<tr>
<td>Measured values (Submenu)</td>
<td>37</td>
</tr>
<tr>
<td>Measurement mode (Submenu)</td>
<td>55</td>
</tr>
<tr>
<td>Measuring value at maximum frequency (Parameter)</td>
<td>92</td>
</tr>
<tr>
<td>Measuring value at minimum frequency (Parameter)</td>
<td>92</td>
</tr>
<tr>
<td>Min/max values (Submenu)</td>
<td>134</td>
</tr>
<tr>
<td>Minimum frequency value (Parameter)</td>
<td>91</td>
</tr>
<tr>
<td>Minimum value (Parameter)</td>
<td>134,135</td>
</tr>
<tr>
<td>Mounting set height (Parameter)</td>
<td>62</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>New adjustment (Submenu)</td>
<td>69</td>
</tr>
<tr>
<td>No. of preambles (Parameter)</td>
<td>104</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Off value low flow cutoff (Parameter)</td>
<td>54</td>
</tr>
<tr>
<td>On value low flow cutoff (Parameter)</td>
<td>54</td>
</tr>
<tr>
<td>Operating mode (Parameter)</td>
<td>64,86</td>
</tr>
<tr>
<td>Operating time (Parameter)</td>
<td>27,118</td>
</tr>
<tr>
<td>Operating time from restart (Parameter)</td>
<td>118</td>
</tr>
<tr>
<td>Order code (Parameter)</td>
<td>126</td>
</tr>
<tr>
<td>Orientation (Parameter)</td>
<td>62</td>
</tr>
<tr>
<td>Output (Submenu)</td>
<td>77,108</td>
</tr>
<tr>
<td>Output current (Parameter)</td>
<td>42</td>
</tr>
<tr>
<td>Output current 1 (Parameter)</td>
<td>84</td>
</tr>
<tr>
<td>Output frequency (Parameter)</td>
<td>43,95</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td></td>
</tr>
<tr>
<td>Structure of a parameter description</td>
<td>6</td>
</tr>
<tr>
<td>Perform adjustment (Submenu)</td>
<td>70</td>
</tr>
<tr>
<td>Pipe inner diameter (Parameter)</td>
<td>61</td>
</tr>
<tr>
<td>Pipe shape (Parameter)</td>
<td>60</td>
</tr>
<tr>
<td>Pipe wall thickness (Parameter)</td>
<td>62</td>
</tr>
<tr>
<td>Power coefficient 1 (Parameter)</td>
<td>66,71</td>
</tr>
<tr>
<td>Power coefficient 2 (Parameter)</td>
<td>66,72</td>
</tr>
<tr>
<td>Power coefficient 3 (Parameter)</td>
<td>67,72</td>
</tr>
<tr>
<td>Power coefficient 4 (Parameter)</td>
<td>67,73</td>
</tr>
<tr>
<td>Power coefficient 5 (Parameter)</td>
<td>68,73</td>
</tr>
<tr>
<td>Power coefficient 6 (Parameter)</td>
<td>68,74</td>
</tr>
<tr>
<td>Power coefficient 7 (Parameter)</td>
<td>69,74</td>
</tr>
<tr>
<td>Power coefficient 8 (Parameter)</td>
<td>69,75</td>
</tr>
<tr>
<td>Preset value (Parameter)</td>
<td>114</td>
</tr>
<tr>
<td>Pressure unit (Parameter)</td>
<td>49</td>
</tr>
<tr>
<td>Previous diagnostics (Parameter)</td>
<td>117</td>
</tr>
<tr>
<td>Primary variable (PV) (Parameter)</td>
<td>109</td>
</tr>
<tr>
<td>Process parameters (Submenu)</td>
<td>52</td>
</tr>
<tr>
<td>Process temperature (Submenu)</td>
<td>135</td>
</tr>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>Quaternary variable (QV) (Parameter)</td>
<td>111</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Reference conditions (Parameter)</td>
