Description of Device Parameters

Proline Cubemass 100
Modbus RS485

Coriolis flowmeter
Table of contents

1 Document information 4
 1.1 Document function 4
 1.2 Target group 4
 1.3 Using this document 4
 1.3.1 Information on the document structure 4
 1.3.2 Structure of a parameter description 6
 1.4 Symbols used 6
 1.4.1 Symbols for certain types of information 6
 1.4.2 Symbols in graphics 6

2 Overview of the Expert operating menu 7

3 Description of device parameters 9
 3.1 "System" submenu 11
 3.1.1 "Diagnostic handling" submenu 11
 3.1.2 "Administration" submenu 19
 3.2 "Sensor" submenu 22
 3.2.1 "Measured values" submenu 22
 3.2.2 "System units" submenu 28
 3.2.3 "Process parameters" submenu 42
 3.2.4 "Measurement mode" submenu 49
 3.2.5 "External compensation" submenu 51
 3.2.6 "Calculated values" submenu 53
 3.2.7 "Sensor adjustment" submenu 56
 3.2.8 "Calibration" submenu 62
 3.2.9 "Testpoints" submenu 64
 3.2.10 "Supervision" submenu 68
 3.3 "Communication" submenu 69
 3.3.1 "Modbus configuration" submenu 69
 3.3.2 "Modbus information" submenu 73
 3.3.3 "Modbus data map" submenu 74
 3.4 "Application" submenu 75
 3.4.1 "Totalizer 1 to 3" submenu 76
 3.4.2 "Concentration" submenu 81
 3.5 "Diagnostics" submenu 81
 3.5.1 "Diagnostic list" submenu 84
 3.5.2 "Event logbook" submenu 88
 3.5.3 "Device information" submenu 89
 3.5.4 "Min/max values" submenu 92
 3.5.5 "Heartbeat" submenu 98
 3.5.6 "Simulation" submenu 99

4 Country-specific factory settings 101
 4.1 SI units ... 101
 4.1.1 System units 101
 4.1.2 Full scale values 101
 4.1.3 On value low flow cut off 101
 4.2 US units ... 102
 4.2.1 System units 102

5 Explanation of abbreviated units 104
 5.1 SI units ... 104
 5.2 US units ... 104
 5.3 Imperial units 106

6 Modbus RS485 Register Information 107
 6.1 Notes ... 107
 6.1.1 Structure of the register information 107
 6.1.2 Address model 107
 6.2 Overview of the Expert operating menu 108
 6.3 Register information 114
 6.3.1 "System" submenu 114
 6.3.2 "Sensor" submenu 116
 6.3.3 "Communication" submenu 125
 6.3.4 "Application" submenu 126
 6.3.5 "Diagnostics" submenu 128

Index .. 132
1 Document information

1.1 Document function
The document is part of the Operating Instructions and serves as a reference for parameters, providing a detailed explanation of each individual parameter of the Expert operating menu.

1.2 Target group
The document is aimed at specialists who work with the device over the entire life cycle and perform specific configurations.

1.3 Using this document

1.3.1 Information on the document structure
This document lists the submenus and their parameters according to the structure of the Expert menu (→ 7) menu that are available once the "Operator" user role or the "Maintenance" user role is enabled.

![Sample graphic](image.png)

For information on the arrangement of the parameters according to the structure of the Operation menu, Setup menu, Diagnostics menu (→ 81), along with a brief description, see the Operating Instructions for the device.
For information about the operating philosophy, see the "Operating philosophy" chapter in the device's Operating Instructions
1.3.2 Structure of a parameter description
The individual parts of a parameter description are described in the following section:

<table>
<thead>
<tr>
<th>Complete parameter name</th>
<th>Write-protected parameter = ♫</th>
</tr>
</thead>
</table>

Navigation

- Navigation path to the parameter via the operating tool
- The names of the menus, submenus and parameters are displayed in abbreviated format.

Prerequisite

- The parameter is only available under these specific conditions

Description

- Description of the parameter function

Selection

- List of the individual options for the parameter
 - Option 1
 - Option 2

User entry

- Input range for the parameter

User interface

- Display value/data for the parameter

Factory setting

- Default setting ex works

Additional information

- Additional explanations (e.g. in examples):
 - On individual options
 - On display values/data
 - On the input range
 - On the factory setting
 - On the parameter function

1.4 Symbols used

1.4.1 Symbols for certain types of information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑️</td>
<td>Tip \nIndicates additional information.</td>
</tr>
<tr>
<td>📚</td>
<td>Reference to documentation</td>
</tr>
<tr>
<td>📚</td>
<td>Reference to page</td>
</tr>
<tr>
<td>📚</td>
<td>Reference to graphic</td>
</tr>
<tr>
<td>📚</td>
<td>Operation via operating tool</td>
</tr>
<tr>
<td>☑️</td>
<td>Write-protected parameter</td>
</tr>
</tbody>
</table>

1.4.2 Symbols in graphics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3 ...</td>
<td>Item numbers</td>
<td>A, B, C, ...</td>
<td>Views</td>
</tr>
<tr>
<td>A-A, B-B, C-C, ...</td>
<td>Sections</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overview of the Expert operating menu

The following table provides an overview of the menu structure of the expert operating menu and its parameters. The page reference indicates where the associated description of the submenu or parameter can be found.

<table>
<thead>
<tr>
<th>Expert</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Locking status</td>
<td>→ 9</td>
</tr>
<tr>
<td>Access status tooling</td>
<td>→ 10</td>
</tr>
<tr>
<td>Enter access code</td>
<td>→ 10</td>
</tr>
<tr>
<td>System</td>
<td>→ 11</td>
</tr>
<tr>
<td>Diagnostic handling</td>
<td>→ 11</td>
</tr>
<tr>
<td>Administration</td>
<td>→ 19</td>
</tr>
<tr>
<td>Sensor</td>
<td>→ 22</td>
</tr>
<tr>
<td>Measured values</td>
<td>→ 22</td>
</tr>
<tr>
<td>System units</td>
<td>→ 28</td>
</tr>
<tr>
<td>Process parameters</td>
<td>→ 42</td>
</tr>
<tr>
<td>Measurement mode</td>
<td>→ 49</td>
</tr>
<tr>
<td>External compensation</td>
<td>→ 51</td>
</tr>
<tr>
<td>Calculated values</td>
<td>→ 53</td>
</tr>
<tr>
<td>Sensor adjustment</td>
<td>→ 56</td>
</tr>
<tr>
<td>Calibration</td>
<td>→ 62</td>
</tr>
<tr>
<td>Testpoints</td>
<td>→ 64</td>
</tr>
<tr>
<td>Supervision</td>
<td>→ 68</td>
</tr>
<tr>
<td>Communication</td>
<td>→ 69</td>
</tr>
<tr>
<td>Modbus configuration</td>
<td>→ 69</td>
</tr>
<tr>
<td>Modbus information</td>
<td>→ 73</td>
</tr>
<tr>
<td>Modbus data map</td>
<td>→ 74</td>
</tr>
</tbody>
</table>
Overview of the Expert operating menu

<table>
<thead>
<tr>
<th>Application</th>
<th>→</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset all totalizers</td>
<td>→</td>
<td>75</td>
</tr>
<tr>
<td>Totalizer 1 to 3</td>
<td>→</td>
<td>76</td>
</tr>
<tr>
<td>Concentration</td>
<td>→</td>
<td>81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagnostics</th>
<th>→</th>
<th>81</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual diagnostics</td>
<td>→</td>
<td>82</td>
</tr>
<tr>
<td>Timestamp</td>
<td>→</td>
<td>82</td>
</tr>
<tr>
<td>Previous diagnostics</td>
<td>→</td>
<td>83</td>
</tr>
<tr>
<td>Operating time from restart</td>
<td>→</td>
<td>83</td>
</tr>
<tr>
<td>Operating time</td>
<td>→</td>
<td>84</td>
</tr>
<tr>
<td>Diagnostic list</td>
<td>→</td>
<td>84</td>
</tr>
<tr>
<td>Event logbook</td>
<td>→</td>
<td>88</td>
</tr>
</tbody>
</table>

Device information	→	89
Min/max values	→	92
Heartbeat	→	98
Simulation	→	99
3 Description of device parameters

In the following section, the parameters are listed according to the menu structure of the local display. Specific parameters for the operating tools are included at the appropriate points in the menu structure.

<table>
<thead>
<tr>
<th>Expert</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Locking status</td>
<td>→ 9</td>
</tr>
<tr>
<td>Access status tooling</td>
<td>→ 10</td>
</tr>
<tr>
<td>Enter access code</td>
<td>→ 10</td>
</tr>
<tr>
<td>System</td>
<td>→ 11</td>
</tr>
<tr>
<td>Sensor</td>
<td>→ 22</td>
</tr>
<tr>
<td>Communication</td>
<td>→ 69</td>
</tr>
<tr>
<td>Application</td>
<td>→ 75</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>→ 81</td>
</tr>
</tbody>
</table>

Locking status

Navigation

Expert → Locking status

Description

Use this function to view the active write protection.

User interface

- Hardware locked
- Temporarily locked
Additional information

User interface

In the operating tool all active types of write protection are selected.

If additional write protection is active, this restricts the current access authorization even further. The write protection status can be viewed via the Locking status parameter (→ 9).

“Hardware locked” option (priority 1)

The DIP switch for hardware locking is activated on the main electronics module. This locks write access to the parameters (e.g. via local display or operating tool).

Information on access authorization is provided in the 'User roles and associated access authorization' and 'Operating concept' sections of the Operations Instructions for the device.

“Temporarily locked” option (priority 2)

Write access to the parameters is temporarily locked on account of internal processes running in the device (e.g. data upload/download, reset etc.). Once the internal processing has been completed, the parameters can be changed once again.

Access status tooling

Navigation

Expert → Access stat.tool

Description

Use this function to view the access authorization to the parameters via the operating tool.

User interface

• Operator
• Maintenance

Factory setting

Maintenance

Additional information

Description

The access authorization can be modified via the Enter access code parameter.

If additional write protection is active, this restricts the current access authorization even further. The write protection status can be viewed via the Locking status parameter (→ 9).

Display

Information on access authorization is provided in the 'User roles and associated access authorization' and 'Operating concept' sections of the Operations Instructions for the device.

Enter access code

Navigation

Expert → Ent. access code

Description

Use this function to enter the user-specific release code to remove parameter write protection.
3.1 "System" submenu

Navigation
Expert → System

- **System**
- **Diagnostic handling** → 11
- **Administration** → 19

3.1.1 "Diagnostic handling" submenu

Navigation
Expert → System → Diagn. handling

- **Diagnostic handling**
 - **Alarm delay** → 11
 - **Diagnostic behavior** → 12

Alarm delay

Navigation
Expert → System → Diagn. handling → Alarm delay

Description
Use this function to enter the time interval until the device generates a diagnostic message.

The diagnostic message is reset without a time delay.

User entry
0 to 60 s

Factory setting
0 s

Additional information
Effect

This setting affects the following diagnostic messages:

- 046 Sensor limit exceeded
- 140 Sensor signal
- 144 Measuring error too high
- 190 Special event 1
- 191 Special event 5
- 192 Special event 9
- 830 Sensor temperature too high
- 831 Sensor temperature too low
“Diagnostic behavior” submenu

Each item of diagnostic information is assigned a specific diagnostic behavior at the factory. The user can change this assignment for specific diagnostic information in the Diagnostic behavior submenu (→ 12).

The following options are available in the Assign behavior of diagnostic no. xxx parameters:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>The device stops measurement. The measured value output via Modbus RS485 and the totalizers assume the defined alarm condition. A diagnostic message is generated.</td>
</tr>
<tr>
<td>Warning</td>
<td>The device continues to measure. The measured value output via Modbus RS485 and the totalizers are not affected. A diagnostic message is generated.</td>
</tr>
<tr>
<td>Logbook entry only</td>
<td>The device continues to measure. The diagnostic message is entered only in the Event logbook submenu (→ 88).</td>
</tr>
<tr>
<td>Off</td>
<td>The diagnostic event is ignored, and no diagnostic message is generated or entered.</td>
</tr>
</tbody>
</table>

For a list of all the diagnostic events, see the Operating Instructions for the device.

Navigation
Expert → System → Diagn. handling → Diagn. behavior

Assign behavior of diagnostic no. 140 → 13
Assign behavior of diagnostic no. 046 → 13
Assign behavior of diagnostic no. 144 → 14
Assign behavior of diagnostic no. 832 → 14
Assign behavior of diagnostic no. 833 → 14
Assign behavior of diagnostic no. 834 → 15
Assign behavior of diagnostic no. 835 → 15
Assign behavior of diagnostic no. 140 (Sensor signal)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 140

Description

Use this function to change the diagnostic behavior of the diagnostic message 140 Sensor signal.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning

Additional information

For a detailed description of the options available, see

Assign behavior of diagnostic no. 046 (Sensor limit exceeded)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 046

Description

Use this function to change the diagnostic behavior of the diagnostic message 046 Sensor limit exceeded.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning
Assign behavior of diagnostic no. 144 (Measuring error too high)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 144

Description

Use this function to change the diagnostic behavior of the diagnostic message 144 Measuring error too high.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Alarm

Additional information

For a detailed description of the options available, see

Assign behavior of diagnostic no. 832 (Electronic temperature too high)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 832

Description

Use this function to change the diagnostic behavior of the diagnostic message 832 Electronic temperature too high.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning

Additional information

For a detailed description of the options available, see

Assign behavior of diagnostic no. 833 (Electronic temperature too low)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 833

Description

Use this function to change the diagnostic behavior of the diagnostic message 833 Electronic temperature too low.

Selection

- Off
- Alarm
- Warning
- Logbook entry only
Assign behavior of diagnostic no. 834 (Process temperature too high)

Navigation
- Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 834

Description
Use this function to change the diagnostic behavior of the diagnostic message **834 Process temperature too high**.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see

Assign behavior of diagnostic no. 835 (Process temperature too low)

Navigation
- Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 835

Description
Use this function to change the diagnostic behavior of the diagnostic message **835 Process temperature too low**.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see

Assign behavior of diagnostic no. 912 (Medium inhomogeneous)

Navigation
- Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 912

Description
Use this function to change the diagnostic behavior of the diagnostic message **912 Medium inhomogeneous**.
Description of device parameters

Proline Cubemass 100 Modbus RS485

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning

Additional information

For a detailed description of the options available, see

Assign behavior of diagnostic no. 913 (Medium unsuitable)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 913

Description

Use this function to change the diagnostic behavior of the diagnostic message 913 Medium unsuitable.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning

Additional information

For a detailed description of the options available, see

Assign behavior of diagnostic no. 944 (Monitoring failed)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 944

Description

Use this function to change the diagnostic behavior of the diagnostic message 944 Monitoring failed.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning

Additional information

For a detailed description of the options available, see
Assign behavior of diagnostic no. 948 (Tube damping too high)

Navigation
- Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 948

Description
Use this function to change the diagnostic behavior of the diagnostic message **948 Tube damping too high**.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see Assign behavior of diagnostic no. 192 (Special event 9).

Assign behavior of diagnostic no. 192 (Special event 9)

Navigation
- Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 192

Description
Use this function to change the diagnostic behavior of the diagnostic message **192 Special event 9**.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see Assign behavior of diagnostic no. 274 (Main electronic failure).

Assign behavior of diagnostic no. 274 (Main electronic failure)

Navigation
- Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 274

Description
Use this function to change the diagnostic behavior of the diagnostic message **274 Main electronic failure**.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see
Assign behavior of diagnostic no. 392 (Special event 10)

Navigation
- Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 392

Description
Use this function to change the diagnostic behavior of the diagnostic message 392 Special event 10.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see

Assign behavior of diagnostic no. 592 (Special event 11)

Navigation
- Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 592

Description
Use this function to change the diagnostic behavior of the diagnostic message 592 Special event 11.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
For a detailed description of the options available, see

Assign behavior of diagnostic no. 992 (Special event 12)

Navigation
- Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 992

Description
Use this function to change the diagnostic behavior of the diagnostic message 992 Special event 12.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning
Additional information

For a detailed description of the options available, see

3.1.2 "Administration" submenu

Navigation

Expert → System → Administration

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device reset</td>
<td>19</td>
</tr>
<tr>
<td>Activate SW option</td>
<td>20</td>
</tr>
<tr>
<td>Software option overview</td>
<td>20</td>
</tr>
<tr>
<td>Permanent storage</td>
<td>21</td>
</tr>
<tr>
<td>Device tag</td>
<td>21</td>
</tr>
</tbody>
</table>

Device reset

Navigation

Expert → System → Administration → Device reset

Description

Use this function to choose whether to reset the device configuration - either entirely or in part - to a defined state.

Selection

- Cancel
- To fieldbus defaults *
- To delivery settings
- Restart device

Factory setting

Cancel

* Visibility depends on communication
Additional information

"Cancel" option

No action is executed and the user exits the parameter.

"To fieldbus defaults" option

Every parameter is reset to fieldbus default values.

"To delivery settings" option

Every parameter for which a customer-specific default setting was ordered is reset to this customer-specific value. All other parameters are reset to the factory setting.

⚠️ This option is not visible if no customer-specific settings have been ordered.

"Restart device" option

The restart resets every parameter whose data are in the volatile memory (RAM) to the factory setting (e.g. measured value data). The device configuration remains unchanged.

Activate SW option

Navigation

Expert → System → Administration → Activate SW opt.

Description

Use this function to enter an activation code to enable an additional, ordered software option.

User entry

Max. 10-digit string consisting of numbers.

Factory setting

0

Additional information

User entry

Endress+Hauser provides the corresponding activation code for the software option with the order.

⚠️ NOTICE! This activation code varies depending on the measuring device and the software option. If an incorrect or invalid code is entered, this can result in the loss of software options that are already been activated. After commissioning the measuring device: in this parameter only enter activation codes which Endress+Hauser has provided (e.g. when a new software option was ordered). If an incorrect or invalid activation code is entered, enter the activation code from the parameter protocol again and contact your Endress+Hauser sales organization, quoting the serial number of your device.

Example for a software option

Order code for "Application package", option EB "Heartbeat Verification + Monitoring"

Software option overview

Navigation

Expert → System → Administration → SW option overv.

Description

Displays all the software options that are enabled in the device.
User interface

- Heartbeat Verification
- Heartbeat Monitoring
- Concentration

Additional information

Description
Displays all the options that are available if ordered by the customer.

Heartbeat Verification option and *Heartbeat Monitoring* option
Order code for "Application package", option EB "Heartbeat Verification + Monitoring"

Concentration option
Order code for "Application package", option ED "Concentration" and option EF "Special density + concentration"

Permanent storage

Navigation

Expert → System → Administration → Perm. storage

Description
Use this function to switch permanent storage on and off.

Selection

- Off
- On

Factory setting

On

Additional information

Description

NOTE!

If non-volatile device parameters are modified via the MODBUS RS485 function codes 06, 16 or 23, the change is saved in the EEPROM of the measuring device. The number of writes to the EEPROM is technically restricted to a maximum of 1 million.

- Make sure to comply with this limit since, if it is exceeded, data loss and measuring device failure will result.
- Avoid constantly writing non-volatile device parameters via the MODBUS RS485.

Device tag

Navigation

Expert → System → Administration → Device tag

Description
Use this function to enter the name for the measuring point.

User entry

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Factory setting

Cubemass
3.2 "Sensor" submenu

Navigation
Expert → Sensor

- **Sensor**
 - **Measured values** \(\Rightarrow 22\)
 - **System units** \(\Rightarrow 28\)
 - **Process parameters** \(\Rightarrow 42\)
 - **Measurement mode** \(\Rightarrow 49\)
 - **External compensation** \(\Rightarrow 51\)
 - **Calculated values** \(\Rightarrow 53\)
 - **Sensor adjustment** \(\Rightarrow 56\)
 - **Calibration** \(\Rightarrow 62\)
 - **Testpoints** \(\Rightarrow 64\)
 - **Supervision** \(\Rightarrow 68\)

3.2.1 "Measured values" submenu

Navigation
Expert → Sensor → Measured val.

- **Measured values**
 - **Process variables** \(\Rightarrow 22\)
 - **Totalizer** \(\Rightarrow 26\)

"Process variables" submenu

Navigation

- **Process variables**
 - Mass flow \(\Rightarrow 23\)
 - Volume flow \(\Rightarrow 23\)
 - Corrected volume flow \(\Rightarrow 24\)
Mass flow

Navigation

Description
Displays the mass flow that is currently measured.

User interface
Signed floating-point number

Additional information

Dependency

1. The unit is taken from the Mass flow unit parameter (→ 29)

Volume flow

Navigation

Description
Displays the volume flow currently calculated.

User interface
Signed floating-point number

Additional information

Dependency

1. The unit is taken from the Volume flow unit parameter (→ 30)

Density

Navigation

Description
Displays the density currently measured.
Description of device parameters

Proline Cubemass 100 Modbus RS485

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>User interface</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected volume flow</td>
<td>Displays the corrected volume flow currently measured.</td>
<td>Signed floating-point number</td>
<td>Dependency
The unit is taken from the Corrected volume flow unit parameter (→ 32)</td>
</tr>
<tr>
<td>Reference density</td>
<td>Displays the reference density currently calculated.</td>
<td>Signed floating-point number</td>
<td>Dependency
The unit is taken from the Reference density unit parameter (→ 35)</td>
</tr>
<tr>
<td>Temperature</td>
<td>Displays the medium temperature currently measured.</td>
<td>Signed floating-point number</td>
<td>Dependency
The unit is taken from the Temperature unit parameter (→ 35)</td>
</tr>
</tbody>
</table>
Pressure value

Navigation

Description

Displays the fixed or external pressure value.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Pressure unit parameter (→ 36)

Concentration

Navigation

Prerequisite

For the following order code:

"Application package", option ED 'Concentration'

The software options currently enabled are displayed in the Software option overview parameter (→ 20).