<td>56</td>
</tr>
<tr>
<td>Reference density (Parameter)</td>
<td>57</td>
</tr>
<tr>
<td>Reference pressure (Parameter)</td>
<td>57</td>
</tr>
<tr>
<td>Reference temperature (Parameter)</td>
<td>57</td>
</tr>
<tr>
<td>Reference values (Submenu)</td>
<td>56</td>
</tr>
<tr>
<td>Reset all totalizers (Parameter)</td>
<td>112</td>
</tr>
<tr>
<td>Reset write protection (Parameter)</td>
<td>37</td>
</tr>
<tr>
<td>Response time (Parameter)</td>
<td>82,93</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Secondary variable (SV) (Parameter)</td>
<td>110</td>
</tr>
<tr>
<td>Select flow reference (Parameter)</td>
<td>70</td>
</tr>
<tr>
<td>Select gas type (Parameter)</td>
<td>55</td>
</tr>
<tr>
<td>Sensor (Submenu)</td>
<td>37</td>
</tr>
<tr>
<td>Sensor adjustment (Submenu)</td>
<td>59</td>
</tr>
<tr>
<td>Separator (Parameter)</td>
<td>25</td>
</tr>
<tr>
<td>Serial number (Parameter)</td>
<td>126</td>
</tr>
<tr>
<td>Simulation (Submenu)</td>
<td>136</td>
</tr>
<tr>
<td>Simulation current output 1 (Parameter)</td>
<td>137</td>
</tr>
<tr>
<td>Simulation device alarm (Parameter)</td>
<td>141</td>
</tr>
<tr>
<td>Simulation diagnostic event (Parameter)</td>
<td>141</td>
</tr>
<tr>
<td>Software revision (Parameter)</td>
<td>108</td>
</tr>
<tr>
<td>Start-up current (Parameter)</td>
<td>84</td>
</tr>
<tr>
<td>Start-up mode (Parameter)</td>
<td>84</td>
</tr>
<tr>
<td>Submenu</td>
<td></td>
</tr>
<tr>
<td>Adjustment values in use</td>
<td>65</td>
</tr>
<tr>
<td>Application</td>
<td>111</td>
</tr>
<tr>
<td>Calculated values</td>
<td>56</td>
</tr>
<tr>
<td>Calibration</td>
<td>76</td>
</tr>
<tr>
<td>Communication</td>
<td>102</td>
</tr>
<tr>
<td>Configuration</td>
<td>102</td>
</tr>
<tr>
<td>Configuration backup display</td>
<td>27</td>
</tr>
<tr>
<td>Current output 1</td>
<td>77</td>
</tr>
<tr>
<td>Data logging</td>
<td>128</td>
</tr>
<tr>
<td>Device information</td>
<td>125</td>
</tr>
<tr>
<td>Diagnostic behavior</td>
<td>31</td>
</tr>
<tr>
<td>Diagnostic handling</td>
<td>30</td>
</tr>
<tr>
<td>Diagnostic list</td>
<td>118</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>115</td>
</tr>
<tr>
<td>Display</td>
<td>14</td>
</tr>
<tr>
<td>Display channel 1</td>
<td>132</td>
</tr>
<tr>
<td>Display channel 2</td>
<td>132</td>
</tr>
<tr>
<td>Display channel 3</td>
<td>133</td>
</tr>
<tr>
<td>Display channel 4</td>
<td>133</td>
</tr>
<tr>
<td>Electronic temperature</td>
<td>134</td>
</tr>
<tr>
<td>Event list</td>
<td>124</td>
</tr>
<tr>
<td>Event logbook</td>
<td>122</td>
</tr>
<tr>
<td>HART output</td>
<td>102</td>
</tr>
<tr>
<td>Index</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>In-situ adjustment</td>
<td>64</td>
</tr>
<tr>
<td>Information</td>
<td>105</td>
</tr>
<tr>
<td>Installation settings</td>
<td>60</td>
</tr>
<tr>
<td>Low flow cut off</td>
<td>53</td>
</tr>
<tr>
<td>Management</td>
<td>35</td>
</tr>
<tr>
<td>Measured values</td>
<td>37</td>
</tr>
<tr>
<td>Measurement mode</td>
<td>55</td>
</tr>
<tr>
<td>Min/max values</td>
<td>134</td>
</tr>
<tr>
<td>New adjustment</td>
<td>69</td>
</tr>
<tr>
<td>Output</td>
<td>77, 108</td>
</tr>
<tr>
<td>Output values</td>
<td>41</td>
</tr>
<tr>
<td>Perform adjustment</td>
<td>70</td>
</tr>
<tr>
<td>Process parameters</td>
<td>52</td>
</tr>
<tr>
<td>Process temperature</td>
<td>135</td>
</tr>
<tr>
<td>Process variables</td>
<td>38</td>
</tr>
<tr>
<td>Pulse-Frequency-Switch output</td>
<td>85</td>
</tr>
<tr>
<td>Reference values</td>
<td>56</td>
</tr>
<tr>
<td>Sensor</td>
<td>37</td>
</tr>
<tr>
<td>Sensor adjustment</td>
<td>59</td>
</tr>
<tr>
<td>Simulation</td>
<td>136</td>
</tr>
<tr>
<td>System</td>
<td>13</td>
</tr>
<tr>
<td>System units</td>
<td>43</td>
</tr>
<tr>
<td>Totalizer</td>
<td>40, 112</td>
</tr>
<tr>
<td>Use adjustment</td>
<td>75</td>
</tr>
<tr>
<td>User specific units</td>
<td>50</td>
</tr>
<tr>
<td>Switch output function (Parameter)</td>
<td>95</td>
</tr>
<tr>
<td>Switch output simulation (Parameter)</td>
<td>140</td>
</tr>
<tr>
<td>Switch status (Parameter)</td>
<td>43, 101, 140</td>
</tr>
<tr>
<td>Switch-off delay (Parameter)</td>
<td>100</td>
</tr>
<tr>
<td>Switch-off value (Parameter)</td>
<td>99</td>
</tr>
<tr>
<td>Switch-on delay (Parameter)</td>
<td>100</td>
</tr>
<tr>
<td>Switch-on value (Parameter)</td>
<td>98</td>
</tr>
<tr>
<td>System (Submenu)</td>
<td>13</td>
</tr>
<tr>
<td>System units (Submenu)</td>
<td>43</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Target group</td>
<td>4</td>
</tr>
<tr>
<td>Temperature (Parameter)</td>
<td>39</td>
</tr>
<tr>
<td>Temperature unit (Parameter)</td>
<td>48</td>
</tr>
<tr>
<td>Tertiary variable (TV) (Parameter)</td>
<td>110</td>
</tr>
<tr>
<td>Timestamp (Parameter)</td>
<td>116, 117, 119, 120, 121, 122</td>
</tr>
<tr>
<td>Totalizer (Submenu)</td>
<td>40, 112</td>
</tr>
<tr>
<td>Totalizer overflow (Parameter)</td>
<td>41</td>
</tr>
<tr>
<td>Totalizer value (Parameter)</td>
<td>40</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Unit (Parameter)</td>
<td>113</td>
</tr>
<tr>
<td>Use adjustment (Submenu)</td>
<td>75</td>
</tr>
<tr>
<td>User mass factor (Parameter)</td>
<td>51</td>
</tr>
<tr>
<td>User mass offset (Parameter)</td>
<td>51</td>
</tr>
<tr>
<td>User mass text (Parameter)</td>
<td>51</td>
</tr>
<tr>
<td>User specific units (Submenu)</td>
<td>50</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Value 1 display (Parameter)</td>
<td>18</td>
</tr>
<tr>
<td>Value 2 display (Parameter)</td>
<td>19</td>
</tr>
<tr>
<td>Value 3 display (Parameter)</td>
<td>20</td>
</tr>
<tr>
<td>Value 4 display (Parameter)</td>
<td>22</td>
</tr>
<tr>
<td>Value current output 1 (Parameter)</td>
<td>138</td>
</tr>
<tr>
<td>Value per pulse (Parameter)</td>
<td>88</td>
</tr>
<tr>
<td>Value process variable (Parameter)</td>
<td>137</td>
</tr>
</tbody>
</table>