Description

Displays the concentration currently calculated.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Concentration unit parameter.

Target mass flow

Navigation

Prerequisite

With the following conditions:

- Order code for "Application package", option ED 'Concentration'
- The WT-% option or the User conc. option is selected in the Concentration unit parameter.

The software options currently enabled are displayed in the Software option overview parameter (→ 20).

Description

Displays the mass flow currently measured for the target medium.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Mass flow unit parameter (→ 29)
Carrier mass flow

Navigation

Prerequisite

With the following conditions:

- Order code for "Application package", option ED "Concentration"
- The WT-% option or the User conc. option is selected in the Concentration unit parameter.

The software options currently enabled are displayed in the Software option overview parameter (→ 20).

Description

Displays the mass flow currently measured for the carrier medium.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the Mass flow unit parameter (→ 29)

"Totalizer" submenu

Navigation

Expert → Sensor → Measured val. → Totalizer

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 76) of the Totalizer 1 to 3 submenu:

- Volume flow
- Mass flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow

Description

Displays the current totalizer reading.

User interface

Signed floating-point number

** Visibility depends on order options or device settings
Additional information

Description

As it is only possible to display a maximum of 7 digits, the current counter value is the sum of the totalizer value and the overflow value from the Totalizer overflow 1 to 3 parameter if the display range is exceeded.

In the event of an error, the totalizer adopts the mode defined in the Failure mode parameter (→ 80).

User interface

The value of the process variable totalized since measuring began can be positive or negative. This depends on the settings in the Totalizer operation mode parameter (→ → 78).

The unit of the selected process variable is specified for the totalizer depending on the selection made in the Assign process variable parameter (→ → 76):

- Volume flow option: Volume flow unit parameter (→ → 30)
- Mass flow option, Target mass flow option, Carrier mass flow option: Mass flow unit parameter (→ → 29)
- Corrected volume flow option: Corrected volume unit parameter (→ → 78)

Example

Calculation of the current totalizer reading when the value exceeds the 7-digit display range:

- Value in the Totalizer value 1 parameter: 196 845.7 m³
- Value in the Totalizer overflow 1 parameter: 1 ⋅ 10⁷ (1 overflow) = 10000000 m³
- Current totalizer reading: 10 196 845.7 m³

Totalizer overflow 1 to 3

Navigation

Expert → Sensor → Measured val. → Totalizer → Tot. overflow 1 to 3

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ → 76) of the Totalizer 1 to 3 submenu:

- Volume flow
- Mass flow
- Corrected volume flow
- Target mass flow
- Carrier mass flow

Description

Displays the current totalizer overflow.

User interface

Integer with sign

Additional information

Description

If the current totalizer reading has more than 7 digits, which is the maximum value range that can be displayed, the value above this range is output as an overflow. The current

** Visibility depends on order options or device settings
totalizer value is therefore the sum of the overflow value and the totalizer value from the **Totalizer value 1 to 3** parameter.

User interface

The unit of the selected process variable is specified for the totalizer depending on the selection made in the **Assign process variable** parameter (→ 76):

- **Volume flow** option: **Volume flow unit** parameter (→ 30)
- **Mass flow** option, **Target mass flow** option, **Carrier mass flow** option: **Mass flow unit** parameter (→ 29)
- **Corrected volume flow** option: **Corrected volume unit** parameter (→ 78)

Example

Calculation of the current totalizer reading when the value exceeds the 7-digit display range:

- Value in the **Totalizer value 1** parameter: 196 845.7 m3
- Value in the **Totalizer overflow 1** parameter: 2 · 107 (2 overflows) = 20 000 000 [m3]
- Current totalizer reading: 20 196 845.7 m3

3.2.2 "System units" submenu

Navigation

![Diagram of system units]

<table>
<thead>
<tr>
<th>System units</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow unit</td>
<td>→ 29</td>
</tr>
<tr>
<td>Mass unit</td>
<td>→ 29</td>
</tr>
<tr>
<td>Volume flow unit</td>
<td>→ 30</td>
</tr>
<tr>
<td>Volume unit</td>
<td>→ 32</td>
</tr>
<tr>
<td>Corrected volume flow unit</td>
<td>→ 32</td>
</tr>
<tr>
<td>Corrected volume unit</td>
<td>→ 33</td>
</tr>
<tr>
<td>Density unit</td>
<td>→ 34</td>
</tr>
<tr>
<td>Reference density unit</td>
<td>→ 35</td>
</tr>
<tr>
<td>Temperature unit</td>
<td>→ 35</td>
</tr>
<tr>
<td>Pressure unit</td>
<td>→ 36</td>
</tr>
<tr>
<td>Date/time format</td>
<td>→ 36</td>
</tr>
<tr>
<td>User-specific units</td>
<td>→ 37</td>
</tr>
</tbody>
</table>
Mass flow unit

Navigation
Expert → Sensor → System units → Mass flow unit

Description
Use this function to select the unit for the mass flow.

Selection

SI units
- g/s
- g/min
- g/h
- g/d
- kg/s
- kg/min
- kg/h
- kg/d
- t/s
- t/min
- t/h
- t/d

US units
- oz/s
- oz/min
- oz/h
- oz/d
- lb/s
- lb/min
- lb/h
- lb/d
- STon/s
- STon/min
- STon/h
- STon/d

Custom-specific units
- User mass/s
- User mass/min
- User mass/h
- User mass/d

Factory setting
Country-specific:
- kg/h
- lb/min

Additional information

Result
The selected unit applies for:
- Mass flow parameter (→ 23)

Selection
For an explanation of the abbreviated units: → 104

Customer-specific units
The unit for the customer-specific mass is specified in the User mass text parameter (→ 37).

Mass unit

Navigation
Expert → Sensor → System units → Mass unit

Description
Use this function to select the unit for the mass.
Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>oz</td>
</tr>
<tr>
<td>kg</td>
<td>lb</td>
</tr>
<tr>
<td>t</td>
<td>STon</td>
</tr>
</tbody>
</table>

Custom-specific units

- User mass

Factory setting

Country-specific:

- kg
- lb

Additional information

Selection

For an explanation of the abbreviated units: → 104

Customer-specific units

The unit for the customer-specific mass is specified in the User mass text parameter (→ 37).

Volume flow unit

Navigation

- Expert → Sensor → System units → Volume flow unit

Description

Use this function to select the unit for the volume flow.
<table>
<thead>
<tr>
<th>Selection</th>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm³/s</td>
<td>af/s</td>
<td>gal/s (imp)</td>
</tr>
<tr>
<td></td>
<td>cm³/min</td>
<td>af/min</td>
<td>gal/min (imp)</td>
</tr>
<tr>
<td></td>
<td>cm³/h</td>
<td>af/h</td>
<td>gal/h (imp)</td>
</tr>
<tr>
<td></td>
<td>cm³/d</td>
<td>af/d</td>
<td>gal/d (imp)</td>
</tr>
<tr>
<td></td>
<td>dm³/s</td>
<td>ft³/s</td>
<td>Mgal/s (imp)</td>
</tr>
<tr>
<td></td>
<td>dm³/min</td>
<td>ft³/min</td>
<td>Mgal/min (imp)</td>
</tr>
<tr>
<td></td>
<td>dm³/h</td>
<td>ft³/h</td>
<td>Mgal/h (imp)</td>
</tr>
<tr>
<td></td>
<td>dm³/d</td>
<td>ft³/d</td>
<td>Mgal/d (imp)</td>
</tr>
<tr>
<td></td>
<td>m³/s</td>
<td>fl oz/s (us)</td>
<td>bbl/s (imp;beer)</td>
</tr>
<tr>
<td></td>
<td>m³/min</td>
<td>fl oz/min (us)</td>
<td>bbl/min (imp;beer)</td>
</tr>
<tr>
<td></td>
<td>m³/h</td>
<td>fl oz/h (us)</td>
<td>bbl/h (imp;beer)</td>
</tr>
<tr>
<td></td>
<td>m³/d</td>
<td>fl oz/d (us)</td>
<td>bbl/d (imp;beer)</td>
</tr>
<tr>
<td></td>
<td>ml/s</td>
<td>gal/s (us)</td>
<td>bbl/s (imp;oil)</td>
</tr>
<tr>
<td></td>
<td>ml/min</td>
<td>gal/min (us)</td>
<td>bbl/min (imp;oil)</td>
</tr>
<tr>
<td></td>
<td>ml/h</td>
<td>gal/h (us)</td>
<td>bbl/h (imp;oil)</td>
</tr>
<tr>
<td></td>
<td>ml/d</td>
<td>gal/d (us)</td>
<td>bbl/d (imp;oil)</td>
</tr>
<tr>
<td></td>
<td>l/s</td>
<td>kgal/s (us)</td>
<td>bbl/s (imp;beer)</td>
</tr>
<tr>
<td></td>
<td>l/min</td>
<td>kgal/min (us)</td>
<td>bbl/min (imp;beer)</td>
</tr>
<tr>
<td></td>
<td>l/h</td>
<td>kgal/h (us)</td>
<td>bbl/h (imp;beer)</td>
</tr>
<tr>
<td></td>
<td>l/d</td>
<td>kgal/d (us)</td>
<td>bbl/d (imp;beer)</td>
</tr>
<tr>
<td></td>
<td>hl/s</td>
<td>Mgal/s (us)</td>
<td>bbl/s (imp;oil)</td>
</tr>
<tr>
<td></td>
<td>hl/min</td>
<td>Mgal/min (us)</td>
<td>bbl/min (imp;oil)</td>
</tr>
<tr>
<td></td>
<td>hl/h</td>
<td>Mgal/h (us)</td>
<td>bbl/h (imp;oil)</td>
</tr>
<tr>
<td></td>
<td>hl/d</td>
<td>Mgal/d (us)</td>
<td>bbl/d (imp;oil)</td>
</tr>
<tr>
<td></td>
<td>MI/s</td>
<td>bbl/s (us;liq.)</td>
<td>bbl/s (us;tank)</td>
</tr>
<tr>
<td></td>
<td>MI/min</td>
<td>bbl/min (us;liq.)</td>
<td>bbl/min (us;tank)</td>
</tr>
<tr>
<td></td>
<td>MI/h</td>
<td>bbl/h (us;liq.)</td>
<td>bbl/h (us;tank)</td>
</tr>
<tr>
<td></td>
<td>MI/d</td>
<td>bbl/d (us;liq.)</td>
<td>bbl/d (us;tank)</td>
</tr>
</tbody>
</table>

Custom-specific units
- User vol./s
- User vol./min
- User vol./h
- User vol./d

Factory setting
Country-specific:
- l/h
- gal/min (us)
Description of device parameters

Proline Cubemass 100 Modbus RS485

Additional information

Result

The selected unit applies for:

Volume flow parameter (→ 23)

Selection

For an explanation of the abbreviated units: → 104

Customer-specific units

The unit for the customer-specific volume is specified in the **User volume text** parameter (→ 38).

Volume unit

Navigation

Expert → Sensor → System units → Volume unit

Description

Use this function to select the unit for the volume.

Selection

SI units
- cm³
- dm³
- m³
- ml
- l
- hl
- Ml Mega

US units
- af
- ft³
- fl oz (us)
- gal (us)
- kgal (us)
- Mgal (us)
- bbl (us;oil)
- bbl (us;liq.)
- bbl (us;beer)
- bbl (us;tank)

Imperial units
- gal (imp)
- Mgal (imp)
- bbl (imp;beer)
- bbl (imp;oil)

Custom-specific units

User vol.

Factory setting

Country-specific:
- l
- gal (us)

Additional information

Selection

For an explanation of the abbreviated units: → 104

Customer-specific units

The unit for the customer-specific volume is specified in the **User volume text** parameter (→ 38).

Corrected volume flow unit

Navigation

Expert → Sensor → System units → Cor.volflow unit

Description

Use this function to select the unit for the corrected volume flow.
Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nl/s</td>
<td>Sft³/s</td>
</tr>
<tr>
<td>Nl/min</td>
<td>Sft³/min</td>
</tr>
<tr>
<td>Nl/h</td>
<td>Sft³/h</td>
</tr>
<tr>
<td>Nl/d</td>
<td>Sft³/d</td>
</tr>
<tr>
<td>Nm³/s</td>
<td>Sgal/s (us)</td>
</tr>
<tr>
<td>Nm³/min</td>
<td>Sgal/min (us)</td>
</tr>
<tr>
<td>Nm³/h</td>
<td>Sgal/h (us)</td>
</tr>
<tr>
<td>Nm³/d</td>
<td>Sgal/d (us)</td>
</tr>
<tr>
<td>Sm³/s</td>
<td>Sbbl/s (us;liq.)</td>
</tr>
<tr>
<td>Sm³/min</td>
<td>Sbbl/min (us;liq.)</td>
</tr>
<tr>
<td>Sm³/h</td>
<td>Sbbl/h (us;liq.)</td>
</tr>
<tr>
<td>Sm³/d</td>
<td>Sbbl/d (us;liq.)</td>
</tr>
<tr>
<td></td>
<td>Sgal/s (imp)</td>
</tr>
<tr>
<td></td>
<td>Sgal/min (imp)</td>
</tr>
<tr>
<td></td>
<td>Sgal/h (imp)</td>
</tr>
<tr>
<td></td>
<td>Sgal/d (imp)</td>
</tr>
</tbody>
</table>

Custom-specific units

- UserCrVol./s
- UserCrVol./min
- UserCrVol./h
- UserCrVol./d

Factory setting

Country-specific:

- Nl/h
- Sft³/min

Additional information

Result

The selected unit applies for:

Corrected volume flow parameter (→ 24)

Selection

For an explanation of the abbreviated units: → 104

Corrected volume unit

Navigation

Expert → Sensor → System units → Corr. vol. unit

Description

Use this function to select the unit for the corrected volume.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nl</td>
<td>Sft³</td>
<td>Sgal</td>
</tr>
<tr>
<td>Nm³</td>
<td>Sgal (us)</td>
<td>Sbbl (us;liq.)</td>
</tr>
<tr>
<td>Sl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm³</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Custom-specific units

UserCrVol.

Factory setting

Country-specific:

- Nl
- Sft³
Description of device parameters Proline Cubemass 100 Modbus RS485

Additional information

Selection

For an explanation of the abbreviated units: → 104

Density unit

![Density unit icon](image)

Navigation

![Expert icon](image) Sensor → System units → Density unit

Description

Use this function to select the unit for the density.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/cm³</td>
<td>lb/ft³</td>
<td>lb/gal (imp)</td>
</tr>
<tr>
<td>g/m³</td>
<td>lb/gal (us)</td>
<td>lb/bbl (imp;beer)</td>
</tr>
<tr>
<td>g/ml</td>
<td>lb/bbl (us,lq.)</td>
<td>lb/bbl (imp;oil)</td>
</tr>
<tr>
<td>kg/dm³</td>
<td>lb/bbl (us,beer)</td>
<td>lb/bbl (us,tank)</td>
</tr>
<tr>
<td>kg/l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD4°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD15°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD20°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG4°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG15°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG20°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Custom-specific units

User dens.

Factory setting

Country-specific:
- kg/l
- lb/ft³

Additional information

Result

The selected unit applies for:
Density parameter (→ 23)

Selection

- **SD** = specific density
 The specific density is the ratio of the fluid density to the water density at a water temperature of +4 °C (+39 °F), +15 °C (+59 °F), +20 °C (+68 °F).
- **SG** = specific gravity
 The specific gravity is the ratio of the fluid density to the water density at a water temperature of +4 °C (+39 °F), +15 °C (+59 °F), +20 °C (+68 °F).

For an explanation of the abbreviated units: → 104

Customer-specific units

The unit for the customer-specific density is specified in the **User density text** parameter (→ 40).
Reference density unit

Navigation

Expert → Sensor → System units → Ref. dens. unit

Description

Use this function to select the unit for the reference density.

Selection

- **SI units**
 - kg/Nm³
 - kg/Nl
 - g/Scm³
 - kg/Sm³

- **US units**
 - lb/Sft³

Factory setting

Country-dependent

- kg/Nl
- lb/Sft³

Additional information

Result

The selected unit applies for:

- [External reference density](#) parameter (→ 54)
- [Fixed reference density](#) parameter (→ 54)
- [Reference density](#) parameter (→ 24)

Selection

For an explanation of the abbreviated units: → 104

Temperature unit

Navigation

Expert → Sensor → System units → Temperature unit

Description

Use this function to select the unit for the temperature.

Selection

- **SI units**
 - °C
 - K

- **US units**
 - °F
 - °R

Factory setting

Country-specific:

- °C
- °F

Additional information

Result

The selected unit applies for:

- [Maximum value](#) parameter (→ 94)
- [Minimum value](#) parameter (→ 93)
- [Maximum value](#) parameter (→ 94)
- [Minimum value](#) parameter (→ 94)
- [Maximum value](#) parameter (→ 94)
- [Minimum value](#) parameter (→ 95)
Pressure unit

Navigation

Expert → Sensor → System units → Pressure unit

Description

Use this function to select the unit for the pipe pressure.

Selection

SI units
- Pa a
- kPa a
- MPa a
- bar
- Pa g
- kPa g
- MPa g
- bar g

US units
- psi a
- psi g

Custom-specific units
- User pres.

Factory setting

Country-specific:
- bar a
- psi a

Additional information

Result

The unit is taken from:
- Pressure value parameter (→ 25)
- External pressure parameter (→ 52)
- Pressure value parameter (→ 52)

Selection

For an explanation of the abbreviated units: → 104

Date/time format

Navigation

Expert → Sensor → System units → Date/time format

Description

Use this function to select the desired time format for calibration history.

Selection

- dd.mm.yy hh:mm
- dd.mm.yy hh:mm am/pm
- mm/dd/yy hh:mm
- mm/dd/yy hh:mm am/pm

For an explanation of the abbreviated units: → 104
Factory setting dd.mm.yy hh:mm

Additional information Selection

For an explanation of the abbreviated units: → 104

"User-specific units" submenu

Navigation Expert → Sensor → System units → User-spec. units

User mass text
User mass factor
User volume text
User volume factor
User corrected volume text
User corrected volume factor
User density text
User density offset
User density factor
User pressure text
User pressure offset
User pressure factor

User mass text

Navigation Expert → Sensor → System units → User-spec. units → Mass text

Description Use this function to enter a text for the user-specific unit of mass and mass flow. The corresponding time units (s, min, h, d) for mass flow are generated automatically.

User entry Max. 10 characters such as letters, numbers or special characters (@, %, /)
Description of device parameters Proline Cubemass 100 Modbus RS485

Factory setting User mass

Additional information Result
- The defined unit is shown as an option in the choose list of the following parameters:
 - Mass flow unit parameter (→ 29)
 - Mass unit parameter (→ 29)

Example
- If the text CENT for 'centner' is entered, the following options are displayed in the picklist for the Mass flow unit parameter (→ 29):
 - CENT/s
 - CENT/min
 - CENT/h
 - CENT/d

User mass factor

Navigation Expert → Sensor → System units → User-spec. units → Mass factor

Description Use this function to enter a quantity factor (without time) for the user-specific mass and mass flow unit.

User entry Signed floating-point number

Factory setting 1.0

Additional information Example
- Mass of 1 Zentner = 50 kg → 0.02 Zentner = 1 kg → entry: 0.02

User volume text

Navigation Expert → Sensor → System units → User-spec. units → Volume text

Description Use this function to enter a text for the user-specific unit of volume and volume flow. The corresponding time units (s, min, h, d) for volume flow are generated automatically.

User entry Max. 10 characters such as letters, numbers or special characters (@, %, /)

Factory setting User vol.
Additional information

Result

The defined unit is shown as an option in the choose list of the following parameters:

- **Volume flow unit** parameter (→ 30)
- **Volume unit** parameter (→ 32)

Example

If the text GLAS is entered, the choose list of the **Volume flow unit** parameter (→ 30) shows the following options:

- GLAS/s
- GLAS/min
- GLAS/h
- GLAS/d

User volume factor

Navigation

Expert → Sensor → System units → User-spec. units → Volume factor

Description

Use this function to enter a quantity factor (without time) for the user-specific volume and volume flow unit.

User entry

Signed floating-point number

Factory setting

1.0

User corrected volume text

Navigation

Expert → Sensor → System units → User-spec. units → Corr. vol. text

Description

Use this function to enter a text for the user-specific unit of the corrected volume and corrected volume flow. The corresponding time units (s, min, h, d) for mass flow are generated automatically.

User entry

Max. 10 characters such as letters, numbers or special characters (@, %, /)

Factory setting

UserCrVol.

Additional information

Result

The defined unit is shown as an option in the choose list of the following parameters:

- **Corrected volume flow unit** parameter (→ 32)
- **Corrected volume unit** parameter (→ 33)

Example

If the text GLAS is entered, the choose list of the **Corrected volume flow unit** parameter (→ 32) shows the following options:

- GLAS/s
- GLAS/min
- GLAS/h
- GLAS/d
User corrected volume factor

Navigation

Expert → Sensor → System units → User-spec. units → Cor.vol. factor

Description

Use this function to enter a quantity factor (without time) for the user-specific corrected volume unit and corrected volume flow unit.

User entry

Signed floating-point number

Factory setting

1.0

User density text

Navigation

Expert → Sensor → System units → User-spec. units → Density text

Description

Use this function to enter a text or the user-specific unit of density.

User entry

Max. 10 characters such as letters, numbers or special characters (@, %, /)

Factory setting

User dens.

Additional information

Result

The defined unit is shown as an option in the choose list of the Density unit parameter (→ 34).

Example

Enter text “CE_L” for centners per liter

User density offset

Navigation

Expert → Sensor → System units → User-spec. units → Density offset

Description

Use this function to enter the zero point shift for the user-specific density unit.

Value in user-specific unit = (factor × value in base unit) + offset

User entry

Signed floating-point number

Factory setting

0

User density factor

Navigation

Expert → Sensor → System units → User-spec. units → Density factor

Description

Use this function to enter a quantity factor for the user-specific density unit.
Proline Cubemass 100 Modbus RS485

Description of device parameters

User entry
Signed floating-point number

Factory setting
1.0

User pressure text

Navigation
Expert → Sensor → System units → User-spec. units → Pressure text

Description
Use this function to enter a text for the user-specific pressure unit.

User entry
Max. 10 characters such as letters, numbers or special characters (@, %, /)

Factory setting
User pres.

Additional information
Result
The defined unit is shown as an option in the choose list of the Pressure unit parameter (→ 36).

User pressure offset

Navigation
Expert → Sensor → System units → User-spec. units → Pressure offset

Description
Use this function to enter the offset for adapting the user-specific pressure unit.

User entry
Signed floating-point number

Factory setting
0

User pressure factor

Navigation
Expert → Sensor → System units → User-spec. units → Pressure factor

Description
Use this function to enter a quantity factor for the user-specific pressure unit.

User entry
Signed floating-point number

Factory setting
1.0

Additional information
Example
1 Dyn/cm² = 0.1 Pa → 10 Dyn/cm² = 1 Pa → user entry: 10
3.2.3 "Process parameters" submenu

Navigation

Flow damping

Description

Use this function to enter a time constant for flow damping. Reduction of the variability of the flow measured value (in relation to interference). For this purpose, the depth of the flow filter is adjusted: when the filter setting increases, the reaction time of the device also increases.

User entry

0 to 100.0 s

Factory setting

0 s

Additional information

- **User entry**
 - Value = 0: no damping
 - Value > 0: damping is increased

Effect

The damping affects the following variables of the device:

- Outputs
- Low flow cut off → 44
- Totalizers

Density damping

Navigation

Expert → Sensor → Process param. → Density damping

Description

Use this function to enter the time constant for the damping of the density measured value.
Temperature damping

Navigation

Expert → Sensor → Process param. → Temp. damping

Description

Use this function to enter a time constant for the damping of the temperature measured value.

User entry

0 to 999.9 s

Factory setting

0 s

Flow override

Navigation

Description

Use this function to select whether to interrupt the evaluation of measured values. This is useful for the cleaning processes of a pipeline, for example.

Selection

- Off
- On

Factory setting

Off

Additional information

Result

This setting affects all the functions and outputs of the measuring device.

Description

Flow override is active

- The diagnostic message diagnostic message \(C453 \) Flow override is displayed.
- Output values
 - Output: Value at zero flow
 - Temperature: proceeding output
 - Totalizers 1-3: Stop being totalized
"Low flow cut off" submenu

Navigation
Expert → Sensor → Process param. → Low flow cut off

<table>
<thead>
<tr>
<th>Function</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign process variable</td>
<td>→ 44</td>
</tr>
<tr>
<td>On value low flow cutoff</td>
<td>→ 44</td>
</tr>
<tr>
<td>Off value low flow cutoff</td>
<td>→ 45</td>
</tr>
<tr>
<td>Pressure shock suppression</td>
<td>→ 45</td>
</tr>
</tbody>
</table>

Assign process variable

Navigation
Expert → Sensor → Process param. → Low flow cut off → Assign variable

Description
Use this function to select the process variable for low flow cutoff detection.

Selection
- Off
- Mass flow
- Volume flow
- Corrected volume flow

Factory setting
Mass flow

On value low flow cutoff

Navigation
Expert → Sensor → Process param. → Low flow cut off → On value

Prerequisite
One of the following options is selected in the Assign process variable parameter (→ 44):
- Mass flow
- Volume flow
- Corrected volume flow

Description
Use this function to enter a switch-on value for low flow cutoff. Low flow cut off is activated if the value entered is not equal to 0 → 45.

User entry
Positive floating-point number

Factory setting
Depends on country and nominal diameter → 101

Additional information
Dependency
The unit depends on the process variable selected in the Assign process variable parameter (→ 44).
Off value low flow cutoff

Navigation
- Expert → Sensor → Process param. → Low flow cut off → Off value

Prerequisite
One of the following options is selected in the Assign process variable parameter (→ 44):
- Mass flow
- Volume flow
- Corrected volume flow

Description
Use this function to enter a switch-off value for low flow cut off. The off value is entered as a positive hysteresis from the on value (→ 44).

User entry
0 to 100.0 %

Factory setting
50 %

Additional information
Example

![Diagram](image)

\(Q \) Flow
\(t \) Time
\(H \) Hysteresis
\(A \) Low flow cut off active
\(1 \) Low flow cut off is activated
\(2 \) Low flow cut off is deactivated
\(3 \) On value entered
\(4 \) Off value entered

Pressure shock suppression

Navigation

Prerequisite
One of the following options is selected in the Assign process variable parameter (→ 44):
- Mass flow
- Volume flow
- Corrected volume flow

Description
Use this function to enter the time interval for signal suppression (= active pressure shock suppression).

User entry
0 to 100 s

Factory setting
0 s
Additional information

Description

Pressure shock suppression is enabled
- Prerequisite:
 - Flow rate < on-value of low flow cut off
 or
 - Changing the flow direction
- Output values
 - Flow displayed: 0
 - Totalizer: the totalizers are pegged at the last correct value

Pressure shock suppression is disabled
- Prerequisite: the time interval set in this function has elapsed.
- If the flow also exceeds the switch-off value for low flow cut off, the device starts processing the current flow value again and displays it.

Example

When closing a valve, momentarily strong fluid movements may occur in the pipeline, which are registered by the measuring system. These totalized flow values lead to a false totalizer status, particularly during batching processes.

<table>
<thead>
<tr>
<th>Q</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>A</td>
<td>Drip</td>
</tr>
<tr>
<td>B</td>
<td>Pressure shock</td>
</tr>
<tr>
<td>C</td>
<td>Pressure shock suppression active as specified by the time entered</td>
</tr>
<tr>
<td>D</td>
<td>Pressure shock suppression inactive</td>
</tr>
<tr>
<td>1</td>
<td>Valve closes</td>
</tr>
<tr>
<td>2</td>
<td>Flow falls below the on-value of the low flow cut off: pressure shock suppression is activated</td>
</tr>
<tr>
<td>3</td>
<td>The time entered has elapsed: pressure shock suppression is deactivated</td>
</tr>
<tr>
<td>4</td>
<td>The actual flow value is now displayed and output</td>
</tr>
<tr>
<td>5</td>
<td>On value for low flow cut off</td>
</tr>
<tr>
<td>6</td>
<td>Off value for low flow cut off</td>
</tr>
</tbody>
</table>
"Partially filled pipe detection" submenu

Navigation
Expert → Sensor → Process param. → Partial pipe det

Assign process variable

Low value partial filled pipe detection

High value partial filled pipe detection

Response time part. filled pipe detect.

Maximum damping partial filled pipe det.

Assign process variable

Expert → Sensor → Process param. → Partial pipe det → Assign variable

Description
Use this function to select a process variable to detect empty or partially filled measuring tubes.
For gas measurement: Deactivate monitoring due to low gas density.

Selection
- Off
- Density
- Reference density

Factory setting
Off

Low value partial filled pipe detection

Navigation
Expert → Sensor → Process param. → Partial pipe det → Low value

Prerequisite
One of the following options is selected in the Assign process variable parameter (→ 47):
- Density
- Reference density

Description
Use this function to enter a lower limit value to enable detection of empty or partially filled measuring tubes. If the measured density falls below this value, monitoring is enabled.

User entry
Signed floating-point number

Factory setting
200
Additional information

User entry

The lower limit value must be less than the upper limit value defined in the **High value partial filled pipe detection** parameter (→ 48).

- The unit depends on the process variable selected in the **Assign process variable** parameter (→ 47).

Limit value

- If the displayed value is outside the limit value, the measuring device displays the diagnostic message **S862 Partly filled pipe**.

High value partial filled pipe detection

Navigation

- Expert → Sensor → Process param. → Partial pipe det → High value

Prerequisite

One of the following options is selected in the **Assign process variable** parameter (→ 47):

- Density
- Reference density

Description

Use this function to enter an upper limit value to enable detection of empty or partially filled measuring tubes. If the measured density exceeds this value, detection is enabled.

User entry

Signed floating-point number

Factory setting

6000

Additional information

User entry

The upper limit value must be greater than the lower limit value defined in the **Low value partial filled pipe detection** parameter (→ 47).

- The unit depends on the process variable selected in the **Assign process variable** parameter (→ 47).

Limit value

- If the displayed value is outside the limit value, the measuring device displays the diagnostic message **S862 Partly filled pipe**.

Response time part. filled pipe detect.

Navigation

Prerequisite

One of the following options is selected in the **Assign process variable** parameter (→ 47):

- Density
- Reference density

Description

Enter the minimum length of time (debouncing time) the signal must be present for the diagnostic message **S862 Partly filled pipe** to be triggered if the measuring pipe is empty or partially full.
Maximum damping partial filled pipe det.

Navigation

Expert → Sensor → Process param. → Partial pipe det → Max. damping

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 47):

- Density
- Reference density

Description

Use this function to enter a damping value to enable detection of empty or partially filled measuring tubes.

User entry

Positive floating-point number

Factory setting

0

Additional information

Description

If pipe damping (Testpoints submenu (→ 64)) exceeds the specified value, the measuring device presumes that the pipe is partially filled and the flow signal is set to 0. The measuring device displays the diagnostic message ΔS862 Partly filled pipe. In the case of non-homogeneous media or air pockets, the damping of the measuring tubes increases.

User entry

The function is enabled only if the input value is greater than 0.

3.2.4 "Measurement mode" submenu

Navigation

Expert → Sensor → Measurement mode

- Select medium → 50
- Select gas type → 50
- Reference sound velocity → 51
- Temperature coefficient sound velocity → 51
Select medium

Navigation

Expert → Sensor → Measurement mode → Select medium

Description

Use this function to select the type of medium.

Selection

- Liquid
- Gas

Factory setting

Liquid

Select gas type

Navigation

Expert → Sensor → Measurement mode → Select gas type

Prerequisite

The Gas option is selected in the Select medium parameter (→ 50).

Description

Use this function to select the type of gas for the measuring application.

Selection

- Air
- Ammonia NH3
- Argon Ar
- Sulfur hexafluoride SF6
- Oxygen O2
- Ozone O3
- Nitrogen oxide NOx
- Nitrogen N2
- Nitrous oxide N2O
- Methane CH4
- Hydrogen H2
- Helium He
- Hydrogen chloride HCl
- Hydrogen sulfide H2S
- Ethylene C2H4
- Carbon dioxide CO2
- Carbon monoxide CO
- Chlorine Cl2
- Butane C4H10
- Propane C3H8
- Propylene C3H6
- Ethane C2H6
- Others

Factory setting

Methane CH4
Reference sound velocity

Navigation
Expert → Sensor → Measurement mode → Sound velocity

Prerequisite
The Others option is selected in the Select gas type parameter (→ 50).

Description
Use this function to enter the sound velocity of the gas at 0 °C (+32 °F).

User entry
1 to 99999.9999 m/s

Factory setting
0 m/s

Temperature coefficient sound velocity

Navigation
Expert → Sensor → Measurement mode → Temp. coeff. SV

Prerequisite
The Others option is selected in the Select gas type parameter (→ 50).

Description
Use this function to enter a temperature coefficient for the sound velocity of the gas.

User entry
Positive floating-point number

Factory setting
0 (m/s)/K

3.2.5 "External compensation" submenu

Navigation

<table>
<thead>
<tr>
<th>External compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure compensation → 52</td>
</tr>
<tr>
<td>Pressure value → 52</td>
</tr>
<tr>
<td>External pressure → 52</td>
</tr>
<tr>
<td>Temperature mode → 53</td>
</tr>
<tr>
<td>External temperature → 53</td>
</tr>
</tbody>
</table>
Description of device parameters

Proline Cubemass 100 Modbus RS485

Pressure compensation

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>The Gas option is selected in the Select medium parameter (→ 50).</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function select the type of pressure compensation.</td>
</tr>
</tbody>
</table>
| Selection | • Off
• Fixed value
• External value |
| Factory setting | Off |

Pressure value

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Sensor → External comp. → Pressure value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>The Fixed value option is selected in the Pressure compensation parameter (→ 52).</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to enter a value for the process pressure that is used for pressure correction.</td>
</tr>
<tr>
<td>User entry</td>
<td>Positive floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0 bar</td>
</tr>
</tbody>
</table>
| Additional information | **User entry**
The unit is taken from the **Pressure unit** parameter (→ 36) |

External pressure

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>The External value option is selected in the Pressure compensation parameter (→ 52).</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to enter an external pressure value.</td>
</tr>
<tr>
<td>User entry</td>
<td>Positive floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0 bar</td>
</tr>
</tbody>
</table>
| Additional information | **User entry**
The unit is taken from the **Pressure unit** parameter (→ 36) |
Temperature mode

Navigation
- Expert → Sensor → External comp. → Temperature mode

Description
Use this function to select the temperature mode.

Selection
- Internal measured value
- External value

Factory setting
Internal measured value

External temperature

Navigation

Prerequisite
The **External value** option is selected in the **Temperature mode** parameter (→ 53) parameter.

Description
Use this function to enter the external temperature.

User entry
-273.15 to 99 999 °C

Factory setting
- 0 °C
- +32 °F

Additional information
Description

The unit is taken from the **Temperature unit** parameter (→ 35)

3.2.6 "Calculated values" submenu

Navigation
- Expert → Sensor → Calculated value

"Corrected volume flow calculation" submenu

Navigation
Description of device parameters

Proline Cubemass 100 Modbus RS485

Corrected volume flow calculation

Navigation

Description
Use this function to select the reference density for calculating the corrected volume flow.

Selection
- Fixed reference density
- Calculated reference density
- Reference density by API table 53
- External reference density

Factory setting
Calculated reference density

External reference density

Navigation

Prerequisite
The External reference density option is selected in the Corrected volume flow calculation parameter (→ 54).

Description
Use this function to enter the external reference density.

User entry
Floating point number with sign

Factory setting
0 kg/Nl

Fixed reference density

Navigation

Prerequisite
The Fixed reference density option is selected in the Corrected volume flow calculation parameter (→ 54) parameter.

Description
Use this function to enter a fixed value for the reference density.
User entry Positive floating-point number

Factory setting 1 kg/Nl

Additional information

Dependency

The unit is taken from the **Reference density unit** parameter (→ 35).

Reference temperature

Navigation

Prerequisite

In the **Corrected volume flow calculation** parameter (→ 54) the **Calculated reference density** option is selected.

Description

Use this function to enter a reference temperature for calculating the reference density.

User entry

−273.15 to 99 999 °C

Factory setting

Country-specific:

- +20 °C
- +68 °F

**Additional information

Dependency

The unit is taken from the **Temperature unit** parameter (→ 35)

Reference density calculation

\[
\rho_n = \rho \cdot \left(1 + \alpha \cdot \Delta t + \beta \cdot (\Delta t)^2\right)
\]

- \(\rho_n\): reference density
- \(\rho\): fluid density currently measured
- \(t\): fluid temperature currently measured
- \(t_n\): reference temperature at which the reference density is calculated (e.g. 20 °C)
- \(\Delta t\): \(t - t_n\)
- \(\alpha\): linear expansion coefficient of the fluid, unit = \([1/\text{K}]\); \(K = \text{Kelvin}\)
- \(\beta\): square expansion coefficient of the fluid, unit = \([1/\text{K}^2]\)

Linear expansion coefficient

Navigation

Expert → Sensor → Calculated value → Corr. vol.flow. → Linear exp coeff

Prerequisite

In the **Corrected volume flow calculation** parameter (→ 54) the **Calculated reference density** option is selected.

Description

Use this function to enter a linear, fluid-specific expansion coefficient for calculating the reference density.
User entry
Signed floating-point number

Factory setting
0.0

Square expansion coefficient

Navigation

Description
For fluid with a non-linear expansion pattern: use this function to enter a quadratic, fluid-specific expansion coefficient for calculating the reference density.

User entry
Signed floating-point number

Factory setting
0.0

3.2.7 "Sensor adjustment" submenu

Navigation

Installation direction

Navigation

Description
Use this function to change the sign of the medium flow direction.

Selection
- Flow in arrow direction
- Flow against arrow direction

Factory setting
Flow in arrow direction

Additional information
Description
Before changing the sign: ascertain the actual direction of fluid flow with reference to the direction indicated by the arrow on the sensor nameplate.
“Zero point adjustment” submenu

Navigation

Zero point adjustment control

Navigation

Description

Use this function to select the start of the zero point adjustment.

Note conditions.

Selection

- Cancel
- Busy
- Zero point adjust failure
- Start

Factory setting

Cancel

Additional information

Description

- Cancel
 If zero point adjustment has failed, select this option to cancel zero point adjustment.
- Busy
 Is displayed during zero point adjustment.
- Zero point adjust failure
 Is displayed if zero point adjustment has failed.
- Start
 Select this option to start zero point adjustment.

Progress

Navigation

Description

The progress of the process is indicated.

User interface

0 to 100 %
Description of device parameters

Proline Cubemass 100 Modbus RS485

"Process variable adjustment" submenu

Navigation

[] Expert → Sensor → Sensor adjustm. → Variable adjust

<table>
<thead>
<tr>
<th>Mass flow offset</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow factor</td>
<td>59</td>
</tr>
<tr>
<td>Volume flow offset</td>
<td>59</td>
</tr>
<tr>
<td>Volume flow factor</td>
<td>59</td>
</tr>
<tr>
<td>Density offset</td>
<td>60</td>
</tr>
<tr>
<td>Density factor</td>
<td>60</td>
</tr>
<tr>
<td>Corrected volume flow offset</td>
<td>60</td>
</tr>
<tr>
<td>Corrected volume flow factor</td>
<td>61</td>
</tr>
<tr>
<td>Reference density offset</td>
<td>61</td>
</tr>
<tr>
<td>Reference density factor</td>
<td>61</td>
</tr>
<tr>
<td>Temperature offset</td>
<td>62</td>
</tr>
<tr>
<td>Temperature factor</td>
<td>62</td>
</tr>
</tbody>
</table>

Mass flow offset

Navigation

Description

Use this function to enter the zero point shift for the mass flow trim. The mass flow unit on which the shift is based is kg/s.

User entry

Signed floating-point number

Factory setting

0 kg/s

Additional information

Description

Corrected value = (factor × value) + offset
Mass flow factor

Navigation

Description

Use this function to enter a quantity factor (without time) for the mass flow. This multiplication factor is applied over the mass flow range.

User entry

Positive floating-point number

Factory setting

1

Additional information

Description

Corrected value = (factor × value) + offset

Volume flow offset

Navigation

Description

Use this function to enter the zero point shift for the volume flow trim. The volume flow unit on which the shift is based is m³/s.

User entry

Signed floating-point number

Factory setting

0 m³/s

Additional information

Description

Corrected value = (factor × value) + offset

Volume flow factor

Navigation

Description

Use this function to enter a quantity factor (without time) for the volume flow. This multiplication factor is applied over the volume flow range.

User entry

Positive floating-point number

Factory setting

1

Additional information

Description

Corrected value = (factor × value) + offset
Density offset

Navigation
- Expert → Sensor → Sensor adjustm. → Variable adjust → Density offset

Description
Use this function to enter the zero point shift for the density trim. The density unit on which the shift is based is kg/m³.

User entry
Signed floating-point number

Factory setting
0 kg/m³

Additional information

Description
Corrected value = (factor × value) + offset

Density factor

Navigation
- Expert → Sensor → Sensor adjustm. → Variable adjust → Density factor

Description
Use this function to enter a quantity factor for the density. This multiplication factor is applied over the density range.

User entry
Positive floating-point number

Factory setting
1

Additional information

Description
Corrected value = (factor × value) + offset

Corrected volume flow offset

Navigation

Description
Use this function to enter the zero point shift for the corrected volume flow trim. The corrected volume flow unit on which the shift is based is 1 Nm³/s.

User entry
Signed floating-point number

Factory setting
0 Nm³/s

Additional information

Description
Corrected value = (factor × value) + offset
Corrected volume flow factor

Navigation

Description
Use this function to enter a quantity factor (without time) for the corrected volume flow. This multiplication factor is applied over the corrected volume flow range.

User entry
Positive floating-point number

Factory setting
1

Additional information
- **Description**
 Corrected value = (factor × value) + offset

Reference density offset

Navigation
- Expert → Sensor → Sensor adjustm. → Variable adjust → Ref.dens. offset

Description
Use this parameter to enter the zero point shift for the reference density trim. The reference density unit on which the shift is based is 1 kg/Nm³.

User entry
Signed floating-point number

Factory setting
0 kg/Nm³

Additional information
- **Description**
 Corrected value = (factor × value) + offset

Reference density factor

Navigation
- Expert → Sensor → Sensor adjustm. → Variable adjust → Ref.dens. factor

Description
Use this function to enter a quantity factor (without time) for the reference density. This multiplication factor is applied over the reference density range.

User entry
Positive floating-point number

Factory setting
1

Additional information
- **Description**
 Corrected value = (factor × value) + offset
Temperature offset

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the zero point shift for the temperature trim. The temperature unit on which the shift is based is K.</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0 K</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>Corrected value = (factor × value) + offset</td>
</tr>
</tbody>
</table>

Temperature factor

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter a quantity factor for the temperature. In each case, this factor refers to the temperature in K.</td>
</tr>
<tr>
<td>User entry</td>
<td>Positive floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>1</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>Corrected value = (factor × value) + offset</td>
</tr>
</tbody>
</table>

3.2.8 "Calibration" submenu

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Sensor → Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Navigation</td>
</tr>
<tr>
<td></td>
<td>Calibration</td>
</tr>
<tr>
<td></td>
<td>→ Calibration factor</td>
</tr>
<tr>
<td></td>
<td>→ Zero point</td>
</tr>
<tr>
<td></td>
<td>→ Nominal diameter</td>
</tr>
<tr>
<td></td>
<td>→ C0 to 5</td>
</tr>
</tbody>
</table>

Endress+Hauser
Calibration factor

Navigation
- Expert → Sensor → Calibration → Cal. factor

Description
Displays the current calibration factor for the sensor.

User interface
Signed floating-point number

Factory setting
Depends on nominal diameter and calibration.

Zero point

Navigation
- Expert → Sensor → Calibration → Zero point

Description
Use this function to enter the zero point correction value for the sensor.

User entry
Signed floating-point number

Factory setting
Depends on nominal diameter and calibration.

Nominal diameter

Navigation
- Expert → Sensor → Calibration → Nominal diameter

Description
Displays the nominal diameter of the sensor.

User interface
DNxx / x"

Factory setting
Depends on the size of the sensor

Additional information
Description

The value is also specified on the sensor nameplate.

C0 to 5

Navigation
- Expert → Sensor → Calibration → C0 to 5

Description
Displays the current density coefficients C0 to 5 of the sensor.

User interface
Signed floating-point number

Factory setting
0
3.2.9 "Testpoints" submenu

- The Testpoints submenu (→ 64) is used to test the measuring device or the application.
- The parameters can only be accessed via CDI interface or Modbus.

Navigation
Expert → Sensor → Testpoints

<table>
<thead>
<tr>
<th>Testpoints</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscillation frequency 0</td>
<td>→ 64</td>
</tr>
<tr>
<td>Frequency fluctuation 0</td>
<td>→ 65</td>
</tr>
<tr>
<td>Oscillation amplitude 0</td>
<td>→ 65</td>
</tr>
<tr>
<td>Oscillation damping 0</td>
<td>→ 65</td>
</tr>
<tr>
<td>Tube damping fluctuation 0</td>
<td>→ 66</td>
</tr>
<tr>
<td>Signal asymmetry</td>
<td>→ 66</td>
</tr>
<tr>
<td>Electronic temperature</td>
<td>→ 67</td>
</tr>
<tr>
<td>Carrier pipe temperature</td>
<td>→ 67</td>
</tr>
<tr>
<td>Exciter current 0</td>
<td>→ 68</td>
</tr>
<tr>
<td>RawMassFlow</td>
<td>→ 68</td>
</tr>
</tbody>
</table>

Oscillation frequency 0

Navigation
Expert → Sensor → Testpoints → Osc. freq. 0

Description
Displays the current oscillation frequency.

User interface
Positive floating point number

Additional information
Typical values

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Material</th>
<th>DN [mm]</th>
<th>DN [in]</th>
<th>f\text{Air} Min. nom. [Hz]</th>
<th>f\text{Air} max. nom. [Hz]</th>
<th>f\text{Water} Min. nom. [Hz]</th>
<th>f\text{Water} max. nom. [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubemass C</td>
<td>Stainless steel, 1.4539 (904L)</td>
<td>1</td>
<td>1/24</td>
<td>113</td>
<td>129</td>
<td>106</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1/16</td>
<td>227</td>
<td>261</td>
<td>199</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1/8</td>
<td>290</td>
<td>334</td>
<td>250</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>1/4</td>
<td>430</td>
<td>494</td>
<td>360</td>
<td>414</td>
</tr>
</tbody>
</table>
Frequency fluctuation 0

Navigation
Expert → Sensor → Testpoints → Freq. fluct. 0

Description
Displays the current frequency fluctuation.

User interface
Signed floating-point number

Oscillation amplitude 0

Navigation
Expert → Sensor → Testpoints → Osc. ampl. 0

Description
Displays the relative oscillation amplitude of the sensor in relation to the optimum value.

User interface
Signed floating-point number

Additional information

Description
This value is 100 % under optimum conditions. The value can fall in the case of complex media (two-phase, high viscosity or high gas velocity).

Limit values

5 %

If the displayed value is outside the limit value, the measuring device displays the following diagnostic messages:

- Diagnostic message .ObjectModel Medium unsuitable, associated service ID 205 Osc Amp Limit
 Explanation: The measured oscillation amplitude has dropped below the xMin limit value.

- Diagnostic message .ObjectModel Medium inhomogeneous, associated service ID 196 Fluid Inhomogeneous Amp
 - Explanation: The fluctuation (standard deviation) of the amplitude is too high.
 - Possible cause: Air or suspended solids in the medium (multiphase)

For detailed information about troubleshooting, refer to the section entitled “Overview of the service-specific diagnostics information”

Oscillation damping 0

Navigation
Expert → Sensor → Testpoints → Osc. damping 0

Description
Displays the current oscillation damping.

User interface
Positive floating-point number
Additional information

Description

Oscillation damping is an indicator of the sensor's current need for excitation power.

Typical values

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Material</th>
<th>DN</th>
<th>Nominal value, air [A/m]</th>
<th>Nominal value, water [A/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubemass C</td>
<td>Stainless steel, 1.4539 (904L)</td>
<td>1</td>
<td>90</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>240</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>790</td>
<td>1150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>310</td>
<td>340</td>
</tr>
</tbody>
</table>

Limit values

The damping depends on the transmitter type and model and changes with the type of medium (differences between models: approx. ±30 %). The minimum value is reached when the sensor is empty. The value can be several 1 000 for viscous media and even several 10 000 in the case of multiphase media. In such cases, the relative oscillation amplitude should also be used for diagnosis.

If the displayed value is outside the limit value, the measuring device displays the following diagnostic message:

Diagnostic message \textit{S862 Partly filled pipe}, associated service ID \textbf{146 Density Monitoring}

For detailed information about troubleshooting, refer to the section entitled "Overview of the service-specific diagnostics information"
Additional information

Description

The measured value is the result of production tolerances of the sensor coils and should remain constant over the life time of a sensor.

Limit values

If the value is > 10 %, this is an indicator of a damaged sensor or sensor cable.

Additional information

If the displayed value is outside the limit value, the measuring device displays the following diagnostic message:

- **Diagnostic message** `S140 Sensor signal`, associated service ID **204 El Dyn Sensor**
 - Explanation: The amplitude asymmetry between the inlet and outlet sensor has exceeded the limit value.
 - Possible cause: Virtually only occurs if one of the two signal sensors is defective.

For detailed information about troubleshooting, refer to the section entitled "Overview of the service-specific diagnostics information".

Electronic temperature

Navigation

- Expert → Sensor → Testpoints → Electronic temp.

Description

Displays the current temperature inside the main electronics.

User interface

Signed floating-point number

Additional information

Description

As there is minimum internal heating in the electronics, the electronics temperature corresponds to the housing or ambient temperature.

NOTE!

Stay within the specified ambient temperature range.

Dependency

- The unit is taken from the **Temperature unit** parameter

Carrier pipe temperature

Navigation

Prerequisite

- Order code for "Application package", option EB "Heartbeat Verification + Monitoring"
- If the carrier tube temperature is provided: Cubemass C

Description

Use this function to display the current temperature of the measuring tube housing. Displays the 2nd measured temperature for compensation.

User interface

Signed floating-point number
Additional information

Limit values

In thermally insulated sensors, the carrier tube temperature can reach the temperature of the medium.

Dependency

The unit is taken from the **Temperature unit** parameter

Exciter current 0

Navigation

Expert → Sensor → Testpoints → Exc. current 0

Description

Displays the current excitation current.

User interface

Signed floating-point number

RawMassFlow

Navigation

Expert → Sensor → Testpoints → RawMassFlow

Description

Displays the unprocessed mass flow (contains all sensor corrections etc.).

User interface

Signed floating-point number

Additional information

Description

Displays the mass flow value before offset and factor correction, damping, low flow cut off and monitoring of a partially filled pipe. This value can be used to check the current zero point, similar to the zero point adjustment function.

Dependency

The unit is taken from the **Mass flow unit** parameter (→ 29)

3.2.10 "Supervision" submenu

Navigation

Expert → Sensor → Supervision

- Limit value measuring tube damping → 69
Limit value measuring tube damping

Navigation
Expert → Sensor → Supervision → Limit tube damp.

Description
Use this function to enter a limit value for measuring tube damping.

User entry
Positive floating-point number

Factory setting
Positive floating-point number

Additional information
Limit value
- If the displayed value is outside the limit value, the measuring device displays the diagnostic message S948 Tube damping too high.
- For detecting inhomogeneous media, for example

3.3 "Communication" submenu

Navigation
Expert → Communication

3.3.1 "Modbus configuration" submenu

Navigation
Expert → Communication → Modbus config.
Bus address

Navigation
- Expert → Communication → Modbus config. → Bus address

Description
For entering the device address.

User entry
1 to 247

Factory setting
247

Baudrate

Navigation
- Expert → Communication → Modbus config. → Baudrate

Description
Use this function to select a transmission rate.

Selection
- 1200 BAUD
- 2400 BAUD
- 4800 BAUD
- 9600 BAUD
- 19200 BAUD
- 38400 BAUD
- 57600 BAUD
- 115200 BAUD

Factory setting
19200 BAUD

Data transfer mode

Navigation
- Expert → Communication → Modbus config. → Data trans. mode

Description
Use this function to select the data transmission mode.

Selection
- ASCII
- RTU

Factory setting
RTU
Additional information

Options

- **ASCII**
 Transmission of data in the form of readable ASCII characters. Error protection via LRC.
- **RTU**
 Transmission of data in binary form. Error protection via CRC16.

Parity

Navigation

Experts → Communication → Modbus config. → Parity

Description

Use this function to select the parity bit.

Selection

- Odd
- Even
- None / 1 stop bit
- None / 2 stop bits

Factory setting

Even

Additional information

Options

Picklist **ASCII** option:
- 0 = **Even** option
- 1 = **Odd** option

Picklist **RTU** option:
- 0 = **Even** option
- 1 = **Odd** option
- 2 = **None / 1 stop bit** option
- 3 = **None / 2 stop bits** option

Byte order

Navigation

Experts → Communication → Modbus config. → Byte order

Description

Use this function to select the sequence in which the bytes are transmitted. The transmission sequence must be coordinated with the Modbus master.

Selection

- 0-1-2-3
- 3-2-1-0
- 1-0-3-2
- 2-3-0-1

Factory setting

1-0-3-2
Telegram delay

Navigation
Expert → Communication → Modbus config. → Telegram delay

Description
Use this function to enter a delay time after which the measuring device replies to the request telegram of the Modbus master. This allows communication to be adapted to slow Modbus RS485 masters.

User entry
0 to 100 ms

Factory setting
6 ms

Assign diagnostic behavior

Navigation
Expert → Communication → Modbus config. → Assign diag. beh

Description
Use this function to select the diagnostic behavior for Modbus communication.

Selection
- Off
- Alarm or warning
- Warning
- Alarm

Factory setting
Alarm

Additional information
Description
Defines the category of messages to which data transmission responds:
- Off
 The device continues to measure. The diagnostic event is ignored, and no diagnostic message is generated.
- Alarm or warning
 The device continues to measure. A diagnostic message is generated. In the event of an alarm, the signal outputs assume the specified alarm condition.
- Warning
 The device continues to measure. A diagnostic message is generated.
- Alarm
 The device continues to measure. The signal outputs assume the specified alarm condition. A diagnostic message is generated.

Failure mode

Navigation
Expert → Communication → Modbus config. → Failure mode

Description
Use this function to select the measured value output in the event of a diagnostic message via Modbus communication.

Selection
- NaN value
- Last valid value
Factory setting

NaN value

Additional information

Options
- NaN value
 The device outputs the NaN value 1).
- Last valid value
 The device outputs the last valid measured value before the fault occurred.

This effect of this parameter depends on the option selected in the Assign diagnostic behavior parameter (→ 72).

Interpreter mode

Navigation

Expert → Communication → Modbus config. → Interpreter mode

Description

Use this function to select the interpreter mode. This mode defines the behavior of the telegram reception interpreter.

Selection

- Standard
- Ignore surplus bytes

Factory setting

Standard

Additional information

"Standard" option
Behaves according to the Modbus standard, i.e. the last two bytes received are the checksum CRC16.

NOTE!
The selection is only relevant in the RTU mode. In the ASCII mode, the device always behaves according to the Modbus standard.

"Ignore surplus bytes" option
If supported by the function code, the two bytes for the checksum CRC16 are determined from the anticipated telegram length. Surplus bytes at the end of the actual telegram are ignored. This is not the standard Modbus behavior.

3.3.2 "Modbus information" submenu

Navigation

Expert → Communication → Modbus info

Modbus information

Device ID

→ 74

Device revision

→ 74

1) Not a Number
Description of device parameters

Proline Cubemass 100 Modbus RS485

Device ID

Navigation

Expert → Communication → Modbus info → Device ID

Description
Displays the device ID for identifying the measuring device.

User interface
4-digit hexadecimal number

Device revision

Navigation

Expert → Communication → Modbus info → Device revision

Description
Displays the device revision.

User interface
4-digit hexadecimal number

3.3.3 "Modbus data map" submenu

Navigation

Expert → Communication → Modbus data map

Scan list register 0 to 15

Navigation

Expert → Communication → Modbus data map → Scan list reg.0 to 15

Description
Use this function to enter the scan list register. By entering the register address (1-based), up to 16 device parameters can be grouped in the auto-scan buffer by assigning them to the scan list registers 0 to 15. The data of the device parameters assigned here are read out via the register addresses 5051 to 5081.

User entry
1 to 65535

Factory setting
1
Additional information

Description

- Scan list: Configuration area
 The device parameters to be grouped are defined in a list in that their Modbus RS485 register addresses are entered in the list.
- Data area
 The measuring device reads out the register addresses entered in the scan list cyclically and writes the associated device data (values) to the data area.

3.4 "Application" submenu

Navigation

Expert → Application

Reset all totalizers

Reset all totalizers

Navigation

Expert → Application → Reset all tot.

Description

Use this function to reset all totalizers to the value 0 and restart the totaling process. This deletes all the flow values previously totalized.

Selection

- Cancel
- Reset + totalize

Factory setting

Cancel

Additional information

Selection

- Cancel
 No action is executed and the user exits the parameter.
- Reset + totalize
 All totalizers are reset to 0 and the totaling process is restarted.
3.4.1 "Totalizer 1 to 3" submenu

Navigation

Expert → Application → Totalizer 1 to 3

Assign process variable → 76
Mass unit → 77
Volume unit → 77
Corrected volume unit → 78
Totalizer operation mode → 78
Control Totalizer 1 to 3 → 79
Preset value 1 to 3 → 80
Failure mode → 80

Assign process variable

Navigation

Expert → Application → Totalizer 1 to 3 → Assign variable

Description
Use this function to select a process variable for the Totalizer 1 to 3.

Selection
- Off
- Mass flow
- Volume flow
- Corrected volume flow
- Target mass flow **
- Carrier mass flow **

Factory setting
Mass flow

Additional information
Description
If the option selected is changed, the device resets the totalizer to 0.

Selection
If the Off option is selected, only Assign process variable parameter (→ 76) is still displayed in the Totalizer 1 to 3 submenu. All other parameters in the submenu are hidden.

** Visibility depends on order options or device settings
Mass unit

Navigation

Expert → Application → Totalizer 1 to 3 → Mass unit

Prerequisite
The Mass flow option is selected in the Assign process variable parameter (→ 76) of the Totalizer 1 to 3 submenu.

Description
Use this function to select the unit for the mass.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>oz</td>
</tr>
<tr>
<td>kg</td>
<td>lb</td>
</tr>
<tr>
<td>t</td>
<td>STon</td>
</tr>
</tbody>
</table>

Custom-specific units
User mass

Factory setting
Country-specific:
- kg
- lb

Additional information
Selection

For an explanation of the abbreviated units: → 104

Volume unit

Navigation

Expert → Application → Totalizer 1 to 3 → Volume unit

Prerequisite
One of the following options is selected in the Assign process variable parameter (→ 76) of the Totalizer 1 to 3 submenu:
- Volume flow
- Target mass flow **
- Carrier mass flow **

Description
Use this function to select the unit for the volume.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm³</td>
<td>af</td>
<td>gal (imp)</td>
</tr>
<tr>
<td>dm³</td>
<td>ft³</td>
<td>Mgal (imp)</td>
</tr>
<tr>
<td>m³</td>
<td>fl oz (us)</td>
<td>bbl (imp;beer)</td>
</tr>
<tr>
<td>ml</td>
<td>gal (us)</td>
<td>bbl (imp;oil)</td>
</tr>
<tr>
<td>l</td>
<td>kg (us)</td>
<td></td>
</tr>
<tr>
<td>hl</td>
<td>Mgal (us)</td>
<td></td>
</tr>
<tr>
<td>Mi Mega</td>
<td>bbl (us;oil)</td>
<td></td>
</tr>
</tbody>
</table>

Custom-specific units
User vol.

Visibility depends on order options or device settings
Corrected volume unit

Navigation

Expert → Application → Totalizer 1 to 3 → Corr. vol. unit

Prerequisite

The Corrected volume flow option is selected in the Assign process variable parameter (→ 76) of the Totalizer 1 to 3 submenu.

Description

Use this function to select the unit for the corrected volume.

Selection

- **SI units**
 - Nl
 - Nm³
 - Sl
 - Sm³

- **US units**
 - Sft³
 - Sgal (us)
 - Sbbl (us;liq.)

- **Imperial units**
 - Sgal (imp)

Custom-specific units

UserCrVol.

Factory setting

Country-specific:
- Nl
- Sft³

Additional information

For an explanation of the abbreviated units: → 104

Totalizer operation mode

Navigation

Expert → Application → Totalizer 1 to 3 → Operation mode

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 76) Totalizer 1 to 3 submenu:
- Volume flow
- Mass flow
- Corrected volume flow
- Target mass flow**
- Carrier mass flow**

Description

Use this function to select how the totalizer summates the flow.

Visibility depends on order options or device settings

78
Selection
- Net flow total
- Forward flow total
- Reverse flow total

Factory setting
Net flow total

Additional information
Selection
- Net flow total
 Positive and negative flow values are totalized and balanced against one another. Net flow is registered in the flow direction.
- Forward flow total
 Only the flow in the forward flow direction is totalized.
- Reverse flow total
 Only the flow against the forward flow direction is totalized (= reverse flow total).

Control Totalizer 1 to 3

Navigation
Expert → Application → Totalizer 1 to 3 → Control Tot. 1 to 3

Prerequisite
One of the following options is selected in the Assign process variable parameter (→ 76) of the Totalizer 1 to 3 submenu:
- Volume flow
- Mass flow
- Corrected volume flow
- Target mass flow **
- Carrier mass flow **

Description
Use this function to select the control of totalizer value 1-3.

Selection
- Totalize
- Reset + hold
- Preset + hold
- Reset + totalize
- Preset + totalize

Factory setting
Totalize

Additional information
Selection
- Totalize
 The totalizer is started or continues totalizing with the current counter reading.
- Reset + hold
 The totaling process is stopped and the totalizer is reset to 0.
- Preset + hold
 The totaling process is stopped and the totalizer is set to its defined start value from the Preset value parameter (→ 80).
- Reset + totalize
 The totalizer is reset to 0 and the totaling process is restarted.
- Preset + totalize
 The totalizer is set to the defined start value from the Preset value parameter (→ 80) and the totaling process is restarted.

** Visibility depends on order options or device settings
Preset value 1 to 3

Navigation

[Expert → Application → Totalizer 1 to 3 → Preset value 1 to 3]

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 76) of the Totalizer 1 to 3 submenu:
- Volume flow
- Mass flow
- Corrected volume flow
- Target mass flow **
- Carrier mass flow **

Description

Use this function to enter a start value for the Totalizer 1 to 3.

User entry

Signed floating-point number

Factory setting

Country-specific:
- 0 kg
- 0 lb

Additional information

User entry

The unit of the selected process variable is specified for the totalizer depending on the selection made in the Assign process variable parameter (→ 76):
- Volume flow option: Volume flow unit parameter (→ 30)
- Mass flow option, Target mass flow option, Carrier mass flow option: Mass flow unit parameter (→ 29)
- Corrected volume flow option: Corrected volume unit parameter (→ 78)

Example

This configuration is suitable for applications such as iterative filling processes with a fixed batch quantity.

Failure mode

Navigation

[Expert → Application → Totalizer 1 to 3 → Failure mode]

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 76) of the Totalizer 1 to 3 submenu:
- Volume flow
- Mass flow
- Corrected volume flow
- Target mass flow **
- Carrier mass flow **

Description

Use this function to select how a totalizer behaves in the event of a device alarm.

Selection

- Stop
- Actual value
- Last valid value

** Visibility depends on order options or device settings
Factory setting

Stop

Additional information

Description

This setting does not affect the failsafe mode of other totalizers and the outputs. This is specified in separate parameters.

Selection

- Stop
 Totalizing is stopped when a device alarm occurs.
- Actual value
 The totalizer continues to count based on the actual measured value; the device alarm is ignored.
- Last valid value
 The totalizer continues to count based on the last valid measured value before the device alarm occurred.

3.4.2 "Concentration" submenu

For detailed information on the parameter descriptions for the **Concentration** application package: Special Documentation for the device

Navigation

Expert → Application → Concentration

3.5 "Diagnostics" submenu

Navigation

Expert → Diagnostics

Diagnostics

- Actual diagnostics
- Timestamp
- Previous diagnostics
- Timestamp
- Operating time from restart
- Operating time
- Diagnostic list
- Event logbook
Actual diagnostics

Navigation
Expert → Diagnostics → Actual diagnos.

Prerequisite
A diagnostic event has occurred.

Description
Displays the current diagnostic message. If two or more messages occur simultaneously, the message with the highest priority is shown on the display.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Display
Additional pending diagnostic messages can be viewed in the Diagnostic list submenu (→ 84).

Example
For the display format:
F271 Main electronic failure

Timestamp

Navigation
Expert → Diagnostics → Timestamp

Description
Displays the operating time when the current diagnostic message occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
Display
The diagnostic message can be viewed via the Actual diagnostics parameter (→ 82).

Example
For the display format:
24d12h13m00s
Previous diagnostics

Navigation
Expert → Diagnostics → Prev.diagnostics

Prerequisite
Two diagnostic events have already occurred.

Description
Displays the diagnostic message that occurred before the current message.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Example
For the display format:
F271 Main electronic failure

Timestamp

Navigation
Expert → Diagnostics → Timestamp

Description
Displays the operating time when the last diagnostic message before the current message occurred.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display
The diagnostic message can be viewed via the **Previous diagnostics** parameter (→ 83).

Example
For the display format:
24d12h13m00s

Operating time from restart

Navigation
Expert → Diagnostics → Time fr. restart

Description
Use this function to display the time the device has been in operation since the last device restart.

User interface
Days (d), hours (h), minutes (m) and seconds (s)
Operating time

Navigation
- Expert → Diagnostics → Operating time

Description
Use this function to display the length of time the device has been in operation.

User interface
Days (d), hours (h), minutes (m) and seconds (s)

Additional information
User interface
The maximum number of days is 9999, which is equivalent to 27 years.

3.5.1 "Diagnostic list" submenu

Navigation
- Expert → Diagnostics → Diagnostic list

Diagnostics 1

Navigation
- Expert → Diagnostics → Diagnostic list → Diagnostics 1

Description
Displays the current diagnostics message with the highest priority.

User interface
Symbol for diagnostic behavior, diagnostic code and short message.
Additional information

Examples

For the display format:
- X F271 Main electronic failure
- X F276 I/O module failure

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the Diagnostics 1 parameter (→ 84).

Example

For the display format:
24d12h13m00s

Diagnostics 2

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 2

Description

Displays the current diagnostics message with the second-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Examples

For the display format:
- X F271 Main electronic failure
- X F276 I/O module failure

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the second-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)
Additional information

Display

The diagnostic message can be viewed via the **Diagnostics 2** parameter (→ 85).

Example

For the display format:

24d12h13m00s

Diagnostics 3

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 3

Description

Displays the current diagnostics message with the third-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Examples

For the display format:

- ⚠️F271 Main electronic failure
- ⚠️F276 I/O module failure

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the third-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the **Diagnostics 3** parameter (→ 86).

Example

For the display format:

24d12h13m00s

Diagnostics 4

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 4

Description

Displays the current diagnostics message with the fourth-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.
Additional information

Examples

For the display format:
- ☑ F271 Main electronic failure
- ☑ F276 I/O module failure

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the fourth-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the Diagnostics 4 parameter (→ ☑ 86).

Example

For the display format:
24d12h13m00s

Diagnostics 5

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 5

Description

Displays the current diagnostics message with the fifth-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Examples

For the display format:
- ☑ F271 Main electronic failure
- ☑ F276 I/O module failure

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the fifth-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)
3.5.2 "Event logbook" submenu

Navigation
Expert → Diagnostics → Event logbook

Filter options

Navigation
Expert → Diagnostics → Event logbook → Filter options

Description
Use this function to select the category whose event messages are displayed in the event list of the operating tool.

Selection
- All
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- Information (I)

Factory setting
All

Additional information

The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107:
- F = Failure
- C = Function Check
- S = Out of Specification
- M = Maintenance Required
3.5.3 "Device information" submenu

Navigation

Expert → Diagnostics → Device info

<table>
<thead>
<tr>
<th>Device information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device tag</td>
</tr>
<tr>
<td>Serial number</td>
</tr>
<tr>
<td>Firmware version</td>
</tr>
<tr>
<td>Device name</td>
</tr>
<tr>
<td>Order code</td>
</tr>
<tr>
<td>Extended order code 1</td>
</tr>
<tr>
<td>Extended order code 2</td>
</tr>
<tr>
<td>Extended order code 3</td>
</tr>
<tr>
<td>ENP version</td>
</tr>
<tr>
<td>Configuration counter</td>
</tr>
</tbody>
</table>

Device tag

Navigation

Expert → Diagnostics → Device info → Device tag

Description
Displays a unique name for the measuring point so it can be identified quickly within the plant.

User interface
Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /).

Factory setting
Cubemass 100

Serial number

Navigation

Expert → Diagnostics → Device info → Serial number

Description
Displays the serial number of the measuring device.

The number can be found on the nameplate of the sensor and transmitter.

User interface
A maximum of 11-digit character string comprising letters and numbers.
Description of device parameters

Proline Cubemass 100 Modbus RS485

Additional information

Description

Uses of the serial number

- To identify the measuring device quickly, e.g. when contacting Endress+Hauser.
- To obtain specific information on the measuring device using the Device Viewer: www.endress.com/deviceviewer

Firmware version

Navigation

Expert → Diagnostics → Device info → Firmware version

Description

Displays the device firmware version installed.

User interface

Character string in the format xx.yy.zz

Additional information

Display

The Firmware version is also located:

- On the title page of the Operating instructions
- On the transmitter nameplate

Device name

Navigation

Expert → Diagnostics → Device info → Device name

Description

Displays the name of the transmitter. It can also be found on the nameplate of the transmitter.

User interface

Max. 32 characters such as letters or numbers.

Factory setting

Cubemass 100

Order code

Navigation

Expert → Diagnostics → Device info → Order code

Description

Displays the device order code.

User interface

Character string composed of letters, numbers and certain punctuation marks (e.g. /).

Additional information

Description

The order code can be found on the nameplate of the sensor and transmitter in the "Order code" field.
The order code is generated from the extended order code through a process of reversible transformation. The extended order code indicates the attributes for all the device features in the product structure. The device features are not directly readable from the order code.

Uses of the order code
- To order an identical spare device.
- To identify the device quickly and easily, e.g. when contacting Endress+Hauser.

Extended order code 1

Navigation

![Expert → Diagnostics → Device info → Ext. order cd. 1](image)

Description
Displays the first part of the extended order code.
On account of length restrictions, the extended order code is split into a maximum of 3 parameters.

User interface
Character string

Additional information
Description
The extended order code indicates the version of all the features of the product structure for the measuring device and thus uniquely identifies the measuring device.

The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field.

Extended order code 2

Navigation

![Expert → Diagnostics → Device info → Ext. order cd. 2](image)

Description
Displays the second part of the extended order code.

User interface
Character string

Additional information
For additional information, see Extended order code 1 parameter (→ [91](#))

Extended order code 3

Navigation

![Expert → Diagnostics → Device info → Ext. order cd. 3](image)

Description
Displays the third part of the extended order code.

User interface
Character string

Additional information
For additional information, see Extended order code 1 parameter (→ [91](#))
ENP version

Navigation

Expert → Diagnostics → Device info → ENP version

Description
Displays the version of the electronic nameplate.

User interface
Character string

Factory setting
2.02.00

Additional information

Description
This electronic nameplate stores a data record for device identification that includes more data than the nameplates attached to the outside of the device.

Configuration counter

Navigation

Expert → Diagnostics → Device info → Config. counter

Description
Displays the number of parameter modifications for the device. When the user changes a parameter setting, this counter is incremented.

User interface
0 to 65535

3.5.4 "Min/max values" submenu

Navigation

Expert → Diagnostics → Min/max val.
Reset min/max values

Navigation

- Expert → Diagnostics → Min/max val. → Reset min/max

Description

Use this function to select measured variables whose minimum, maximum and average measured values are to be reset.

Selection

- Cancel
- Oscillation amplitude
- Oscillation damping
- Oscillation frequency
- Signal asymmetry

Factory setting

Cancel

"Electronic temperature" submenu

Navigation

- Expert → Diagnostics → Min/max val. → Electronic temp.

Electronic temperature

- Minimum value → 93
- Maximum value → 94

Minimum value

Navigation

- Expert → Diagnostics → Min/max val. → Electronic temp. → Minimum value

Description

Displays the lowest previously measured temperature value of the main electronics module.

User interface

Signed floating-point number

Additional information

Dependency

- The unit is taken from the **Temperature unit** parameter (→ 35)
Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Electronic temp. → Maximum value

Description

Displays the highest previously measured temperature value of the main electronics module.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Temperature unit** parameter (→ 35)

"Medium temperature" submenu

Navigation

Expert → Diagnostics → Min/max val. → Medium temp.

<table>
<thead>
<tr>
<th>Minimum value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
</tr>
<tr>
<td>Maximum value</td>
</tr>
</tbody>
</table>

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Medium temp. → Minimum value

Description

Displays the lowest previously measured medium temperature value.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Temperature unit** parameter (→ 35)

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Medium temp. → Maximum value

Description

Displays the highest previously measured medium temperature value.

User interface

Signed floating-point number
Additional information

Dependency

The unit is taken from the **Temperature unit** parameter (→ [35])

"Carrier pipe temperature" submenu

Navigation

Expert → Diagnostics → Min/max val. → Carr. pipe temp.

<table>
<thead>
<tr>
<th>Minimum value</th>
<th>Maximum value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisite

Order code for "Application package", option EB "Heartbeat Verification + Monitoring"

Description

Displays the lowest previously measured temperature value of the carrier pipe.

User interface

Signed floating-point number

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Carr. pipe temp. → Minimum value

Prerequisite

Order code for "Application package", option EB "Heartbeat Verification + Monitoring"

Description

Displays the lowest previously measured temperature value of the carrier pipe.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Temperature unit** parameter (→ [35])

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Carr. pipe temp. → Maximum value

Prerequisite

Order code for "Application package", option EB "Heartbeat Verification + Monitoring"

Description

Displays the highest previously measured temperature value of the carrier pipe.

User interface

Signed floating-point number

Additional information

Dependency

The unit is taken from the **Temperature unit** parameter (→ [35])
"Oscillation frequency" submenu

Navigation
Expert → Diagnostics → Min/max val. → Oscil. frequency

<table>
<thead>
<tr>
<th>➤ Oscillation frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
</tr>
<tr>
<td>96</td>
</tr>
<tr>
<td>Maximum value</td>
</tr>
<tr>
<td>96</td>
</tr>
</tbody>
</table>

Minimum value

Navigation
Expert → Diagnostics → Min/max val. → Oscil. frequency → Minimum value

Description
Displays the lowest previously measured oscillation frequency.

User interface
Signed floating-point number

Maximum value

Navigation
Expert → Diagnostics → Min/max val. → Oscil. frequency → Maximum value

Description
Displays the highest previously measured oscillation frequency.

User interface
Signed floating-point number

"Oscillation amplitude" submenu

Navigation
Expert → Diagnostics → Min/max val. → Oscil. amplitude

<table>
<thead>
<tr>
<th>➤ Oscillation amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
</tr>
<tr>
<td>97</td>
</tr>
<tr>
<td>Maximum value</td>
</tr>
<tr>
<td>97</td>
</tr>
</tbody>
</table>
Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Oscil. amplitude → Minimum value

Description

Displays the lowest previously measured oscillation amplitude.

User interface

Signed floating-point number

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Oscil. amplitude → Maximum value

Description

Displays the highest previously measured oscillation amplitude.

User interface

Signed floating-point number

"Oscillation damping" submenu

Navigation

Expert → Diagnostics → Min/max val. → Oscil. damping

<table>
<thead>
<tr>
<th>Oscillation damping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
</tr>
<tr>
<td>Maximum value</td>
</tr>
</tbody>
</table>

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Oscil. damping → Minimum value

Description

Displays the lowest previously measured oscillation damping.

User interface

Signed floating-point number

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Oscil. damping → Maximum value

Description

Displays the highest previously measured oscillation damping.
User interface Signed floating-point number

"Signal asymmetry" submenu

Navigation
Expert → Diagnostics → Min/max val. → Signal asymmetry

![Signal asymmetry](image)

- **Minimum value**
 - **Description** Displays the lowest previously measured signal asymmetry.
 - **User interface** Signed floating-point number

- **Maximum value**
 - **Description** Displays the highest previously measured signal asymmetry.
 - **User interface** Signed floating-point number

3.5.5 "Heartbeat" submenu

For detailed information on the parameter descriptions of the **Heartbeat Verification** application package, see the Special Documentation for the device

Navigation
Expert → Diagnostics → Heartbeat

![Heartbeat](image)

- **Performing verification**
3.5.6 "Simulation" submenu

Navigation

Expert → Diagnostics → Simulation

Assign simulation process variable

Navigation

Expert → Diagnostics → Simulation → Assign proc.var.

Description

Use this function to select a process variable for the simulation process that is activated.

Selection

- Off
- Mass flow
- Volume flow
- Corrected volume flow
- Density
- Reference density
- Temperature
- Concentration **
- Target mass flow **
- Carrier mass flow **

Factory setting

Off

Additional information

Description

The simulation value of the process variable selected is defined in the **Value process variable** parameter (→ 100).

** Visibility depends on order options or device settings**
Value process variable

Navigation

Expert → Diagnostics → Simulation → Value proc. var.

Prerequisite

One of the following options is selected in the Assign simulation process variable parameter (→ 99):
- Mass flow
- Volume flow
- Corrected volume flow
- Density
- Reference density
- Temperature
- Concentration **
- Target mass flow **
- Carrier mass flow **

Description

Use this function to enter a simulation value for the selected process variable. Subsequent measured value processing and the signal output use this simulation value. In this way, users can verify whether the measuring device has been configured correctly.

User entry

Depends on the process variable selected

Factory setting

0

Additional information

User entry

The unit of the displayed measured value is taken from the System units submenu (→ 28).

Simulation device alarm

Navigation

Expert → Diagnostics → Simulation → Sim. alarm

Description

Use this function to switch the device alarm on and off.

Selection

- Off
- On

Factory setting

Off

** Visibility depends on order options or device settings
4 Country-specific factory settings

4.1 SI units

Not valid for USA and Canada.

4.1.1 System units

<table>
<thead>
<tr>
<th>Mass</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow</td>
<td>kg/h</td>
</tr>
<tr>
<td>Volume</td>
<td>l</td>
</tr>
<tr>
<td>Volume flow</td>
<td>l/h</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Nl</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Nl/h</td>
</tr>
<tr>
<td>Density</td>
<td>kg/l</td>
</tr>
<tr>
<td>Reference density</td>
<td>kg/Nl</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>Pressure</td>
<td>bar a</td>
</tr>
</tbody>
</table>

4.1.2 Full scale values

The factory settings apply to the following parameters:

100% bar graph value 1

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>kg/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
</tr>
</tbody>
</table>

4.1.3 On value low flow cut off

The switch-on point depends on the type of medium and the nominal diameter.

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>On-value for liquid [kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>1.8</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>Switch-on value for gas [kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Country-specific factory settings

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>Switch-on value for gas [kg/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.45</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

4.2 US units

Only valid for USA and Canada.

4.2.1 System units

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>lb</td>
</tr>
<tr>
<td>Mass flow</td>
<td>lb/min</td>
</tr>
<tr>
<td>Volume</td>
<td>gal (us)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>gal/min (us)</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Sft³</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Sft³/min</td>
</tr>
<tr>
<td>Density</td>
<td>lb/ft³</td>
</tr>
<tr>
<td>Reference density</td>
<td>lb/Sft³</td>
</tr>
<tr>
<td>Temperature</td>
<td>lb/ft³</td>
</tr>
<tr>
<td>Pressure</td>
<td>psi a</td>
</tr>
</tbody>
</table>

4.2.2 Full scale values

The factory settings apply to the following parameters: 100% bar graph value 1

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>[lb/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹/₂₄</td>
<td>0.15</td>
</tr>
<tr>
<td>¹/₁₂</td>
<td>0.75</td>
</tr>
<tr>
<td>¹/₈</td>
<td>3.3</td>
</tr>
<tr>
<td>¹/₄</td>
<td>7.4</td>
</tr>
</tbody>
</table>

4.2.3 On value low flow cut off

The switch-on point depends on the type of medium and the nominal diameter.

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>On-value for liquid [lb/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹/₂₄</td>
<td>0.003</td>
</tr>
<tr>
<td>¹/₁₂</td>
<td>0.015</td>
</tr>
<tr>
<td>¹/₈</td>
<td>0.066</td>
</tr>
<tr>
<td>¹/₄</td>
<td>0.15</td>
</tr>
<tr>
<td>Nominal diameter [in]</td>
<td>Switch-on value for gas [lb/min]</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>¹/₂₄</td>
<td>0.001</td>
</tr>
<tr>
<td>¹/₁₂</td>
<td>0.004</td>
</tr>
<tr>
<td>¹/₈</td>
<td>0.016</td>
</tr>
<tr>
<td>¹/₄</td>
<td>0.0375</td>
</tr>
</tbody>
</table>
5 Explanation of abbreviated units

5.1 SI units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>g/cm³, g/m³</td>
<td>Gram/volume unit</td>
</tr>
<tr>
<td></td>
<td>kg/dm³, kg/l, kg/m³</td>
<td>Kilogram/volume unit</td>
</tr>
<tr>
<td></td>
<td>SD4°C, SD15°C, SD20°C</td>
<td>Specific density: The specific density is the ratio of the density of the fluid to the density of water at a water temperature of 4°C (39°F), 15°C (59°F), 20°C (68°F).</td>
</tr>
<tr>
<td></td>
<td>SGA4°C, SGA15°C, SGA20°C</td>
<td>Specific gravity: The specific gravity is the ratio of the density of the fluid to the density of water at a water temperature of 4°C (39°F), 15°C (59°F), 20°C (68°F).</td>
</tr>
<tr>
<td>Pressure</td>
<td>Pa a, kPa a, MPa a</td>
<td>Pascal, kilopascal, megapascal (absolute)</td>
</tr>
<tr>
<td></td>
<td>bar</td>
<td>Bar</td>
</tr>
<tr>
<td></td>
<td>Pa g, kPa g, MPa g</td>
<td>Pascal, kilopascal, megapascal (relative/gauge)</td>
</tr>
<tr>
<td></td>
<td>bar g</td>
<td>Bar (relative/gauge)</td>
</tr>
<tr>
<td>Mass</td>
<td>g, kg, t</td>
<td>Gram, kilogram, metric ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>g/s, g/min, g/h, g/d</td>
<td>Gram/time unit</td>
</tr>
<tr>
<td></td>
<td>kg/s, kg/min, kg/h, kg/d</td>
<td>Kilogram/time unit</td>
</tr>
<tr>
<td></td>
<td>t/s, t/min, t/h, t/d</td>
<td>Metric ton/time unit</td>
</tr>
<tr>
<td>Reference density</td>
<td>kg/Nm³, kg/Nl, g/Scm³, kg/Sm³</td>
<td>Kilogram, gram/standard volume unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Nl, Nm³, Sm³</td>
<td>Normal liter, normal cubic meter, standard cubic meter</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Nl/s, Nl/min, Nl/h, Nl/d</td>
<td>Normal liter/time unit</td>
</tr>
<tr>
<td></td>
<td>Nm³/s, Nm³/min, Nm³/h, Nm³/d</td>
<td>Normal cubic meter/time unit</td>
</tr>
<tr>
<td></td>
<td>Sm³/s, Sm³/min, Sm³/h, Sm³/d</td>
<td>Standard cubic meter/time unit</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C, K</td>
<td>Celsius, Kelvin</td>
</tr>
<tr>
<td>Volume</td>
<td>cm³, dm³, m³</td>
<td>Cubic centimeter, cubic decimeter, cubic meter</td>
</tr>
<tr>
<td></td>
<td>ml, l, hl, MI Mega</td>
<td>Milliliter, liter, hectoliter, megaliter</td>
</tr>
<tr>
<td>Volume flow</td>
<td>cm³/s, cm³/min, cm³/h, cm³/d</td>
<td>Cubic centimeter/time unit</td>
</tr>
<tr>
<td></td>
<td>dm³/s, dm³/min, dm³/h, dm³/d</td>
<td>Cubic decimeter/time unit</td>
</tr>
<tr>
<td></td>
<td>m³/s, m³/min, m³/h, m³/d</td>
<td>Cubic meter/time unit</td>
</tr>
<tr>
<td></td>
<td>ml/s, ml/min, ml/h, ml/d</td>
<td>Milliliter/time unit</td>
</tr>
<tr>
<td></td>
<td>l/s, l/min, l/h, l/d</td>
<td>Liter/time unit</td>
</tr>
<tr>
<td></td>
<td>hl/s, hl/min, hl/h, hl/d</td>
<td>Hectoliter/time unit</td>
</tr>
<tr>
<td></td>
<td>MI/s, MI/min, MI/h, MI/d</td>
<td>Megaliter/time unit</td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
</tbody>
</table>

5.2 US units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>lb/ft², lb/gal (us)</td>
<td>Pound/cubic foot, pound/gallon</td>
</tr>
<tr>
<td></td>
<td>lb/bbl (us:liq.), lb/bbl (us:beer), lb/bbl (us:oil), lb/bbl (us:tank)</td>
<td>Pound/volume unit</td>
</tr>
<tr>
<td>Process variable</td>
<td>Units</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Pressure</td>
<td>psi a</td>
<td>Pounds per square inch (absolute)</td>
</tr>
<tr>
<td></td>
<td>psi g</td>
<td>Pounds per square inch (gauge)</td>
</tr>
<tr>
<td>Mass</td>
<td>oz, lb, STon</td>
<td>Ounce, pound, standard ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>oz/s, oz/min, oz/h, oz/d</td>
<td>Ounce/time unit</td>
</tr>
<tr>
<td></td>
<td>lb/s, lb/min, lb/h, lb/d</td>
<td>Pound/time unit</td>
</tr>
<tr>
<td></td>
<td>STon/s, STon/min, STon/h, STon/d</td>
<td>Standard ton/time unit</td>
</tr>
<tr>
<td>Reference density</td>
<td>lb/ft³</td>
<td>Weight unit/standard volume unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>ft³, Sgal (us), Sbbl (us;liq.)</td>
<td>Standard cubic foot, standard gallon, standard barrel</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>ft³/s, ft³/min, ft³/h, ft³/d</td>
<td>Standard cubic foot/time unit</td>
</tr>
<tr>
<td></td>
<td>Sgal/s (us), Sgal/min (us), Sgal/h (us), Sgal/d (us)</td>
<td>Standard gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Sbbl/s (us;liq.), Sbbl/min (us;liq.), Sbbl/h (us;liq.), Sbbl/d (us;liq.)</td>
<td>Barrel/time unit (normal liquids)</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F, °R</td>
<td>Fahrenheit, Rankine</td>
</tr>
<tr>
<td>Volume</td>
<td>af</td>
<td>Acre foot</td>
</tr>
<tr>
<td></td>
<td>ft³</td>
<td>Cubic foot</td>
</tr>
<tr>
<td></td>
<td>fl oz (us), gal (us), kgal (us), Mgal (us)</td>
<td>Fluid ounce, gallon, kilogallon, million gallon</td>
</tr>
<tr>
<td></td>
<td>bbl (us;liq.), bbl (us;beer), bbl (us;oil), bbl (us;tank)</td>
<td>Barrel (normal liquids), barrel (beer), barrel (petrochemicals), barrel (filling tanks)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>af/s, af/min, af/h, af/d</td>
<td>Acre foot/time unit</td>
</tr>
<tr>
<td></td>
<td>ft³/s, ft³/min, ft³/h, ft³/d</td>
<td>Cubic foot/time unit</td>
</tr>
<tr>
<td></td>
<td>fl oz/s (us), fl oz/min (us), fl oz/h (us), fl oz/d (us)</td>
<td>Fluid ounce/time unit</td>
</tr>
<tr>
<td></td>
<td>gal/s (us), gal/min (us), gal/h (us), gal/d (us)</td>
<td>Gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>kgal/s (us), kgal/min (us), kgal/h (us), kgal/d (us)</td>
<td>Kilogallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Mgal/s (us), Mgal/min (us), Mgal/h (us), Mgal/d (us)</td>
<td>Million gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;liq.), bbl/min (us;liq.), bbl/h (us;liq.), bbl/d (us;liq.)</td>
<td>Barrel/time unit (normal liquids)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Normal liquids: 3.15 gal/bbl</td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;beer), bbl/min (us;beer), bbl/h (us;beer), bbl/d (us;beer)</td>
<td>Barrel/time unit (beer)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beer: 31.0 gal/bbl</td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;oil), bbl/min (us;oil), bbl/h (us;oil), bbl/d (us;oil)</td>
<td>Barrel/time unit (petrochemicals)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Petrochemicals: 42.0 gal/bbl</td>
</tr>
<tr>
<td></td>
<td>bbl/s (us;tank), bbl/min (us;tank), bbl/h (us;tank), bbl/d (us;tank)</td>
<td>Barrel/time unit (filling tank)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filling tanks: 55.0 gal/bbl</td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
<tr>
<td></td>
<td>am, pm</td>
<td>Ante meridiem (before midday), post meridiem (after midday)</td>
</tr>
</tbody>
</table>
5.3 Imperial units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>lb/gal (imp), lb/bbl (imp;beer), lb/bbl (imp;oil)</td>
<td>Pound/volume unit</td>
</tr>
<tr>
<td>Corrected volume</td>
<td>Sgal (imp)</td>
<td>Standard gallon</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>Sgal/s (imp), Sgal/min (imp), Sgal/h (imp), Sgal/d (imp)</td>
<td>Standard gallon/time unit</td>
</tr>
<tr>
<td>Volume</td>
<td>gal (imp), Mgal (imp)</td>
<td>Gallon, mega gallon</td>
</tr>
<tr>
<td></td>
<td>bbl (imp;beer), bbl (imp;oil)</td>
<td>Barrel (beer), barrel (petrochemicals)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>gal/s (imp), gal/min (imp), gal/h (imp), gal/d (imp)</td>
<td>Gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Mgal/s (imp), Mgal/min (imp), Mgal/h (imp), Mgal/d (imp)</td>
<td>Mega gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>bbl/s (imp;beer), bbl/min (imp;beer), bbl/h (imp;beer), bbl/d (imp;beer)</td>
<td>Barrel/time unit (beer)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beer: 36.0 gal/bbl</td>
</tr>
<tr>
<td></td>
<td>bbl/s (imp;oil), bbl/min (imp;oil), bbl/h (imp;oil), bbl/d (imp;oil)</td>
<td>Barrel/time unit (petrochemicals)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Petrochemicals: 34.97 gal/bbl</td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
<tr>
<td></td>
<td>am, pm</td>
<td>Ante meridiem (before midday), post meridiem (after midday)</td>
</tr>
</tbody>
</table>
6 Modbus RS485 Register Information

6.1 Notes

6.1.1 Structure of the register information

The individual parts of a parameter description are described in the following section:

<table>
<thead>
<tr>
<th>Navigation: navigation path to the parameter</th>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access type</th>
<th>Selection/input</th>
<th>→ ?</th>
</tr>
</thead>
</table>
| Name of parameter | Indicated in decimal numerical format | • Float length = 4 byte
• Integer length = 2 byte
• String length, depending on parameter | Possible type of access to parameter:
• Read access via function codes 03, 04 or 23
• Write access via function codes 06, 16 or 23 | Selection
List of the individual options for the parameter
• Option 1
• Option 2
• Option 3 (+)

Definition:
• Factory setting highlighted in bold
• (+) = Factory setting depends on country, order options or device settings |

NOTICE

If non-volatile device parameters are modified via the MODBUS RS485 function codes 06, 16 or 23, the change is saved in the EEPROM of the measuring device. The number of writes to the EEPROM is technically restricted to a maximum of 1 million.
- Make sure to comply with this limit since, if it is exceeded, data loss and measuring device failure will result.
- Avoid constantly writing non-volatile device parameters via the MODBUS RS485.

6.1.2 Address model

The Modbus RS485 register addresses of the measuring device are implemented in accordance with the "Modbus Applications Protocol Specification V1.1". In addition, systems are used that work with the register address model "Modicon Modbus Protocol Reference Guide (PI-MBUS-300 Rev. J)". Depending on the function code used, a number is added at the start of the register address with this specification:

- "3" → 'Read' access
- "4" → 'Write' access
Modbus RS485 Register Information

Proline Cubemass 100 Modbus RS485

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>03 04 23</td>
<td>Read</td>
<td>XXXX Example: mass flow = 2007</td>
<td>3XXXX Example: mass flow = 32007</td>
</tr>
<tr>
<td>06 16 23</td>
<td>Write</td>
<td>XXXX Example: reset totalizer = 6401</td>
<td>4XXXX Example: reset totalizer = 46401</td>
</tr>
</tbody>
</table>

6.2 Overview of the Expert operating menu

The following table provides an overview of the menu structure of the expert operating menu and its parameters. The page reference indicates where the associated description of the submenu or parameter can be found.

![Expert menu diagram](image-url)
<table>
<thead>
<tr>
<th>System units</th>
<th>→ 117</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow unit</td>
<td>→ 117</td>
</tr>
<tr>
<td>Mass unit</td>
<td>→ 117</td>
</tr>
<tr>
<td>Volume flow unit</td>
<td>→ 118</td>
</tr>
<tr>
<td>Volume unit</td>
<td>→ 119</td>
</tr>
<tr>
<td>Corrected volume flow unit</td>
<td>→ 120</td>
</tr>
<tr>
<td>Corrected volume unit</td>
<td>→ 120</td>
</tr>
<tr>
<td>Density unit</td>
<td>→ 120</td>
</tr>
<tr>
<td>Reference density unit</td>
<td>→ 121</td>
</tr>
<tr>
<td>Temperature unit</td>
<td>→ 121</td>
</tr>
<tr>
<td>Pressure unit</td>
<td>→ 121</td>
</tr>
<tr>
<td>Date/time format</td>
<td>→ 121</td>
</tr>
<tr>
<td>User-specific units</td>
<td>→ 121</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process parameters</th>
<th>→ 122</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow damping</td>
<td>→ 122</td>
</tr>
<tr>
<td>Density damping</td>
<td>→ 122</td>
</tr>
<tr>
<td>Temperature damping</td>
<td>→ 122</td>
</tr>
<tr>
<td>Flow override</td>
<td>→ 122</td>
</tr>
<tr>
<td>Low flow cut off</td>
<td>→ 122</td>
</tr>
<tr>
<td>Partially filled pipe detection</td>
<td>→ 122</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement mode</th>
<th>→ 123</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select medium</td>
<td>→ 123</td>
</tr>
<tr>
<td>Select gas type</td>
<td>→ 123</td>
</tr>
<tr>
<td>Reference sound velocity</td>
<td>→ 123</td>
</tr>
<tr>
<td>Temperature coefficient sound velocity</td>
<td>→ 123</td>
</tr>
<tr>
<td>Modbus RS485 Register Information</td>
<td>Proline Cubemass 100 Modbus RS485</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>External compensation</td>
<td></td>
</tr>
<tr>
<td>Pressure compensation</td>
<td>123</td>
</tr>
<tr>
<td>Pressure value</td>
<td>123</td>
</tr>
<tr>
<td>External pressure</td>
<td>123</td>
</tr>
<tr>
<td>Temperature mode</td>
<td>123</td>
</tr>
<tr>
<td>External temperature</td>
<td>123</td>
</tr>
<tr>
<td>Calculated values</td>
<td></td>
</tr>
<tr>
<td>Corrected volume flow calculation</td>
<td>123</td>
</tr>
<tr>
<td>Sensor adjustment</td>
<td></td>
</tr>
<tr>
<td>Installation direction</td>
<td>124</td>
</tr>
<tr>
<td>Zero point adjustment</td>
<td>124</td>
</tr>
<tr>
<td>Process variable adjustment</td>
<td>124</td>
</tr>
<tr>
<td>Calibration</td>
<td></td>
</tr>
<tr>
<td>Calibration factor</td>
<td>124</td>
</tr>
<tr>
<td>Zero point</td>
<td>124</td>
</tr>
<tr>
<td>Nominal diameter</td>
<td>125</td>
</tr>
<tr>
<td>C0 to 5</td>
<td>125</td>
</tr>
<tr>
<td>Testpoints</td>
<td></td>
</tr>
<tr>
<td>Oscillation frequency 0</td>
<td>125</td>
</tr>
<tr>
<td>Frequency fluctuation 0</td>
<td>125</td>
</tr>
<tr>
<td>Oscillation amplitude 0</td>
<td>125</td>
</tr>
<tr>
<td>Oscillation damping 0</td>
<td>125</td>
</tr>
<tr>
<td>Tube damping fluctuation 0</td>
<td>125</td>
</tr>
<tr>
<td>Signal asymmetry</td>
<td>125</td>
</tr>
<tr>
<td>Electronic temperature</td>
<td>125</td>
</tr>
</tbody>
</table>
Communication

Modbus configuration

- Bus address
- Baudrate
- Data transfer mode
- Parity
- Byte order
- Telegram delay
- Assign diagnostic behavior
- Failure mode
- Interpreter mode

Modbus information

- Device ID
- Device revision

Modbus data map

- Scan list register 0 to 15

Application

- Reset all totalizers

Totalizer 1 to 3

- Assign process variable
- Mass unit
- Volume unit
Modbus RS485 Register Information

<table>
<thead>
<tr>
<th>Register Information</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected volume unit</td>
<td>127</td>
</tr>
<tr>
<td>Totalizer operation mode</td>
<td>127</td>
</tr>
<tr>
<td>Control Totalizer 1 to 3</td>
<td>127</td>
</tr>
<tr>
<td>Preset value 1 to 3</td>
<td>127</td>
</tr>
<tr>
<td>Failure mode</td>
<td>127</td>
</tr>
</tbody>
</table>

Diagnostics

<table>
<thead>
<tr>
<th>Diagnostics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual diagnostics</td>
<td>128</td>
</tr>
<tr>
<td>Timestamp</td>
<td>128</td>
</tr>
<tr>
<td>Previous diagnostics</td>
<td>128</td>
</tr>
<tr>
<td>Timestamp</td>
<td>128</td>
</tr>
<tr>
<td>Operating time from restart</td>
<td>128</td>
</tr>
<tr>
<td>Operating time</td>
<td>128</td>
</tr>
</tbody>
</table>

Diagnostic list

<table>
<thead>
<tr>
<th>Diagnostics 1</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp</td>
<td>128</td>
</tr>
<tr>
<td>Diagnostics 2</td>
<td>128</td>
</tr>
<tr>
<td>Timestamp</td>
<td>128</td>
</tr>
<tr>
<td>Diagnostics 3</td>
<td>128</td>
</tr>
<tr>
<td>Timestamp</td>
<td>128</td>
</tr>
<tr>
<td>Diagnostics 4</td>
<td>128</td>
</tr>
<tr>
<td>Timestamp</td>
<td>128</td>
</tr>
<tr>
<td>Diagnostics 5</td>
<td>128</td>
</tr>
<tr>
<td>Timestamp</td>
<td>128</td>
</tr>
</tbody>
</table>

Event logbook

<table>
<thead>
<tr>
<th>Filter options</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>128</td>
</tr>
</tbody>
</table>
Device information

- **Device tag**
- **Serial number**
- **Firmware version**
- **Device name**
- **Order code**
- **Extended order code 1**
- **Extended order code 2**
- **Extended order code 3**
- **ENP version**
- **Configuration counter**

Min/max values

- **Reset min/max values**

Electronic temperature

Medium temperature

Carrier pipe temperature

Oscillation frequency

Oscillation amplitude

Oscillation damping

Signal asymmetry

Simulation

- **Assign simulation process variable**
- **Value process variable**
- **Simulation device alarm**
6.3 Register information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locking status</td>
<td>4918</td>
<td>Integer</td>
<td>Read</td>
<td>256 = Hardware locked</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>512 = Temporarily locked</td>
</tr>
<tr>
<td>Access status tooling</td>
<td>2178</td>
<td>Integer</td>
<td>Read</td>
<td>0 = Operator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Maintenance</td>
</tr>
<tr>
<td>Enter access code</td>
<td>2177</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 to 9999</td>
</tr>
</tbody>
</table>

6.3.1 "System" submenu

"Diagnostic handling" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm delay</td>
<td>6808</td>
<td>Float</td>
<td>Read / Write</td>
<td>0 to 60 s</td>
</tr>
</tbody>
</table>

"Diagnostic behavior" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign behavior of diagnostic no.</td>
<td>2757</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Off</td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td>1 = Logbook entry only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = Warning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 = Alarm</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no.</td>
<td>2756</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Off</td>
</tr>
<tr>
<td>046</td>
<td></td>
<td></td>
<td></td>
<td>1 = Logbook entry only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = Warning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 = Alarm</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no.</td>
<td>2081</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Off</td>
</tr>
<tr>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td>1 = Logbook entry only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = Warning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 = Alarm</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no.</td>
<td>2759</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Off</td>
</tr>
<tr>
<td>832</td>
<td></td>
<td></td>
<td></td>
<td>1 = Logbook entry only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = Warning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 = Alarm</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no.</td>
<td>2762</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Off</td>
</tr>
<tr>
<td>833</td>
<td></td>
<td></td>
<td></td>
<td>1 = Logbook entry only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = Warning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 = Alarm</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no.</td>
<td>2761</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Off</td>
</tr>
<tr>
<td>834</td>
<td></td>
<td></td>
<td></td>
<td>1 = Logbook entry only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = Warning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 = Alarm</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no.</td>
<td>2760</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Off</td>
</tr>
<tr>
<td>835</td>
<td></td>
<td></td>
<td></td>
<td>1 = Logbook entry only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = Warning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 = Alarm</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no.</td>
<td>2758</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Off</td>
</tr>
<tr>
<td>912</td>
<td></td>
<td></td>
<td></td>
<td>1 = Logbook entry only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = Warning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 = Alarm</td>
</tr>
</tbody>
</table>
Navigation: Expert → System → Diagnostic handling → Diagnostic behavior

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
</table>
| Assign behavior of diagnostic no. 913 | 2754 | Integer | Read / Write | 0 = Off
1 = Logbook entry only
2 = Warning
3 = Alarm | 16 |
| Assign behavior of diagnostic no. 944 | 2082 | Integer | Read / Write | 0 = Off
1 = Logbook entry only
2 = Warning
3 = Alarm | 16 |
| Assign behavior of diagnostic no. 192 | 2022 | Integer | Read / Write | 0 = Off
1 = Logbook entry only
2 = Warning
3 = Alarm | 17 |
| Assign behavior of diagnostic no. 274 | 2755 | Integer | Read / Write | 0 = Off
1 = Logbook entry only
2 = Warning
3 = Alarm | 17 |
| Assign behavior of diagnostic no. 392 | 2023 | Integer | Read / Write | 0 = Off
1 = Logbook entry only
2 = Warning
3 = Alarm | 18 |
| Assign behavior of diagnostic no. 592 | 2024 | Integer | Read / Write | 0 = Off
1 = Logbook entry only
2 = Warning
3 = Alarm | 18 |
| Assign behavior of diagnostic no. 992 | 2021 | Integer | Read / Write | 0 = Off
1 = Logbook entry only
2 = Warning
3 = Alarm | 18 |

"Administration" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
</table>
| Device reset | 6817 | Integer | Read / Write | 0 = Cancel
1 = Restart device
2 = To delivery settings
14 = To fieldbus defaults | 19 |
| Activate SW option | 2795 | Integer | Read / Write | Max. 10-digit string consisting of numbers. | 20 |
| Software option overview | 2902 | Integer | Read | 4 = Concentration
16384 = Heartbeat Monitoring
32768 = Heartbeat Verification | 20 |
| Permanent storage | 6907 | Integer | Read / Write | 0 = Off
1 = On | 21 |
| Device tag | 4901 | String | Read / Write | Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /). | 21 |

* Visibility depends on communication
6.3.2 "Sensor" submenu

"Measured values" submenu

"Process variables" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow</td>
<td>2007</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Volume flow</td>
<td>2009</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Corrected volume flow</td>
<td>2011</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Density</td>
<td>2013</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Reference density</td>
<td>2015</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Temperature</td>
<td>2017</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Pressure value</td>
<td>2089</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Concentration</td>
<td>2598</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Target mass flow</td>
<td>2797</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Carrier mass flow</td>
<td>2799</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>

"Totalizer" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalizer value 1 to 3</td>
<td>1: 2610</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td></td>
<td>2: 2810</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3: 3010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalizer overflow 1 to 3</td>
<td>1: 2612</td>
<td>Float</td>
<td>Read</td>
<td>Integer with sign</td>
</tr>
<tr>
<td></td>
<td>2: 2812</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3: 3012</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
"System units" submenu

Navigation: Expert → Sensor → System units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
</table>
| Mass flow unit | 2101 | Integer | Read / Write| 0 = g/s
1 = g/min
2 = g/h
3 = g/d
4 = kg/s
5 = kg/min
6 = kg/h (*)
7 = kg/d
8 = t/s
9 = t/min
10 = t/h
11 = t/d
12 = oz/s
13 = oz/min
14 = oz/h
15 = oz/d
16 = lb/s
17 = lb/min
18 = lb/h
19 = lb/d
20 = STon/s
21 = STon/min
22 = STon/h
23 = STon/d
24 = User mass/s
25 = User mass/min
26 = User mass/h
27 = User mass/d |
| Mass unit | 2102 | Integer | Read / Write| 0 = g
1 = kg (*)
2 = t
3 = oz
4 = lb
5 = STon
6 = User mass |
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
</table>
| Volume flow unit | 2103 | Integer | Read / Write | 0 = cm³/s
1 = cm³/min
2 = cm³/h
3 = cm³/d
4 = dm³/s
5 = dm³/min
6 = dm³/h
7 = dm³/d
8 = m³/s
9 = m³/min
10 = m³/h
11 = m³/d
12 = ml/s
13 = ml/min
14 = ml/h
15 = ml/d
16 = l/s
17 = l/min
18 = l/h (**)
19 = l/d
20 = hl/s
21 = hl/min
22 = hl/h
23 = hl/d
24 = Ml/s
25 = Ml/min
26 = Ml/h
27 = Ml/d
32 = af/s
33 = af/min
34 = af/h
35 = af/d
36 = fl³/s
37 = fl³/min
38 = fl³/h
39 = fl³/d
40 = fl oz/s (us)
41 = fl oz/min (us)
42 = fl oz/h (us)
43 = fl oz/d (us)
44 = gal/s (us)
45 = gal/min (us)
46 = gal/h (us)
47 = gal/d (us)
48 = Mgal/s (us)
49 = Mgal/min (us)
50 = Mgal/h (us)
51 = Mgal/d (us)
52 = bbl/s (us;liqu.)
53 = bbl/min (us;liqu.)
54 = bbl/h (us;liqu.)
55 = bbl/d (us;liqu.)
56 = bbl/s (us;beer)
57 = bbl/min (us;beer)
58 = bbl/h (us;beer)
59 = bbl/d (us;beer)
60 = bbl/s (us;oiler)
61 = bbl/min (us;oiler)
62 = bbl/h (us;oiler)
63 = bbl/d (us;oiler)
64 = bbl/s (us;tank)
65 = bbl/min (us;tank)
66 = bbl/h (us;tank)
67 = bbl/d (us;tank)
68 = gal/s (imp)
69 = gal/min (imp)
70 = gal/h (imp) |

Note:
- **Volume flow unit** parameter in Endress+Hauser Proline Cubemass 100 Modbus RS485 system units can be configured to display flow rate in various units, including cubic meters per second (m³/s), cubic meters per minute (m³/min), cubic meters per hour (m³/h), and others.
- The selection of units is indicated by the register value, with each value corresponding to a specific unit as listed in the table.
Navigation: Expert → Sensor → System units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>71 = gal/d (imp)</td>
<td></td>
<td></td>
<td></td>
<td>71 = gal/d (imp)</td>
</tr>
<tr>
<td>72 = Mgal/s (imp)</td>
<td></td>
<td></td>
<td></td>
<td>72 = Mgal/s (imp)</td>
</tr>
<tr>
<td>73 = Mgal/min (imp)</td>
<td></td>
<td></td>
<td></td>
<td>73 = Mgal/min (imp)</td>
</tr>
<tr>
<td>74 = Mgal/h (imp)</td>
<td></td>
<td></td>
<td></td>
<td>74 = Mgal/h (imp)</td>
</tr>
<tr>
<td>75 = Mgal/d (imp)</td>
<td></td>
<td></td>
<td></td>
<td>75 = Mgal/d (imp)</td>
</tr>
<tr>
<td>76 = bbl/s (imp;beer)</td>
<td></td>
<td></td>
<td></td>
<td>76 = bbl/s (imp;beer)</td>
</tr>
<tr>
<td>77 = bbl/min (imp;beer)</td>
<td></td>
<td></td>
<td></td>
<td>77 = bbl/min (imp;beer)</td>
</tr>
<tr>
<td>78 = bbl/h (imp;beer)</td>
<td></td>
<td></td>
<td></td>
<td>78 = bbl/h (imp;beer)</td>
</tr>
<tr>
<td>79 = bbl/d (imp;beer)</td>
<td></td>
<td></td>
<td></td>
<td>79 = bbl/d (imp;beer)</td>
</tr>
<tr>
<td>80 = bbl/s (imp;oil)</td>
<td></td>
<td></td>
<td></td>
<td>80 = bbl/s (imp;oil)</td>
</tr>
<tr>
<td>81 = bbl/min (imp;oil)</td>
<td></td>
<td></td>
<td></td>
<td>81 = bbl/min (imp;oil)</td>
</tr>
<tr>
<td>82 = bbl/h (imp;oil)</td>
<td></td>
<td></td>
<td></td>
<td>82 = bbl/h (imp;oil)</td>
</tr>
<tr>
<td>83 = bbl/d (imp;oil)</td>
<td></td>
<td></td>
<td></td>
<td>83 = bbl/d (imp;oil)</td>
</tr>
<tr>
<td>84 = User vol./s</td>
<td></td>
<td></td>
<td></td>
<td>84 = User vol./s</td>
</tr>
<tr>
<td>85 = User vol./min</td>
<td></td>
<td></td>
<td></td>
<td>85 = User vol./min</td>
</tr>
<tr>
<td>86 = User vol./h</td>
<td></td>
<td></td>
<td></td>
<td>86 = User vol./h</td>
</tr>
<tr>
<td>87 = User vol./d</td>
<td></td>
<td></td>
<td></td>
<td>87 = User vol./d</td>
</tr>
<tr>
<td>88 = kgal/s (us)</td>
<td></td>
<td></td>
<td></td>
<td>88 = kgal/s (us)</td>
</tr>
<tr>
<td>89 = kgal/min (us)</td>
<td></td>
<td></td>
<td></td>
<td>89 = kgal/min (us)</td>
</tr>
<tr>
<td>90 = kgal/h (us)</td>
<td></td>
<td></td>
<td></td>
<td>90 = kgal/h (us)</td>
</tr>
<tr>
<td>91 = kgal/d (us)</td>
<td></td>
<td></td>
<td></td>
<td>91 = kgal/d (us)</td>
</tr>
</tbody>
</table>

Volume unit

<table>
<thead>
<tr>
<th>Volume unit</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = cm³</td>
<td>2104</td>
<td>Integer</td>
<td>Read / Write</td>
</tr>
<tr>
<td>1 = dm³</td>
<td></td>
<td></td>
<td>0 = cm³</td>
</tr>
<tr>
<td>2 = m³</td>
<td></td>
<td></td>
<td>1 = dm³</td>
</tr>
<tr>
<td>3 = ml</td>
<td></td>
<td></td>
<td>2 = m³</td>
</tr>
<tr>
<td>4 = l</td>
<td></td>
<td></td>
<td>3 = ml</td>
</tr>
<tr>
<td>5 = hl</td>
<td></td>
<td></td>
<td>4 = l</td>
</tr>
<tr>
<td>6 = Ml Mega</td>
<td></td>
<td></td>
<td>5 = hl</td>
</tr>
<tr>
<td>8 = ft³</td>
<td></td>
<td></td>
<td>6 = Ml Mega</td>
</tr>
<tr>
<td>9 = ft³</td>
<td></td>
<td></td>
<td>8 = ft³</td>
</tr>
<tr>
<td>10 = fl oz (us)</td>
<td></td>
<td></td>
<td>9 = ft³</td>
</tr>
<tr>
<td>11 = gal (us)</td>
<td></td>
<td></td>
<td>10 = fl oz (us)</td>
</tr>
<tr>
<td>12 = Mgal (us)</td>
<td></td>
<td></td>
<td>11 = gal (us)</td>
</tr>
<tr>
<td>13 = bbl (us;liq.)</td>
<td></td>
<td></td>
<td>12 = Mgal (us)</td>
</tr>
<tr>
<td>14 = bbl (us;beer)</td>
<td></td>
<td></td>
<td>13 = bbl (us;liq.)</td>
</tr>
<tr>
<td>15 = bbl (us;oil)</td>
<td></td>
<td></td>
<td>14 = bbl (us;beer)</td>
</tr>
<tr>
<td>16 = bbl (us;tank)</td>
<td></td>
<td></td>
<td>15 = bbl (us;oil)</td>
</tr>
<tr>
<td>17 = gal (imp)</td>
<td></td>
<td></td>
<td>16 = bbl (us;tank)</td>
</tr>
<tr>
<td>18 = Mgal (imp)</td>
<td></td>
<td></td>
<td>17 = gal (imp)</td>
</tr>
<tr>
<td>19 = bbl (imp;beer)</td>
<td></td>
<td></td>
<td>18 = Mgal (imp)</td>
</tr>
<tr>
<td>20 = bbl (imp;oil)</td>
<td></td>
<td></td>
<td>19 = bbl (imp;beer)</td>
</tr>
<tr>
<td>21 = User vol.</td>
<td></td>
<td></td>
<td>20 = bbl (imp;oil)</td>
</tr>
<tr>
<td>22 = kgal (us)</td>
<td></td>
<td></td>
<td>21 = User vol.</td>
</tr>
</tbody>
</table>

| 32 | | | |
Modbus RS485 Register Information

Proline Cubemass 100 Modbus RS485

Navigation: Expert → Sensor → System units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected volume flow unit</td>
<td>2105</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = NI/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = NI/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = NI/h (+)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 = NI/d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 = Nm³/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 = Nm³/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 = Nm³/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7 = Nm³/d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8 = Sm³/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9 = Sm³/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 = Sm³/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11 = Sm³/d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12 = Sft³/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13 = Sft³/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14 = Sft³/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 = Sft³/d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16 = Sgal/s (us)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17 = Sgal/min (us)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18 = Sgal/h (us)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19 = Sgal/d (us)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20 = Sbbl/s (us;liq.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21 = Sbbl/min (us;liq.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22 = Sbbl/h (us;liq.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23 = Sbbl/d (us;liq.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24 = Sgal/s (imp)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25 = Sgal/min (imp)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26 = Sgal/h (imp)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27 = Sgal/d (imp)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28 = UserCrVol./s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29 = UserCrVol./min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 = UserCrVol./h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31 = UserCrVol./d</td>
</tr>
</tbody>
</table>

Corrected volume unit	2106	Integer	Read / Write	0 = NI (+)
				1 = Nm³
				2 = Sm³
				3 = Sft³
				4 = SI
				5 = Sgal (us)
				6 = Sbbl (us;liq.)
				7 = Sgal (imp)
				8 = UserCrVol.

Density unit	2107	Integer	Read / Write	0 = g/cm³
				2 = kg/dm³
				3 = kg/l (+)
				4 = kg/m³
				5 = SD4°C
				6 = SD15°C
				7 = SD20°C
				8 = SG4°C
				9 = SG15°C
				10 = SG20°C
				11 = lb/ft³
				12 = lb/gal (us)
				13 = lb/bbl (us;liq.)
				14 = lb/bbl (us;beer)
				15 = lb/bbl (us;oil)
				16 = lb/bbl (us;tank)
				17 = lb/gal (imp)
				18 = lb/bbl (imp;beer)
				19 = lb/bbl (imp;oil)
				20 = User dens.
				21 = g/m³
				22 = g/ml
Proline Cubemass 100 Modbus RS485

Modbus RS485 Register Information

Navigation: Expert → Sensor → System units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
</table>
| Reference density unit | 2108 | Integer | Read / Write | 0 = g/Scm³
1 = kg/NL
2 = kg/Nm²
3 = kg/Sm³
4 = lb/Sft³ |
| Temperature unit | 2109 | Integer | Read / Write | 0 = °C
1 = K
2 = °F
3 = °R |
| Pressure unit | 2130 | Integer | Read / Write | 0 = bar
1 = psi a
2 = bar g
3 = psi g
4 = Pa a
5 = kPa a
6 = MPa a
7 = Pa g
8 = kPa g
9 = MPa g
10 = User pres. |
| Date/time format | 2150 | Integer | Read / Write | 0 = dd.mm.yy hh:mm
1 = mm/dd/yy hh:mm am/pm
2 = dd.mm.yy hh:mm am/pm
3 = mm/dd/yy hh:mm |

"User-specific units" submenu

Navigation: Expert → Sensor → System units → User-specific units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>User mass text</td>
<td>2531</td>
<td>String</td>
<td>Read / Write</td>
<td>Max. 10 characters such as letters, numbers or special characters (@, %, /)</td>
</tr>
<tr>
<td>User mass factor</td>
<td>2115</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>User volume text</td>
<td>2542</td>
<td>String</td>
<td>Read / Write</td>
<td>Max. 10 characters such as letters, numbers or special characters (@, %, /)</td>
</tr>
<tr>
<td>User volume factor</td>
<td>2119</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>User corrected volume text</td>
<td>2568</td>
<td>String</td>
<td>Read / Write</td>
<td>Max. 10 characters such as letters, numbers or special characters (@, %, /)</td>
</tr>
<tr>
<td>User corrected volume factor</td>
<td>2573</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>User density text</td>
<td>2549</td>
<td>String</td>
<td>Read / Write</td>
<td>Max. 10 characters such as letters, numbers or special characters (@, %, /)</td>
</tr>
<tr>
<td>User density offset</td>
<td>2556</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>User density factor</td>
<td>2123</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>User pressure text</td>
<td>2559</td>
<td>String</td>
<td>Read / Write</td>
<td>Max. 10 characters such as letters, numbers or special characters (@, %, /)</td>
</tr>
<tr>
<td>User pressure offset</td>
<td>2566</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>User pressure factor</td>
<td>2564</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>
"Process parameters" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow damping</td>
<td>5510</td>
<td>Float</td>
<td>Read / Write</td>
<td>0 to 100.0 s</td>
</tr>
<tr>
<td>Density damping</td>
<td>5508</td>
<td>Float</td>
<td>Read / Write</td>
<td>0 to 999.9 s</td>
</tr>
<tr>
<td>Temperature damping</td>
<td>5127</td>
<td>Float</td>
<td>Read / Write</td>
<td>0 to 999.9 s</td>
</tr>
<tr>
<td>Flow override</td>
<td>5503</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = On</td>
</tr>
</tbody>
</table>

"Low flow cut off" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign process variable</td>
<td>5101</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Mass flow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = Volume flow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 = Corrected volume flow</td>
</tr>
<tr>
<td>On value low flow cutoff</td>
<td>5138</td>
<td>Float</td>
<td>Read / Write</td>
<td>Positive floating-point number</td>
</tr>
<tr>
<td>Off value low flow cutoff</td>
<td>5104</td>
<td>Float</td>
<td>Read / Write</td>
<td>0 to 100.0 %</td>
</tr>
<tr>
<td>Pressure shock suppression</td>
<td>5140</td>
<td>Float</td>
<td>Read / Write</td>
<td>0 to 100 s</td>
</tr>
</tbody>
</table>

"Partially filled pipe detection" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign process variable</td>
<td>5106</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Off</td>
</tr>
<tr>
<td>Low value partial filled pipe detection</td>
<td>5110</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>High value partial filled pipe detection</td>
<td>5112</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Response time part. filled pipe detect.</td>
<td>5108</td>
<td>Float</td>
<td>Read / Write</td>
<td>0 to 100 s</td>
</tr>
<tr>
<td>Maximum damping partial filled pipe det.</td>
<td>2414</td>
<td>Float</td>
<td>Read / Write</td>
<td>Positive floating-point number</td>
</tr>
</tbody>
</table>
"Measurement mode" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select medium</td>
<td>2442</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Liquid
1 = Gas</td>
</tr>
<tr>
<td>Select gas type</td>
<td>5229</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Air
1 = Nitrogen N2
2 = Argon Ar
3 = Helium He
4 = Carbon dioxide CO2
5 = Oxygen O2
6 = Methane CH4
7 = Ammonia NH3
9 = Hydrogen H2
10 = Ethane C2H6
11 = Propane C3H8
12 = Butane C4H10
13 = Chlorine Cl2
14 = Hydrogen chloride HCl
15 = Carbon monoxide CO
16 = Nitrous oxide N2O
17 = Nitrogen oxide NOx
18 = Hydrogen sulfide H2S
19 = Sulfur hexafluoride SF6
20 = Propylene C3H6
21 = Ozone O3
22 = Others
23 = Ethylene C2H4</td>
</tr>
<tr>
<td>Reference sound velocity</td>
<td>7413</td>
<td>Float</td>
<td>Read / Write</td>
<td>1 to 99999.9999 m/s</td>
</tr>
<tr>
<td>Temperature coefficient sound velocity</td>
<td>7411</td>
<td>Float</td>
<td>Read / Write</td>
<td>Positive floating-point number</td>
</tr>
</tbody>
</table>

"External compensation" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure compensation</td>
<td>5184</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Off
1 = Fixed value
2 = External value</td>
</tr>
<tr>
<td>Pressure value</td>
<td>5185</td>
<td>Float</td>
<td>Read / Write</td>
<td>Positive floating-point number</td>
</tr>
<tr>
<td>External pressure</td>
<td>2440</td>
<td>Float</td>
<td>Read / Write</td>
<td>Positive floating-point number</td>
</tr>
<tr>
<td>Temperature mode</td>
<td>5515</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Internal measured value
1 = External value</td>
</tr>
<tr>
<td>External temperature</td>
<td>2507</td>
<td>Float</td>
<td>Read / Write</td>
<td>–273.15 to 99 999 °C</td>
</tr>
</tbody>
</table>

"Calculated values" submenu

'Corrected volume flow calculation' submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected volume flow calculation</td>
<td>5129</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Calculated reference density
1 = Fixed reference density
2 = External reference density
3 = Reference density by API table 53</td>
</tr>
<tr>
<td>External reference density</td>
<td>2509</td>
<td>Float</td>
<td>Read / Write</td>
<td>Floating point number with sign</td>
</tr>
</tbody>
</table>
Modbus RS485 Register Information

Proline Cubemass 100 Modbus RS485

Navigation: Expert → Sensor → Calculated values → Corrected volume flow calculation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed reference density</td>
<td>5130</td>
<td>Float</td>
<td>Read / Write</td>
<td>Positive floating-point number</td>
</tr>
<tr>
<td>Reference temperature</td>
<td>5136</td>
<td>Float</td>
<td>Read / Write</td>
<td>-273.15 to 99999 °C</td>
</tr>
<tr>
<td>Linear expansion coefficient</td>
<td>5132</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Square expansion coefficient</td>
<td>5134</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>

"Sensor adjustment" submenu

Navigation: Expert → Sensor → Sensor adjustment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation direction</td>
<td>5501</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Flow in arrow direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Flow against arrow direction</td>
</tr>
</tbody>
</table>

"Zero point adjustment" submenu

Navigation: Expert → Sensor → Sensor adjustment → Zero point adjustment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero point adjustment control</td>
<td>5121</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Cancel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Start</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = Zero point adjust failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8 = Busy</td>
</tr>
<tr>
<td>Progress</td>
<td>6797</td>
<td>Integer</td>
<td>Read</td>
<td>0 to 100 %</td>
</tr>
</tbody>
</table>

"Process variable adjustment" submenu

Navigation: Expert → Sensor → Sensor adjustment → Process variable adjustment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow offset</td>
<td>5521</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Mass flow factor</td>
<td>5519</td>
<td>Float</td>
<td>Read / Write</td>
<td>Positive floating-point number</td>
</tr>
<tr>
<td>Volume flow offset</td>
<td>5525</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Volume flow factor</td>
<td>5523</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Density offset</td>
<td>5529</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Density factor</td>
<td>5527</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Corrected volume flow offset</td>
<td>2044</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Corrected volume flow factor</td>
<td>2076</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Reference density offset</td>
<td>2046</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Reference density factor</td>
<td>2042</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Temperature offset</td>
<td>5533</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Temperature factor</td>
<td>5531</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>

"Calibration" submenu

Navigation: Expert → Sensor → Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration factor</td>
<td>7513</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Zero point</td>
<td>7527</td>
<td>Float</td>
<td>Read / Write</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Parameter</td>
<td>Register</td>
<td>Data type</td>
<td>Access</td>
<td>Selection / User entry / User interface</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>Nominal diameter</td>
<td>2048</td>
<td>String</td>
<td>Read</td>
<td>DNxx / x"</td>
</tr>
<tr>
<td>C0 to 5</td>
<td>0: 7501</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td></td>
<td>1: 7503</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: 7505</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3: 7507</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4: 7509</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5: 7511</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"Testpoints" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscillation frequency 0</td>
<td>0: 9501</td>
<td>Float</td>
<td>Read</td>
<td>Positive floating point number</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>1: 9503</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency fluctuation 0</td>
<td>0: 2498</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>1: 2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oscillation amplitude 0</td>
<td>0: 2449</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>1: 2451</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oscillation damping 0</td>
<td>0: 9505</td>
<td>Float</td>
<td>Read</td>
<td>Positive floating-point number</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>1: 9507</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tube damping fluctuation 0</td>
<td>0: 2502</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>1: 2504</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal asymmetry</td>
<td>2443</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
<td>66</td>
</tr>
<tr>
<td>Electronic temperature</td>
<td>2457</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
<td>67</td>
</tr>
<tr>
<td>Carrier pipe temperature</td>
<td>9513</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
<td>67</td>
</tr>
<tr>
<td>Exciter current 0</td>
<td>0: 9509</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>1: 9511</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RawMassFlow</td>
<td>10232</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
<td>68</td>
</tr>
</tbody>
</table>

6.3.3 "Communication" submenu

"Modbus configuration" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus address</td>
<td>4910</td>
<td>Integer</td>
<td>Read / Write</td>
<td>1 to 247</td>
<td>70</td>
</tr>
</tbody>
</table>
| Baudrate | 4912 | Integer | Read / Write | 0 = 1200 BAUD
1 = 2400 BAUD
2 = 4800 BAUD
3 = 9600 BAUD
4 = 19200 BAUD
5 = 38400 BAUD
6 = 57600 BAUD
7 = 115200 BAUD | 70|
| Data transfer mode | 4913 | Integer | Read / Write | 0 = RTU
1 = ASCII | 70|
| Parity | 4914 | Integer | Read / Write | 0 = Even
1 = Odd
2 = None / 2 stop bits
3 = None / 1 stop bit | 71|
Modbus RS485 Register Information

Proline Cubemass 100 Modbus RS485

Navigation: Expert → Communication → Modbus configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte order</td>
<td>4915</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = 0-1-2-3; 1 = 3-2-1-0; 2 = 2-3-0-1; 3 = 1-0-3-2</td>
</tr>
<tr>
<td>Telegram delay</td>
<td>4916</td>
<td>Float</td>
<td>Read / Write</td>
<td>0 to 100 ms</td>
</tr>
<tr>
<td>Assign diagnostic behavior</td>
<td>4921</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Off; 1 = Warning; 2 = Alarm; 3 = Alarm or warning</td>
</tr>
<tr>
<td>Failure mode</td>
<td>4920</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = NaN value; 1 = Last valid value</td>
</tr>
<tr>
<td>Interpreter mode</td>
<td>4925</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Standard; 1 = Ignore surplus bytes</td>
</tr>
</tbody>
</table>

"Modbus information" submenu

Navigation: Expert → Communication → Modbus information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID</td>
<td>2547</td>
<td>Integer</td>
<td>Read</td>
<td>4-digit hexadecimal number</td>
</tr>
<tr>
<td>Device revision</td>
<td>4481</td>
<td>Integer</td>
<td>Read</td>
<td>4-digit hexadecimal number</td>
</tr>
</tbody>
</table>

"Modbus data map" submenu

Navigation: Expert → Communication → Modbus data map

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
</table>

6.3.4 "Application" submenu

Navigation: Expert → Application

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset all totalizers</td>
<td>2609</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Cancel; 1 = Reset + totalize</td>
</tr>
</tbody>
</table>
"Totalizer 1 to 3" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
<th>→</th>
<th></th>
</tr>
</thead>
</table>
| Assign process variable | 1: 2601 2: 2801 3: 3001 | Integer | Read / Write | 0 = Off
1 = Mass flow
2 = Volume flow
3 = Corrected volume flow
13 = Target mass flow
14 = Carrier mass flow |
| Mass unit | 1: 2602 2: 2802 3: 3002 | Integer | Read / Write | 0 = g
1 = kg (+)
2 = t
3 = oz
4 = lb
5 = STon
6 = User mass |
| Volume unit | 1: 2603 2: 2803 3: 3003 | Integer | Read / Write | 0 = cm³
1 = dm³
2 = m³
3 = ml
4 = l (+)
5 = hl
6 = Ml Mega
8 = af
9 = ft³
10 = ft oz (us)
11 = gal (us)
12 = Mgal (us)
13 = bbl (us;liq.)
14 = bbl (us;beer)
15 = bbl (us;oil)
16 = bbl (us;tank)
17 = gal (imp)
18 = Mgal (imp)
19 = bbl (imp;beer)
20 = bbl (imp;oil)
21 = User vol.
22 = kgal (us) |
| Corrected volume unit | 1: 2604 2: 2804 3: 3004 | Integer | Read / Write | 0 = Nl (+)
1 =Nm³
2 = Sm³
3 = Sh³
4 = SL
5 = Sgal (us)
6 = Sbbl (us;liq.)
7 = Sgal (imp)
8 = UserCrVol. |
| Totalizer operation mode | 1: 2605 2: 2805 3: 3005 | Integer | Read / Write | 0 = Net flow total
1 = Forward flow total
2 = Reverse flow total |
| Control Totalizer 1 to 3 | 1: 2608 2: 2808 3: 3008 | Integer | Read / Write | 0 = Totalize
1 = Reset + totalize
2 = Preset + hold
3 = Reset + hold
4 = Preset + totalize |
| Preset value 1 to 3 | 1: 2590 2: 2592 3: 2594 | Float | Read / Write | Signed floating-point number |
| Failure mode | 1: 2606 2: 2806 3: 3006 | Integer | Read / Write | 0 = Stop
1 = Actual value
2 = Last valid value |

* Visibility depends on order options or device settings
6.3.5 "Diagnostics" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual diagnostics</td>
<td>2732</td>
<td>Integer</td>
<td>Read</td>
<td>Symbol for diagnostic behavior, diagnostic code and short message. 82</td>
</tr>
<tr>
<td>Timestamp</td>
<td>2719</td>
<td>Integer</td>
<td>Read</td>
<td>Days (d), hours (h), minutes (m) and seconds (s) 82</td>
</tr>
<tr>
<td>Previous diagnostics</td>
<td>2734</td>
<td>Integer</td>
<td>Read</td>
<td>Symbol for diagnostic behavior, diagnostic code and short message. 83</td>
</tr>
<tr>
<td>Timestamp</td>
<td>2068</td>
<td>Integer</td>
<td>Read</td>
<td>Days (d), hours (h), minutes (m) and seconds (s) 83</td>
</tr>
<tr>
<td>Operating time from restart</td>
<td>2624</td>
<td>Integer</td>
<td>Read</td>
<td>Days (d), hours (h), minutes (m) and seconds (s) 83</td>
</tr>
<tr>
<td>Operating time</td>
<td>2631</td>
<td>Integer</td>
<td>Read</td>
<td>Days (d), hours (h), minutes (m) and seconds (s) 84</td>
</tr>
</tbody>
</table>

"Diagnostic list" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostics 1</td>
<td>2736</td>
<td>Integer</td>
<td>Read</td>
<td>Symbol for diagnostic behavior, diagnostic code and short message. 84</td>
</tr>
<tr>
<td>Timestamp</td>
<td>2710</td>
<td>Integer</td>
<td>Read</td>
<td>Days (d), hours (h), minutes (m) and seconds (s) 85</td>
</tr>
<tr>
<td>Diagnostics 2</td>
<td>2738</td>
<td>Integer</td>
<td>Read</td>
<td>Symbol for diagnostic behavior, diagnostic code and short message. 85</td>
</tr>
<tr>
<td>Timestamp</td>
<td>2701</td>
<td>Integer</td>
<td>Read</td>
<td>Days (d), hours (h), minutes (m) and seconds (s) 85</td>
</tr>
<tr>
<td>Diagnostics 3</td>
<td>2740</td>
<td>Integer</td>
<td>Read</td>
<td>Symbol for diagnostic behavior, diagnostic code and short message. 86</td>
</tr>
<tr>
<td>Timestamp</td>
<td>2692</td>
<td>Integer</td>
<td>Read</td>
<td>Days (d), hours (h), minutes (m) and seconds (s) 86</td>
</tr>
<tr>
<td>Diagnostics 4</td>
<td>2742</td>
<td>Integer</td>
<td>Read</td>
<td>Symbol for diagnostic behavior, diagnostic code and short message. 86</td>
</tr>
<tr>
<td>Timestamp</td>
<td>2683</td>
<td>Integer</td>
<td>Read</td>
<td>Days (d), hours (h), minutes (m) and seconds (s) 87</td>
</tr>
<tr>
<td>Diagnostics 5</td>
<td>2744</td>
<td>Integer</td>
<td>Read</td>
<td>Symbol for diagnostic behavior, diagnostic code and short message. 87</td>
</tr>
<tr>
<td>Timestamp</td>
<td>2675</td>
<td>Integer</td>
<td>Read</td>
<td>Days (d), hours (h), minutes (m) and seconds (s) 87</td>
</tr>
</tbody>
</table>

"Event logbook" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter options</td>
<td>2639</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Failure (F) 88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 = Maintenance required (M)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8 = Function check (C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12 = Out of specification (S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16 = Information (I)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>255 = All</td>
</tr>
</tbody>
</table>

128
"Device information" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device tag</td>
<td>2026</td>
<td>String</td>
<td>Read</td>
<td>Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /).</td>
</tr>
<tr>
<td>Serial number</td>
<td>7003</td>
<td>String</td>
<td>Read</td>
<td>A maximum of 11-digit character string comprising letters and numbers.</td>
</tr>
<tr>
<td>Firmware version</td>
<td>7277</td>
<td>String</td>
<td>Read</td>
<td>Character string in the format xx.yy.zz</td>
</tr>
<tr>
<td>Device name</td>
<td>7263</td>
<td>String</td>
<td>Read</td>
<td>Max. 32 characters such as letters or numbers.</td>
</tr>
<tr>
<td>Order code</td>
<td>2058</td>
<td>String</td>
<td>Read</td>
<td>Character string composed of letters, numbers and certain punctuation marks (e.g. /).</td>
</tr>
<tr>
<td>Extended order code 1</td>
<td>2212</td>
<td>String</td>
<td>Read</td>
<td>Character string</td>
</tr>
<tr>
<td>Extended order code 2</td>
<td>2222</td>
<td>String</td>
<td>Read</td>
<td>Character string</td>
</tr>
<tr>
<td>Extended order code 3</td>
<td>2232</td>
<td>String</td>
<td>Read</td>
<td>Character string</td>
</tr>
<tr>
<td>ENP version</td>
<td>4003</td>
<td>String</td>
<td>Read</td>
<td>Character string</td>
</tr>
<tr>
<td>Configuration counter</td>
<td>3100</td>
<td>Integer</td>
<td>Read</td>
<td>0 to 65535</td>
</tr>
</tbody>
</table>

"Min/max values" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
</table>
| Reset min/max values | 2525 | Integer | Read / Write | 0 = Cancel
8 = Oscillation amplitude
10 = Oscillation damping
12 = Oscillation frequency
13 = Signal asymmetry | 93 |

"Electronic temperature" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
<td>2421</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Maximum value</td>
<td>2419</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>

"Medium temperature" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
<td>7529</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Maximum value</td>
<td>7531</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>
"Carrier pipe temperature" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
<td>7533</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Maximum value</td>
<td>7535</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>

"Oscillation frequency" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
<td>2459</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Maximum value</td>
<td>2468</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>

"Oscillation amplitude" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
<td>2472</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Maximum value</td>
<td>2470</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>

"Oscillation damping" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
<td>2478</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Maximum value</td>
<td>2423</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>

"Signal asymmetry" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum value</td>
<td>2474</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Maximum value</td>
<td>2476</td>
<td>Float</td>
<td>Read</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>
"Simulation" submenu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register</th>
<th>Data type</th>
<th>Access</th>
<th>Selection / User entry / User interface</th>
<th>→</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign simulation process variable</td>
<td>6813</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Off
1 = Mass flow
2 = Volume flow
3 = Corrected volume flow
4 = Density
5 = Reference density
7 = Temperature
13 = Target mass flow<sup></sup>
14 = Carrier mass flow<sup></sup>
15 = Concentration<sup>*</sup></td>
<td>99</td>
</tr>
<tr>
<td>Value process variable</td>
<td>6814</td>
<td>Float</td>
<td>Read / Write</td>
<td>Depends on the process variable selected</td>
<td>100</td>
</tr>
<tr>
<td>Simulation device alarm</td>
<td>6812</td>
<td>Integer</td>
<td>Read / Write</td>
<td>0 = Off
1 = On</td>
<td>100</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
Index

A	Density (Parameter) 23
	Density damping (Parameter) 42
	Density factor (Parameter) 60
	Density offset (Parameter) 60
	Density unit (Parameter) 34, 74, 79
	Device ID (Parameter) 74
	Device information (Submenu) 89
	Device name (Parameter) 90
	Device revision (Parameter) 19
	Device tag (Parameter) 21, 89
	Diagnostic behavior (Submenu) 12
	Diagnostic handling (Submenu) 11
	Diagnostic list (Submenu) 84
	Diagnostics (Submenu) 81
	Diagnostics 1 (Parameter) 84
	Diagnostics 2 (Parameter) 85
	Diagnostics 3 (Parameter) 86
	Diagnostics 4 (Parameter) 86
	Diagnostics 5 (Parameter) 87
	Direct access .. 10
	Access status tooling 10
	Activate SW option 20
	Actual diagnostics 82
	Alarm delay .. 11
	Assign behavior of diagnostic no. 046 13
	Assign behavior of diagnostic no. 140 13
	Assign behavior of diagnostic no. 144 14
	Assign behavior of diagnostic no. 192 17
	Assign behavior of diagnostic no. 274 17
	Assign behavior of diagnostic no. 392 18
	Assign behavior of diagnostic no. 592 18
	Assign behavior of diagnostic no. 832 14
	Assign behavior of diagnostic no. 833 14
	Assign behavior of diagnostic no. 834 15
	Assign behavior of diagnostic no. 835 15
	Assign behavior of diagnostic no. 912 15
	Assign behavior of diagnostic no. 913 16
	Assign behavior of diagnostic no. 944 16
	Assign behavior of diagnostic no. 948 17
	Assign behavior of diagnostic no. 992 18
	Assign diagnostic behavior 72
	Assign process variable 44, 47, 76
	Assign simulation process variable 99
B	Baudrate (Parameter) 70
	Bus address (Parameter) 70
	Byte order (Parameter) 71
C	C0 to 5 (Parameter) 63
	Calculated values (Submenu) 53
	Calibration (Submenu) 62
	Calibration factor (Parameter) 63
	Carrier mass flow (Parameter) 26
	Carrier pipe temperature (Parameter) 67
	Carrier pipe temperature (Submenu) 95
	Communication (Submenu) 69
	Concentration (Parameter) 25
	Concentration (Submenu) 81
	Configuration counter (Parameter) 92
	Control Totalizer 1 to 3 (Parameter) 79
	Corrected volume flow (Parameter) 24
	Corrected volume flow calculation (Parameter) 54
	Corrected volume flow calculation (Submenu) 53
	Corrected volume flow factor (Parameter) 61
	Corrected volume flow offset (Parameter) 60
	Corrected volume flow unit (Parameter) 32
	Corrected volume unit (Parameter) 33, 78
D	Data transfer mode (Parameter) 70
	Date/time format (Parameter) 36
Corrected volume flow calculation 54
Corrected volume flow factor 61
Corrected volume flow offset 60
Corrected volume flow unit 32
Corrected volume unit 33
 Totalizer 1 to 3 78
Data transfer mode 70
Date/time format 36
Density 23
Density damping 42
Density factor 60
Density offset 60
Density unit 34
Device ID 74
Device name 90
Device reset 19
Device revision 74
Device tag 21, 89
Diagnoses 1 84
Diagnoses 2 85
Diagnoses 3 86
Diagnoses 4 86
Diagnoses 5 87
Electronic temperature 67
ENP version 92
Enter access code 10
Exciter current 0 68
Extended order code 1 91
Extended order code 2 91
Extended order code 3 91
External pressure 52
External reference density 54
External temperature 53
Failure mode 72
 Totalizer 1 to 3 80
Filter options 88
Firmware version 90
Fixed reference density 54
Flow damping 42
Flow override 43
Frequency fluctuation 0 65
High value partial filled pipe detection 48
Installation direction 56
Interpreter mode 73
Limit value measuring tube damping 69
Linear expansion coefficient 55
Locking status 9
Low value partial filled pipe detection 47
Mass flow 23
Mass flow factor 59
Mass flow offset 58
Mass flow unit 29
Mass unit 29
 Totalizer 1 to 3 77
Maximum damping partial filled pipe det. 49
Maximum value 94, 95, 96, 97, 98
Minimum value 93, 94, 95, 96, 97, 98
Nominal diameter 63
Off value low flow cutoff 45
On value low flow cutoff 44
Operating time 84
Operating time from restart 83
Order code 90
Oscillation amplitude 0 65
Oscillation damping 0 65
Oscillation frequency 0 64
Parity 71
Permanent storage 21
Preset value 1 to 3 80
Pressure compensation 52
Pressure shock suppression 45
Pressure unit 36
Pressure value 25, 52
Previous diagnostics 83
Progress 57
RawMassFlow 68
Reference density 24
Reference density factor 61
Reference density offset 61
Reference density unit 35
Reference sound velocity 51
Reference temperature 55
Reset all totalizers 75
Reset min/max values 93
Response time part. filled pipe detect. 48
Scan list register 0 to 15 74
Select gas type 50
Select medium 50
Serial number 89
Signal asymmetry 66
Simulation device alarm 100
Software option overview 20
Square expansion coefficient 56
Target mass flow 25
Telegram delay 72
Temperature 24
Temperature coefficient sound velocity 51
Temperature damping 43
Temperature factor 62
Temperature mode 53
Temperature offset 62
Temperature unit 35
Timestamp 82, 83, 85, 86, 87
Totalizer operation mode
 Totalizer 1 to 3 78
Totalizer overflow 1 to 3 27
Totalizer value 1 to 3 26
Tube damping fluctuation 0 66
User corrected volume factor 40
User corrected volume text 39
User density factor 40
User density offset 40
User density text 40
User mass factor 38
User mass text 37
User pressure factor 41
User pressure offset 41
User pressure text 41

Endress+Hauser

133

Index
Reference density offset (Parameter)	61
Reference density unit (Parameter)	35
Reference sound velocity (Parameter)	51
Reference temperature (Parameter)	55
Reset all totalizers (Parameter)	75
Reset min/max values (Parameter)	93
Response time part. filled pipe detect. (Parameter)	48
Scan list register 0 to 15 (Parameter)	74
Select gas type (Parameter)	50
Select medium (Parameter)	50
Sensor (Submenu)	22
Sensor adjustment (Submenu)	56
Serial number (Parameter)	89
Signal asymmetry (Parameter)	66
Signal asymmetry (Submenu)	98
Simulation (Submenu)	99
Simulation device alarm (Parameter)	100
Software option overview (Parameter)	20
Square expansion coefficient (Parameter)	56

S

Scan list register 0 to 15 (Parameter)	74
Select gas type (Parameter)	50
Select medium (Parameter)	50
Sensor (Submenu)	22
Sensor adjustment (Submenu)	56
Serial number (Parameter)	89
Signal asymmetry (Parameter)	66
Signal asymmetry (Submenu)	98
Simulation (Submenu)	99
Simulation device alarm (Parameter)	100
Software option overview (Parameter)	20
Square expansion coefficient (Parameter)	56

Administration | 19
Application | 75
Calculated values | 53
Calibration | 62
Carrier pipe temperature | 95
Communication | 69
Concentration | 81
Corrected volume flow calculation | 53
Device information | 89
Diagnostic behavior | 12
Diagnostic handling | 11
Diagnostics | 81
Electronic temperature | 93
Event logbook | 88
External compensation | 51
Heartbeat | 98
Low flow cut off | 44
Measured values | 22
Measurement mode | 49
Medium temperature | 94
Min/max values | 92
Modbus configuration | 69
Modbus data map | 74
Modbus information | 73
Oscillation amplitude | 96
Oscillation damping | 97
Oscillation frequency | 96
Partially filled pipe detection | 47
Process parameters | 42
Process variable adjustment | 58
Process variables | 22
Sensor | 22
Sensor adjustment | 56
Signal asymmetry | 98
Simulation | 99
Supervision | 68

System | 11
System units | 28
Testpoints | 64
Totalizer | 26
Totalizer 1 to 3 | 76
User-specific units | 37
Zero point adjustment | 57
Supervision (Submenu) | 68
System (Submenu) | 11
System units (Submenu) | 28

T

Target group	4
Target mass flow (Parameter)	25
Telegram delay (Parameter)	72
Temperature (Parameter)	24
Temperature coefficient sound velocity (Parameter)	51
Temperature damping (Parameter)	43
Temperature factor (Parameter)	62
Temperature mode (Parameter)	53
Temperature offset (Parameter)	62
Temperature unit (Parameter)	35
Testpoints (Submenu)	64
Timestamp (Parameter)	82, 83, 85, 86, 87
Totalizer (Submenu)	26
Totalizer 1 to 3 (Submenu)	76
Totalizer operation mode (Parameter)	78
Totalizer overflow 1 to 3 (Parameter)	27
Totalizer value 1 to 3 (Parameter)	26
Tube damping fluctuation 0 (Parameter)	66

U

User corrected volume factor (Parameter)	40
User corrected volume text (Parameter)	39
User density factor (Parameter)	40
User density offset (Parameter)	40
User density text (Parameter)	40
User mass factor (Parameter)	38
User mass text (Parameter)	37
User pressure factor (Parameter)	41
User pressure offset (Parameter)	41
User pressure text (Parameter)	41
User volume factor (Parameter)	39
User volume text (Parameter)	38
User-specific units (Submenu)	37

V

Value process variable (Parameter)	100
Volume flow (Parameter)	23
Volume flow factor (Parameter)	59
Volume flow offset (Parameter)	59
Volume flow unit (Parameter)	30
Volume unit (Parameter)	32, 77

Z

Zero point (Parameter)	63
Zero point adjustment (Submenu)	57
Zero point adjustment control (Parameter)	57